
Distributed Systems Models

References: 

• Any serious recent distributed systems book 😄



Core elements
• Computation: Processes, deterministic vs probabilistic 

behavior 
• Interaction: Processes interact through messages, which 

result in: 
• Communication, i.e. information  
• Coordination, i.e. synchronization and ordering of activities 

• Failures: Which kind of failures can occur? 
• Benign vs malicious (Byzantine) 
• Process vs communication 

• Time: Determining whether we can make any assumption on 
time bounds on communication and computation speeds.



Computation
• Process: the unit of computation in a distributed system.  

• Sometimes we may call it node, host, etc. 
• Process set: denoted by Π, it is composed by a collection of n uniquely 

identified processes, like p1, p2, …, pn. 
• Typical assumptions: 

• The process set is static (n is well-defined) 
• Processes do know each other 
• All processes run a copy of the same algorithm; the sum of all these 

copies constitutes the distributed algorithm 
• But in extreme distributed systems: 

• The process set is dynamic (n can vary in time) 
• Too many, too dynamic to know them all 
• Multiple algorithms



Interactions
• Processes communicate through messages 

• send(m, p): sends a message m  to p 
• receive(m): receives a messages m 

• In some cases, messages may be uniquely identified by 
• Sender of the message 
• A sequence number local to the sender 

• General assumption: every pair of processes is connected 
by a bi-directional communication channel 

• Through routing 
• Not true for P2P systems



Process Failures
• In a distributed system, both processes and communication 

channels may fail, i.e. depart from what is considered its 
correct behavior. 

• Benign process failures 
• Fail-stop: a process stops executing events, and other 

processes may detect this fact. 
• Crash: a process stops executing events 

• Malicious process failures 
• Arbitrary failure or Byzantine: any type of error may 

occur. This may be caused by: 
• A software bug 

• A malicious behavior inspired by an intelligent adversary



Process Failures

• A process that never fails is correct 
• A process that eventually fails is faulty 
• Several distributed algorithms are designed to work 

correctly if the number of failures f is bounded (e.g., f < n/3). 
• In some models, processes may perform a recovery action: 

• After some time, a process may resume functioning 
• It suffers amnesia : the local state maintained in volatile 

memory is lost 
• To limit the effects of amnesia, a log can be maintained



Communication Failures
• Benign communication failures 

• Process p performs send of a message m to process q 
• Message m is inserted in a local outgoing buffer of p (Send-

omission) 
• Message m is transmitted from p to q (Omission) 
• Message m is inserted in a local incoming buffer of q 

(Receive-omission) 
• Process q performs receive of m 

• Malicious communication failures 
• Messages created out of nothing, duplicated messages, etc.  
• These problems can easily be solved through encryption 

techniques.



Communication Failures
• Possible causes of message failures: 

• Buffer overflow in the operating system 
• Congestion

• Routing errors in routers 
• Network Partitioning

• Processes are subdivided in disjoint sets called 
partitions 

• Communication inside a partition is possible 
• Communication between partitions is not possible 

• When a partition disappears, we say that partitions merge



Fair Loss Channels
• The channels cannot systematically drop a specific 

message. This is the minimum abstraction needed to create 
reliable channels. 

• Fair Loss Channel model
• Validity – Fair Loss: If a message m is sent infinitely 

often by a process p to a process q and neither p and q 
crash, then q will receive m infinitely often 

• Integrity – Finite Duplication: If a message m is sent a 
finite number of times by a process p to a process q, then 
m cannot be received by q an infinite number of times 

• Integrity – No creation: If a message m is delivered by 
some process p, then m was previously sent by some 
process q to p



Correct Channels
• Channels are reliable, messages are never lost. It can be 

implemented, but there is a price to be payed: asynchrony. 
• Perfect Channels model 

• Validity – Reliable delivery: If p sends a message to q, 
and neither of p and q crash, then q will eventually 
receive m 

• Integrity – No duplication: No message is delivered to a 
process more than once 

• Integrity – No creation: If a message m is delivered by 
some process p, then m was previously sent by some 
process q to p



Time
• Global clock 

• For presentation simplicity, it may be convenient to assume the 
presence of a global real-time clock, outside the control of 
processes. 

• This can be used to provide a global ordering of steps in a 
distributed systems 

• In reality: 
• Each process is associated with a local clock 
• Local clocks may not report the perfect time 
• Clock drift rate : refers to the relative  amount that a computer clock 

differs from a perfect reference clock. 
• Synchronization is possible, but expensive: 

• Atomic clocks 
• GPS



Asynchronous vs Synchronous

• Distributed systems make difficult to reason about time, not 
only for lack of clock synchronization. It is also difficult to 
pose time bounds on events and communication. 

• We may think about several different models: 
• Asynchronous distributed systems 
• Synchronous distributed systems 
• Partially synchronous distributed systems



Asynchronous Systems
• There are no bounds on the relative speed of process execution. 
• There are no bounds on message transmission delays. 
• There are no bounds on clock drift. 

• OR, since we cannot count on their precision at all, there are no clocks 

• These are not assumptions! These are “lack of assumptions”! 
• The worst possible model: services as simple as time-based coordination 

are not possible 
• Advantages: 

• simple semantics 
• easier to port to more “powerful” models 
• More realistic: several sources of asynchrony are present in a large-

scale network (like the Internet)



Synchronous Systems
• Synchronous computation: there is a known upper bound on the 

relative speed of process execution. 
• Synchronous communication: there is a known upper bound on 

message transmission delays. 
• Synchronous clocks: processes are equipped with local clocks. There 

is a known upper bound on the drift rates of local clocks with respect to 
a global real-time clock. 

• The best possible model. Can be built, but not with standard hardware/
software. 

• Many interesting properties: 
• Timed failure detection (e.g., ping) 
• Coordination based on time (e.g., lease) 
• Worst-case performance analysis 
• Synchronized clocks



Partially Synchronous Systems
• For most systems we know of, it is relatively easy to define 

physical time bounds that are respected most of the time. There 
are however periods where the timing assumptions do not hold. 

• Delays on processes: 
• Machines may run out of memory, slowing down processes 
• A typical case of “no bound on relative speeds of processes” 

• Delays on messages: 
• Network may congested, and messages may be dropped. 
• Re-transmission protocols can ensure reliability, but at the 

price of asynchrony 
• Messages may be re-transmitted an arbitrary number of 

times.


