

MCSN - N. Tonellotto - Distributed Enabling Platforms

1

Written locally

Transferred from mappers to reducers over network

• Issue

- Performance bottleneck

Solution

- Use combiners
- Use In-Mapper Combining

1:	class MAPPER
2:	method MAP(docid a , doc d)
3:	for all term $t \in \text{doc } d$ do
4:	Еміт(term t , count 1)
1:	class Reducer
2:	method REDUCE(term t , counts $[c_1, c_2,]$)
3:	$sum \leftarrow 0$
4:	for all count $c \in$ counts $[c_1, c_2, \ldots]$ do
5:	$sum \leftarrow sum + c$
6:	Еміт(term t, count sum)

- How many intermediate keys per mapper?
- How can we improve this?
- Is it a "real" improvement?

1: class MAPPER2: method MAP(docid a, doc d)3: $H \leftarrow$ new AssociativeArray4: for all term $t \in doc d$ do5: $H\{t\} \leftarrow H\{t\} + 1$ 6: for all term $t \in H$ do7: Emit(term $t, count H\{t\})$

- Custom local aggregator
- Coding overhead
- Is it a "real" improvement?

Stateful In-Mapper Combining

- 1: class Mapper
- 2: method Initialize
- 3: $H \leftarrow \text{new AssociativeArray}$
- 4: **method** MAP(docid a, doc d)
- 5: **for all** term $t \in \operatorname{doc} d$ **do**
- $6: H{t} \leftarrow H{t} + 1$
- 7: method CLOSE
- 8: **for all** term $t \in H$ **do**
- 9: EMIT(term t, count $H{t}$)
- Custom local aggregator
- Coding overhead
- Is it a "real" improvement?

Advantages:

- Complete local aggregation control (how and when)
- Guaranteed to execute
- Direct efficiency control on intermediate data creation
- Avoid unnecessary objects creation and destruction (before combiners)

Disadvantages:

- Breaks the functional programming background (state)
- Potential ordering-dependent bugs
- Memory scalability bottleneck (solved by memory foot-printing and flushing)

Common problem:

- Given an input of size N, generate an output matrix of size N x N

- Example: word co-occurrence matrix
 - Given a document collection, emit the bigram frequencies

1:	class MAPPER
2:	method MAP(docid a , doc d)
3:	for all term $w \in \operatorname{doc} d$ do
4:	for all term $u \in NEIGHBORS(w)$ do
5:	Еміт(pair (w, u) , count 1)
1:	class Reducer
2:	method REDUCE(pair p , counts $[c_1, c_2,]$)
3:	$s \leftarrow 0$
4:	for all count $c \in \text{counts} [c_1, c_2, \ldots]$ do
5:	$s \leftarrow s + c$
6:	Еміт(pair p , count s)

- We must use custom key type
- Intermediate overhead? Bottlenecks?
- Can we use the reducer as a combiner?
- Keys space?

 \triangleright Emit count for each co-occurrence

 \triangleright Sum co-occurrence counts

6:

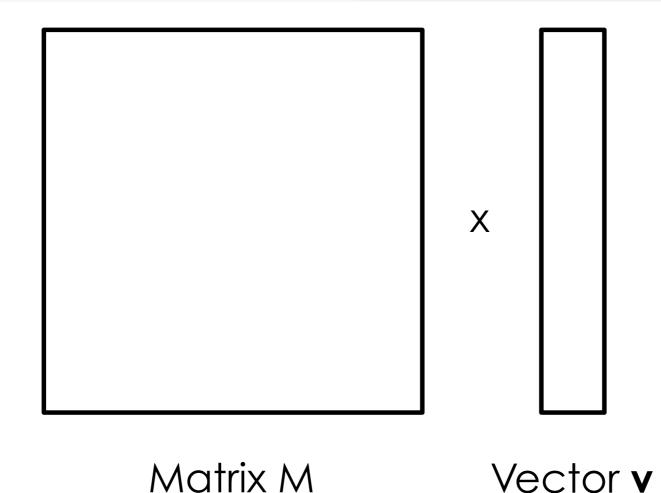
1: class Mapper

- 2: **method** MAP(docid a, doc d)
- 3: **for all** term $w \in \operatorname{doc} d$ **do**
- 4: $H \leftarrow \text{new AssociativeArray}$
- 5: for all term $u \in NEIGHBORS(w)$ do
 - $H\{u\} \leftarrow H\{u\} + 1$
- 7: EMIT(Term w, Stripe H)
- 1: class Reducer
- 2: method REDUCE(term w, stripes $[H_1, H_2, H_3, \ldots]$)
- 3: $H_f \leftarrow \text{new AssociativeArray}$
- 4: for all stripe $H \in$ stripes $[H_1, H_2, H_3, \ldots]$ do
- 5: $\operatorname{Sum}(H_f, H)$
- 6: EMIT(term w, stripe H_f)
- We must use custom key and value types
- Intermediate overhead? Bottlenecks?
- Can we use the reducer as a combiner?
- Keys space?

"Stripes"

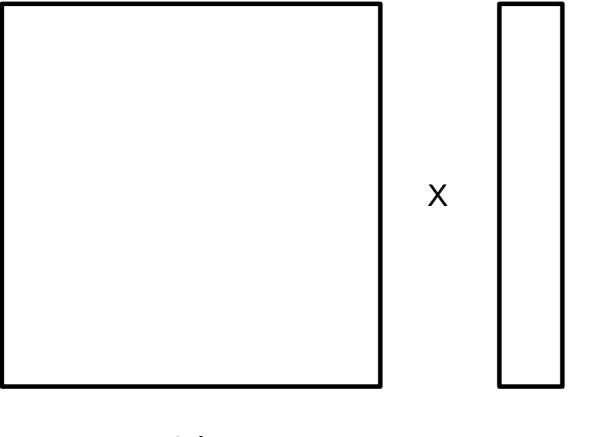
 \triangleright Tally words co-occurring with w

 \triangleright Element-wise sum



- The matrix does not fit in memory
 - 1 case: vector **v** fits in memory
 - 2 case: vector **v** does not fit in memory

Vector fits in memory



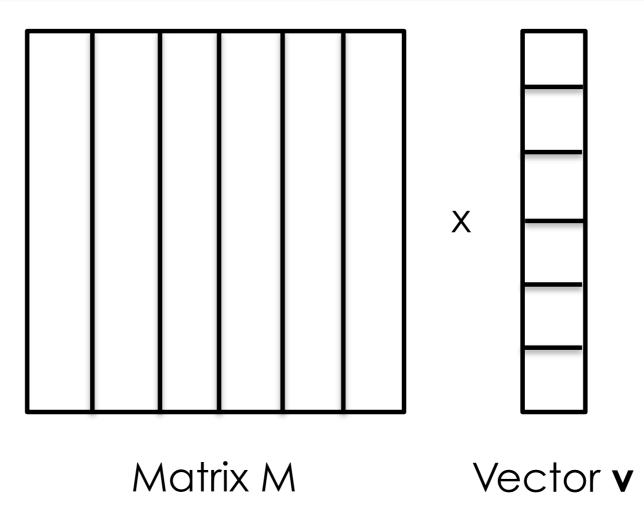
Matrix M

Vector **v**

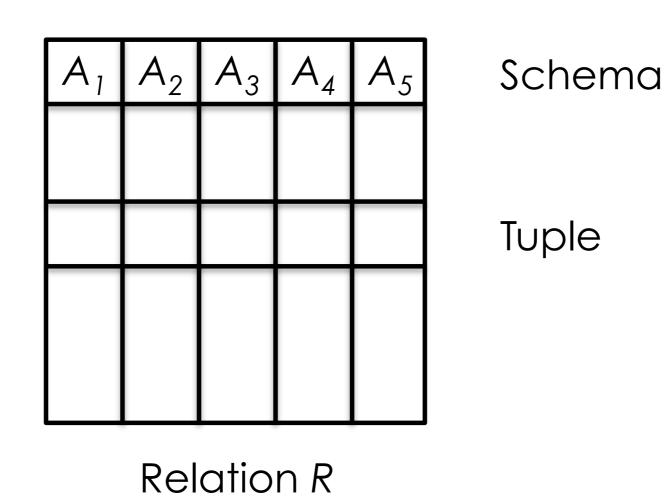
• Map

- input = (*, chunk of matrix M)
- vector v read from memory
- output = (i, mijvj)
- Reduce
 - sum up all the values for the given key i

Vector does not in memory



- Divide the vector in equal-sized subvectors that can fit in memory
- According to that, divide the matrix in stripes
- Stripe i and subvector i are independent from other stripes/subvectors
- Use the previous algorithm for each stripe/subvector pair



- SELECTION: Select from R tuples satisfying condition C
- PROJECTION: For each tuple in R, select only certain attributes
- UNION, INTERSECTION, DIFFERENCE: Set operations on two relations with same schema
- NATURAL JOIN

ISTITUTO DI SCIENZA E 1 DEI L'INFORMAZIONE "

GROUPING and AGGREGATION

- MAP: Each tuple t, if condition C is satisfied, is outputted as a (t, t) pair
- REDUCE: Identity

- MAP: For each tuple t, create a new tuple t' containing only projected attributes. Outpu is (t', t') pair
- REDUCE: Coalesce input (t', [t' t' t' t']) in output (t',t')

- MAP: Each tuple t is outputted as a (t, t) pair
- REDUCE: For each key t, there will be 1 or 2 values t.
 Coalesce them in a single output (t,t)
- MAP: Each tuple t is outputted as a (t, t) pair
- REDUCE: For each key t, there will be 1 or 2 values t. If 2

values, coalesce them in a single output (t,t), else ignore

- MAP: For each tuple t in R, produce (t, "R"). For each tuple t in S, produce (t, "S").
- REDUCE: For each key t, there will be 1 or 2 values t. If 1 value, and being "R", output (t,t), else ignore

Natural Join

- We have two relations R(A,B) and S(B,C). Find tuples that agree on B components
- MAP: For each tuple (a,b) from R, produce (b,("R",a)).
 For each tuple (b,c) from S, produce (b,("S",c)).
 REDUCE: For each key b, there will a list of values of the form ("R",a) or ("S",c). Construct all pairs and output them with b.

- We have the relation R(A,B,C) and we **group-by** A and **aggregate** on B.
- MAP: For each tuple (a,b,c) from R, output (a,b).

Each key a represents a group.

 REDUCE: Apply the aggregation operator to the list of b values associate with group a, producing x.
 Output (a,x).

• G = (V,E), where

- V represents the set of vertices (nodes)
- E represents the set of edges (links)
- Both vertices and edges may contain additional information
- Graph algorithms typically involve:
 - Performing computations at each node: based on node features, edge features, and local link structure
 - Propagating computations: "traversing" the graph
- Key questions:
 - How do you represent graph data in MapReduce?
 - How do you traverse a graph in MapReduce?

Adjacency Matrix

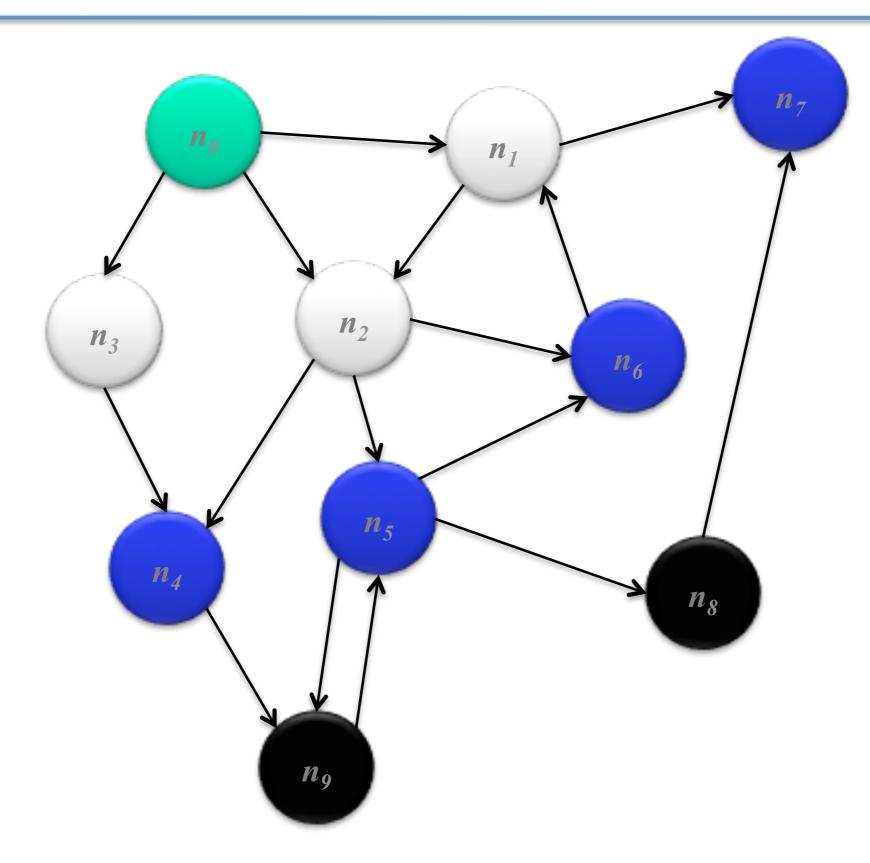
- Represent a graph as an n x n square matrix M
- n = |V|
- $M_{ij} = 1$ means a link from node i to j
- Advantages:
 - Amenable to mathematical manipulation
 - Iteration over rows and columns corresponds to computations on outlinks and inlinks
- Disadvantages:
 - Lots of zeros for sparse matrices
 - Lots of wasted space

Adjacency List

- Take adjacency matrices...
- and throw away all the zeros
- Advantages:
 - Much more compact representation
 - Easy to compute over outlinks
- Disadvantages:
 - Much more difficult to compute over inlinks

- Consider simple case of equal edge weights
- Solution to the problem can be defined inductively
- Here's the intuition:
 - Define: b is reachable from a if b is on adjacency list of a DISTANCETO(s) = 0
 - For all nodes p reachable from s, DISTANCETO(p) = 1
 - For all nodes n reachable from some other set of nodes M, DISTANCETO(n) = 1 + min(DISTANCETO(m), m M)

Shortest Path



MCSN - N. Tonellotto - Distributed Enabling Platforms

Algorithm

Data representation:

- Key: node n
- Value: d (distance from start), adjacency list (list of nodes reachable from n)
- Initialization: for all nodes except for start node, d = infinity
- Mapper:
 - m Selects minimum distance path for each reachable node
 - Additional bookkeeping needed to keep track of actual path
 - adjacency list: emit (m, d + 1)
- Sort/Shuffle
 - Groups distances by reachable nodes
- Reducer:
 - Selects minimum distance path for each reachable node
 - Additional bookkeeping needed to keep track of actual path

Details

- Each MapReduce iteration advances the "known frontier" by one hop
 - Subsequent iterations include more and more reachable nodes as frontier expands
 - Multiple iterations are needed to explore entire graph
- Preserving graph structure:
 - Problem: Where did the adjacency list go?
 - Solution: mapper emits (n, adjacency list) as well

1:	class MAPPER
2:	method MAP(nid n, node N)
3:	$d \leftarrow N.\text{Distance}$
4:	EMIT(nid n, N)
5:	for all nodeid $m \in N$. ADJACENCYLIST do
6:	Еміт(nid $m, d + 1$)
1:	class Reducer
2:	method REDUCE(nid m , $[d_1, d_2, \ldots]$)
3:	$d_{min} \leftarrow \infty$
4:	$M \leftarrow \emptyset$
5:	for all $d \in \text{counts} [d_1, d_2, \ldots]$ do
6:	if $IsNode(d)$ then
7:	$M \leftarrow d$
8:	else if $d < d_{min}$ then
9:	$d_{min} \leftarrow d$
10:	$M.DISTANCE \leftarrow d_{min}$
11:	Еміт(nid m , node M)

▷ Pass along graph structure

▷ Emit distances to reachable nodes

Recover graph structure
 Look for shorter distance

▷ Update shortest distance

- Graph algorithms typically involve:
 - Performing computations at each node: based on node features, edge features, and local link structure
 - Propagating computations: "traversing" the graph
- Generic recipe:
 - Represent graphs as adjacency lists
 - Perform local computations in mapper
 - Pass along partial results via outlinks, keyed by destination node
 - Perform aggregation in reducer on inlinks to a node
 - Iterate until convergence: controlled by external "driver"
 - Don't forget to pass the graph structure between iterations

