
Gossip for Data Dissemination

References:

• Any serious recent distributed systems/P2P book 😄

• Slides partially based on http://disi.unitn.it/~montreso/ds/handouts/05-
epidemic.pdf

http://disi.unitn.it/~montreso/ds/handouts/05-epidemic.pdf

XEROX in 1987

• Database replicated at thousands of nodes heterogeneous,
unreliable network

• Independent updates to single elements of the DB are
injected at multiple nodes

• Updates must propagate to all nodes or be supplanted by
later updates of the same element

• Replicas become consistent after no more new updates
• Assuming a reasonable update rate, most information at

any given replica is “current”

AMAZON in 2015

• Amazon uses a gossip protocol to quickly spread
information throughout the S3 system

• Amazon’s Dynamo uses a gossip-based failure detection
service

• The basic information exchange in BitTorrent is based on
gossip

Basic Assumptions

• System is asynchronous
• No bounds on messages and process execution delays

• Processes fail by crashing
• Stop executing actions after the crash
• We do not consider Byzantine failures

• Communication is subject to benign failures
• Message omission
• No message corruption, creation, duplication

Data Model
• We consider a database that is replicated at a set of n nodes Π =

{p1,...,pn}
• The copy of the database at node pi can be represented by a

time-varying partial function:

valuei : K → V · T
 where:

• K is the set of keys
• V is the set of values
• T is the set of timestamps

• The update operation is formalized as:
valuei(k) ← (v, now())

where now() returns a globally unique timestamp

Goal

• The goal of the update distribution process is to drive the
system towards consistency.

• Definition (Eventual consistency)

If no new updates are injected after some time t, eventually
all correct nodes will obtain the same copy of the
database:

∀pi,pj ∈ Π, ∀k ∈ K : valuei(k) = valuej(k)

• For simplicity, we will assume a single key, i.e., valuei(k) =
valuei

Best Effort
• Notify all other nodes of an update as soon as it occurs.
• When receiving an update, check if it is “new”
• A.k.a. Direct Mail algorithm

Best e↵ort protocol executed by process pi

upon valuei (v, now()) do
foreach pj 2 ⇧ do

send hupdate, valueii to pj

upon receive hupdate, (v, t)i do
if valuei.time < t then

valuei (v, t)

• What happens if the sender fail “in between”
• What happens if messages are lost?
• What is the load of the sender?

Anti-Entropy
• Every node regularly chooses another node at random and

exchanges contents, resolving differences.

Anti-entropy protocol executed by process pi

repeat every � time units
Process pj random(⇧)

/* exchange messages to resolve differences */

Push

Anti-entropy Push protocol executed by process pi

repeat every � time units
Process pj random(⇧)

send hpush, valueii to pj

upon receive hpush, (v, t)i do
if valuei.time < t then

valuei (v, t)

Pull
Anti-entropy Pull protocol executed by process pi

repeat every � time units
Process pj random(⇧);

send hpull, pi, valuei.timei to pj

upon receive hpull, pj , ti do
if valuei.time > t then

send hreply, valueii to pj

upon receive hreply, (v, t)i do
if valuei.time < t then

valuei (v, t)

Push-Pull
Anti-entropy Push-Pull protocol executed by process pi

repeat every � time units
Process pj random(⇧);

send hpush-pull, pi, valueii to pj

upon receive hpush-pull, pj , (v, t)i do
if valuei.time < t then

valuei (v, t)

else if valuei.time > t then
send hreply, valueii to pj

upon receive hreply, (v, t)i do
if valuei.time < t then

valuei (v, t)

What if…
• Nodes join/leave?
• Nodes crash suddenly?
• Up to now:

• Nodes have full view of the network
• Each node periodically “gossips” with a random node, out of

the whole set
• From now on:

• Nodes have a partial view of the network
• The partial view is dynamic, reflecting nodes joining/leaving
• Each node periodically “gossips” with a random node, out of

its partial view
• Idea:

• Nodes gossip with their neighbors about... other neighbors!
• Old nodes are removed / new nodes are inserted
• Random shuffling of views

Dynamic Gossiping

• Each node has a view containing C neighbors
• Each node periodically contacts a neighbor
• They exchange their views
• The neighbor descriptor of node p contains

• The address needed to communicate with p
• Timestamp information about the age of the descriptor
• Additional information that may be needed by upper

layers
• How to deal with failed neighbors?

Dynamic Gossiping
Generic anti-entropy protocol executed by process p

upon initialization do

view descriptor(s) of known nodes

repeat every � time units
Process q select(view)
Message m request(view, q)
send hrequest,mi to q

upon receive hrequest,mi do
Message m0 reply(m.view,m.q)
send hreply,m0i to q
view merge(view,m.view,m.q)

upon receive hreply,mi do
view merge(view,m.view,m.q)

