Gossip for Data Dissemination

References:
* Any serious recent distributed systems/P2P book &

e Slides partially based on http://disi.unitn.it/~montreso/ds/handouts/05-
epidemic.pdf



http://disi.unitn.it/~montreso/ds/handouts/05-epidemic.pdf

XEROX In 1987

Database replicated at thousands of nodes heterogeneous,
unreliable network

Independent updates to single elements of the DB are
Injected at multiple nodes

Updates must propagate to all nodes or be supplanted by
later updates of the same element

Replicas become consistent after no more new updates

Assuming a reasonable update rate, most information at
any given replica is “current”



AMAZON in 2015

Amazon uses a gossip protocol to quickly spread
information throughout the S3 system

Amazon’'s Dynamo uses a gossip-based tfailure detection
service

The basic information exchange in BitTorrent is based on
gossIp



Basic Assumptions

e System is asynchronous
 No bounds on messages and process execution delays
 Processes fail by crashing
e Stop executing actions after the crash
 We do not consider Byzantine failures
« Communication is subject to benign failures
 Message omission

 No message corruption, creation, duplication



Data Model

We consider a database that is replicated at a set of nnodes 'l =

The copy of the database at node p; can be represented by a
time-varying partial function:

value, : K =V - T
where:

« Kisthe set of keys

 Visthe set of values
T isthe set of timestamps
The update operation is formalized as:
value(k) « (v, now())

where now() returns a globally unigue timestamp



Goal

 The goal of the update distribution process is to drive the
system fowards consistency.

» Definition (Eventual consistency)

It no new updates are injected after some time t, eventually
all correct nodes will obtain the same copy of the
database:

vp;,pj € M, vk e K : value(k) = value(k)

* For simplicity, we will assume a single key, i.e., value(k) =
value,



Best Effort

 \What happens if the sender tail “in between”

* \What happens if messages are |lost?
* What is the load of the sender?

Best effort protocol executed by process p;

upon value; < (v, now()) do
foreach p; € 11 do
| send (UPDATE, value;) to p;

upon receive (UPDATE, (v,t)) do

if value;.time < t then
| value; < (v,1)




Anti-Entropy

 Every node regularly chooses another node at random and
exchanges contents, resolving differences.

Anti-entropy protocol executed by process p;

repeat every A time units
Process p; < random(II)

/* exchange messages to resolve differences */




Push

Anti-entropy PUSH protocol executed by process p;

repeat every A time units
Process p; < random(II)

send (PUSH, value;) to p,

upon receive (PUSH, (v,t)) do
if value;.time < t then
| value; < (v,1)




Pull

Anti-entropy PULL protocol executed by process p;

repeat every A time units
Process p; < random(II);
send (PULL, p;, value;.time) to p;

upon receive (PULL, p;,t) do
if value;.time > t then
. send (REPLY, value;) to p;

upon receive (REPLY, (v,t)) do

if value;.time < t then
- value; + (v,t)




Push-Pull

Anti-entropy PUSH-PULL protocol executed by process p;

repeat cvery A time units
Process p; < random(II);
send (PUSH-PULL, p;, value;) to p,

upon receive (PUSH-PULL, p;, (v,t)) do
if value;.time < t then
| value; <+ (v,1)

else if value;.time >t then
. send (REPLY, value;) to p;

upon receive (REPLY, (v,t)) do

if value;.time < t then
| value; + (v,t)




What If...

Nodes join/leave?

Nodes crash suddenly?

Up to now:

 Nodes have full view of the network

 Each node periodically "gossips” with a random node, out of
the whole set

From now on:

 Nodes have a partial view of the network

 The partial view is dynamic, reflecting nodes joining/leaving

 Each node periodically "gossips” with a random node, out of
its partial view

ldea:

 Nodes gossip with their neighbors about... other neighbors!

 Old nodes are removed / new nodes are inserted

 Random shuftling of views



Dynamic Gossiping

Each node has a view containing € neighbors

Each node periodically contacts a neighbor

They exchange their views

The neighbor descriptor of node p contains

 [he address needed to communicate with p

e [imestamp information about the age of the descriptor

 Additional information that may be needed by upper
layers

How to deal with failed neighbors”



Dynamic (Gossiping

Generic anti-entropy protocol executed by process p

upon initialization do
| view < descriptor(s) of known nodes

repeat cvery A time units
Process q < select(view)
Message m < request(view, q)
send (REQUEST, m) to ¢

upon receive (REQUEST, m) do
Message m’ < reply(m.view, m.q)
send (REPLY,m’) to q

view <— merge(view, m.view, m.q)

upon receive (REPLY,m) do
| view < merge(view, m.view, m.q)




