
Distributed Enabling 
Platforms

Final Exam Project 
2015/2016



Project Goals
• Projects require students to develop software in Java. 

• You must prove you master some concepts discussed 
during the course, in theory and in practice. 

• Some project ideas are proposed by the professor. 

• Students can propose their own project ideas, but they 
must be accepted by the professor. 

• Projects are mandatory to successfully pass to the final 
oral examination.



Project Delivery and 
Discussion

• A project must be delivered at least two weeks before the oral examination. 

• There are no pre-set dates: contact the professor when ready. 

• Deliver (via code repo: github, bitbucket, etc) the source code, complete 
with any data and documents to allow anyone to compile, deploy and test 
the software. 

• Deliver via email an electronically written project report describing the 
project and the design choices, implementation details, testing procedures 
and experimental evaluation. 

• Every group (1 or 2 students max) must present 10 slides per student 
during the oral examination discussing the project and its outcomes. 

• Be ready to answer queries on code organization, design choices, etc.



Common Requirements
• You must program in Java. 

• You must collect and provide input data. 

• You must implement testing procedures to debug your code. 

• You can use common support libraries (e.g., junit, log4j, etc) that do 
not overlap with the project goals. Describe them and motivate their 
use in the project report. 

• Do not hard-code configuration parameters, use configuration files/
services. 

• You must test all the functionalities of your developed system/service 
and present and discuss the testing results in the project report.



Common Requirements
• Your software must run on a distributed platform 

(even if developed in pseudo-distributed modes). 

• Your software must deal to some degree with 
autonomous entities contending shared resources. 

• Your software must deal to some degree with some 
form of shared state distributed among nodes. 

• Your software must deal to some degree with 
elasticity, scalability and/or fault tolerance.



Project 1: PAD-FS
• Implement a distributed persistent data store 

supporting a consistency model you choose. 

• Simple API: put, get, list. 

• Flat or hierarchical. 

• Use the code we discussed during lessons 

• A fully-fledged solution like Dynamo is not 
requested, but gossiping and versioning at least 



Project 2: PadBook

• Implement an eventually consistent distributed 
publish-subscribe system with a social network 
interface. 

• Design the API keeping in mind how it will be 
exploited. 

• Choose the right consistency model!



Project 3: Connected 
Components in Hadoop

• Implement a software tool to perform connected 
components identification in large graphs 

• Must be a library, focus on simplicity of use for a 
programmer. 

• We will try it on an real Hadoop cluster to test its 
usability. 

• Ask for real-world datasets



Project 3: Connected 
Components in Hadoop

• Hash-to-Min, in Finding Connected Components in 
Map-Reduce in Logarithmic Rounds by V. Rastogi et 
al., http://arxiv.org/pdf/1203.5387.pdf 

• Implement the stopping algorithm for an high mark 

• LargeStart-SmallStar, in Connected Components in 
MapReduce and Beyond by Kiveris et al., http://
dl.acm.org/citation.cfm?id=2670997 

• Implement two versions, with and without the DHT, 
for an high mark

http://arxiv.org/pdf/1203.5387.pdf
http://dl.acm.org/citation.cfm?id=2670997

