
Distributed Platforms
• References:

• http://book.mixu.net/distsys

• http://macs.citadel.edu/rudolphg/csci604/
ImpossibilityofConsensus.pdf

• http://lpd.epfl.ch/sgilbert/pubs/BrewersConjecture-SigAct.pdf

• http://cs-wwwarchiv.cs.unibas.ch/lehre/hs10/cs341/
_Downloads/Workshop/Reports/2010-HS-DIS-I_Giangreco-
CAP_Theorem-Report.pdf

• Any serious recent distributed systems book 😄

http://book.mixu.net/distsys
http://macs.citadel.edu/rudolphg/csci604/ImpossibilityofConsensus.pdf
http://lpd.epfl.ch/sgilbert/pubs/BrewersConjecture-SigAct.pdf
http://cs-wwwarchiv.cs.unibas.ch/lehre/hs10/cs341/_Downloads/Workshop/Reports/2010-HS-DIS-I_Giangreco-CAP_Theorem-Report.pdf

Coordination

Consensus & Agreement
• It is generally important that the processes within a

distributed system have some sort of agreement

• Coordination among multiple parties involves
agreement among those parties

• Agreement ⟺ Consensus ⟺ Consistency

• Agreement is difficult in a dynamic asynchronous
system in which processes may fail or join/leave

Impossibility Theorems
• Two fundamental theorems, FLP and CAP, influences the system

design choices

• FLP theorem: asynchronicity vs synchronicity

Consensus is impossible to implement in such a way that it
both a) is always correct and b) always terminates if even one
machine might fail in an asynchronous system with crash fault
failures

• CAP theorem: what happens when network partitions are included
in the failure model

You can’t implement consistent storage and respond to all
requests if you might drop messages between processes.

• Impossibility of Distributed Consensus with One
Faulty Process, by Fischer, Lynch and Paterson
(1985)

• Consensus Problem: we have a set of processes,
each one with a private input; the processes
communicate; the processes must agree on on
some process’s input.

FLP

Consensus is important
• With consensus we can implement anything we can imagine:

• leader decision

• mutual exclusion

• transaction commitment

• much more…

• In some models consensus is possible, in some other models, it is
not

• The goal is to learn whether, for a given model, consensus is
possible or not… and prove it!

(Wrong) Consensus Protocol
• Model:

• n > 1 processes

• shared memory (may be accessed simultaneously by multiple processes)

• processors can atomically read and write (not both) a shared memory location

• Protocol:

• There is a specific memory location C

• Initially C is in a special state ⏊

• Processor 1 writes its value v1 into C, then decides on v1

• Processors j ≠ 1 read C until they read something else than ⏊ and then decide on that

• Problems with this protocol?

Consensus Properties
1. Agreement: Every correct process must agree on the

same value.

2. Integrity: Every correct process decides at most one
value, and if it decides some value, then it must have
been proposed by some process.

3. Termination: All correct processes eventually reach a
decision.

4. Validity: If all correct processes propose the same
value V, then all correct processes decide V.

FLP System Model
• Asynchronous communication model, i.e., no upper bound on the

amount of time processors may take to receive, process and
respond to an incoming message

• Communication links between processors are assumed to be
reliable. It is well known that given arbitrarily unreliable links no
solution for consensus could be found even in a synchronous
model.

• Processors are allowed to fail according to the crash fault model –
this simply means that processors that fail do so by ceasing to
work correctly. There are more general failure models, such as
byzantine failures where processors fail by deviating arbitrarily
from the algorithm they are executing.

Notation (I)
• There are N > 1 processors which communicate by sending messages.

• A message is a pair (p,m) where p is the processor the message is
intended for, and m is the contents of the message.

• Messages are stored in an abstract data structure called the message
buffer which is a multiset – simply a set where more than one of any
element is allowed – which supports two operations, send and receive.

• send(p,m) simply places the message (p,m) in the message buffer.

• receive(p) either returns a (random) message for processor p (and
removes it from the message buffer) or the special value ∅, which does
nothing.

Notation (II)
• Configuration: the internal state of all of the processors – the current step in the algorithm that they are

executing and the contents of their memory – together with the contents of the message buffer.

• Step: the system moves from one configuration to the next by a step which consists of a processor p
performing receive(p) and moving to another configuration, i.e.:

• based on p local state and m, send an arbitrary but finite number of messages

• based on p local state and m, change p local state to some new state

• Event: each step is therefore uniquely defined by the message that is received (possibly ∅) and the process p
that received it. That pair is called an event (equivalent to a message)

• Configurations move from one to another through events.

• An event e can be applied to a configuration C if either m is ∅ or (p,m) is in the message buffer

• C’ = e(C) means that if we apply event e to configuration C we move to configuration C’

• Execution: a possibly infinite sequence of events from a specific initial configuration.

• Since the receive operation is non-deterministic, there are many different possible executions for a given
initial configuration.

Notation (III)
• Schedule & Run: a particular execution σ, defined by a possibly infinite sequence of events

from a starting configuration, is called a schedule and the sequence of steps taken to realize
the schedule is a run.

• Non-faulty processes take infinitely many steps in a run (presumably eventually just
receiving ∅ once the algorithm has finished its work) – otherwise a process is considered
faulty.

• σ can be applied to configuration C if the events in σ can be applied to C in order

• C’ = σ(C) means that if we apply schedule σ to configuration C we move to configuration C’

• An admissible run is one where at most one process is faulty (capturing the failure requirements
of the system model) and every message is eventually delivered (this means that every
processor eventually gets chosen to receive infinitely many times).

• We say that a run is a deciding run provided that some process eventually decides according
to the properties of consensus, and that a consensus protocol is totally correct if every
admissible run is a deciding run.

Proof Sketch
• FLP Theorem [1985]. No totally correct consensus

algorithm exists (for the given system model).

• The idea behind it is to show that there is some
admissible run – i.e., one with only one processor
failure and eventual delivery of every message – that
is not a deciding run – i.e., in which no processor
eventually decides and the result is a protocol which
runs for ever (because no processor decides).

• Two processors and binary consensus values

Proof Sketch

?
initial

undecided
configuration

?

undecided
configuration

messages
delivered

messages
delivered

Lemma 2: This always exists

Lemma 3: We can always get here

Lemma 2
• We want to show that there is some initial

configuration in which the decision is not
predetermined by the values of the processors, but
it is a result of the messages exchanges and the
occurrence of any failure

• We proceed by contradiction, using two processors
and boolean decisions.

• Assume all initial configurations have
predetermined executions

Two nodes system
Configuration

P1:0 P2:0

Decision

V:0

Configuration

P1:0 P2:1

Decision

V:1

Configuration

P1:1 P2:1

Decision

V:1

Configuration

P1:1 P2:0

Decision

V:0

I decide 0 I decide 1

whatever happens
(any sequence of messages delivered)

Two nodes system
C1

P1:0 P2:0

Decision

V:1

C0

P1:0 P2:1

Decision

V:0

I decide 1 I decide 0

X X
• P2 initially fails, no messages

sent or received
• P1 can’t know P2 initial value

• There is a run from C0
deciding 0 even if P2 fails

• The same run can also be
made by C1

• They must decide on the
same value, but they do not!

Valency
• A given configuration C is a bivalent if the decision

if not predetermined, i.e. outcome can be 0 or 1.

• A given configuration C is univalent if it is not
bivalent, e.g. 0-valent and 1-valent configurations.

• Undecided configuration is equivalent to bivalent

• Predetermined configuration is equivalent to
univalent

Commutativity Lemma

• Let σ1 and σ2 be two schedules such that the set of
processes executing steps in σ1 are disjoint from
the set that execute steps in σ2. Then for any
configuration C that σ1 and σ2 can both be applied,
we have σ1(σ2(C)) = σ2(σ1(C)).

• Proof by induction on k = max(|σ1|,|σ2|)

Induction Base
• We want to prove that e1(e2(C)) = e2(e1(C))

• Suppose e1 = (p1, m1) and e2 = (p2, m2). Since e1 can
be applied to C, it means either m1 is ∅ or (p1, m1) is
in the message system. The same is for e2. Because
p1 ≠ p2, e1 can be applied to e2(C) and e2 can be
applied to e1(C).

• Let C1 = e1(e2(C)) and C2 = e2(e1(C)). Then the state of
the message system is the same in C1 as in C2. The
states of all processes are the same in C1 and C2 as
well. Thus C1 = C2.

Induction Step
• Case 1: |σ1| = k+1, |σ2| ≤ k

Suppose the first event in σ1 is e and σ1 = (σ,e). Then
σ1(σ2(C)) = σ(e(σ2(C))) = σ(σ2(e(C))) = σ2(σ(e(C))) = σ2(σ1(C))

• Case 2: |σ1| ≤ k, |σ2| = k+1

Same as Case 1.

• Case 3: |σ1| = k+1, |σ2| = k+1

Suppose the first event in σ2 is e and σ2 = (σ,e). Then
σ1(σ2(C)) = σ1(σ(e(C))) = σ(σ1(e(C))) = σ(e(σ1(C))) = σ2(σ1(C))
(we used Case 1 here)

Delayed message Lemma

• Let C be a configuration, and e = (p,m) is an event
that can be applied to C. Let W be the set of
configurations that is reachable from C without
applying e, then e can be applied to any state in W.

• Proof: trivial.

Lemma 3
• We want to show that we can keep the system in a bivalent state

• Formally, let C be a bivalent configuration, and e=(p,m) any
event that can be applied to C. Let W be the set of
configurations that is reachable from C without applying e, and
V = e(W) to be the set of configurations reached by applying e
to the configurations in W. Then V contains a bivalent
configuration.

• We need 4 intermediate claims.

• We proceed by contradiction, assuming V contains univalent
configurations only (in claims too) and reaching a contradiction.

Lemma 3

?
C

0?

?

?

?
?

W
1

0

1

1
0

V

e

e
e

e

e

Claim 1
• There is a 0-valent configuration F such that F = σ(C), i.e. F is reachable from

C, and σ contains the event e.

Proof: C is bivalent, so we must have a 0-valent configuration C0 reachable
from C where C0 = σ1(C)

- Case 1: σ1 contains e. Hence F = C0 and σ = σ1.

- Case 2: σ1 does not contain e. We let F = e(C0) and σ = (σ1,e). Since C0 is
0-valent, F must be 0-valent as well.

?
C0 = F

0

e

σ = σ1

C

?
C0

0
σ1

C
0
F

Claim 2

• There must be a 0-valent configuration C0 in V.

Proof: Consider the F as defined in Claim 1, and
the prefix σ’ of σ whose last event is e. Let C0 =
σ’(C) ∈V. Because V does not contain bivalent
states and because the 0-valent state F is
reachable from C0, C0 must be 0-valent.

Claim 3

• There must a 1-valent configuration C1 in V.

Proof: as per Claims 1 & 2

Claim 4

• There must be F0 and F1 in W, such that e(F0) is 0-
valent, e(F1) is 1-valent, and F0 and F1 are
neighbors, i.e., either F1 = d(F0) or F0 = d(F1).

• Proof: by simple induction, assuming w.l.o.g. e(C)
is 0-valent

Claim 4

?
C

W C1

C0

0

V

e

e
e

e

e

e

Claim 4

?
C

0

W C1

0

0

V

e

e
e

e

e

e

Claim 4

?
C

F0

F1

W C1

0

0

V

e

e
e

e

e

1
e

Claim 4

?
C

F1

0

F0

W C1

0

1
0

V

e

e
e

e

e

0
e

Claim 4

?
C

0

0

0

W C1

0

0
0

V

e

e
e

e

e

0
e

Claim 4

?
C

11

0

0

0

W
1

1

0

0
0

V

e

e
e

e

e

0
e

Claim 4

F0

C

1F1

0

0

0

W
1

1

0

0
0

V

e

e
e

e

e

0
e

Lemma 3 Proof
• Consider F0 and F1 in W, such that e(F0) = C0 is 0-valent, e(F1) = C1 is 1-valent, and w.l.o.g. assume F1 = d(F0)

(by Claim 4)

• e and d must occur on the same process p because otherwise C1 = e(F1) = e(d(F0)) = d(C0) will have a
decision of 0 (by Commutativity Lemma)

• Consider all possible executions starting from configuration F0. By termination requirement (and also to
tolerate one process failure), there must be an execution where

i) some process decides, and

ii) process p does not execute any steps.

Let the configuration immediately after some process decides be T where T = σ(F0) and σ does not contain
any step by process p.

• We have e(T) = e(σ(F0)) =σ(e(F0)) =σ(C0) which is 0-valent (by Commutativity Lemma)

• We also have e(d(T)) = e(d(σ(F0))) = σ(e(d(F0))) = σ(e(F1)) =σ(C1) which is 1-valent (by Commutativity Lemma)

• But some process has already decided in T. Regardless of whether the decision is 0 or 1, agreement can be
violated. Contradiction.

Consequences of FLP
• There is no way to solve the consensus problem under a very

minimal system model in a way that cannot be delayed forever

• Complete correctness if not possible in asynchronous models

• In practice, we may live with very low probability of disagreement
(give up safety)

• In practice, we may live with very low probability of blocking (give
up liveness)

• Two-phase commit or even three-phase commit can block forever

• This result is particularly relevant to people designing algorithms

• Presented as Brewer’s Conjecture in 2000

• Formalized and proved in Brewer’s Conjecture and the Feasibility of
Consistent, Available, Partition-Tolerant Web Services, by Lynch and
Gilbert (2002)

• Consistency, availability and partition-tolerance cannot be achieved all at
the same time in a distributed system.

• Simply, in an asynchronous network that performs as expected, where
messages may be lost (partition-tolerance), it is impossible to implement a
service providing correct data (consistency) and eventually responding to
every request (availability) under every pattern of message loss.

• Slides from http://cs-wwwarchiv.cs.unibas.ch/lehre/hs10/cs341/_Downloads/
Workshop/Talks/2010-HS-DIS-I_Giangreco-CAP_Theorem-Talk.pdf

CAP

http://cs-wwwarchiv.cs.unibas.ch/lehre/hs10/cs341/_Downloads/Workshop/Talks/2010-HS-DIS-I_Giangreco-CAP_Theorem-Talk.pdf

• All the nodes in the system see the same state of the data

• Formally, we speak of atomic or linearizable consistency

• There exists a sequential order on all operations which is consistent
with the order of invocations and responses, such that each operation
looks as if it were completed at a single instant.

Consistency

V1 V1 V1

• Every request received by a non-failing node
should be processed and must result in a response

Availability

• If some nodes crash and/or some communications
fail, system still performs as expected

Partition Tolerance

≣ ≣

It is impossible in the asynchronous network model to
implement a read/write data object that guarantees the following
properties:

• Availability

• Atomic consistency

in all fair executions (including those in which messages are lost).

CAP Theorem 1

Asynchronous, i. e. there is no clock, nodes make decisions
based only on the messages received and local computation.

It is impossible in the partially synchronous network model to
implement a read/write data object that guarantees the following
properties:

• Availability

• Atomic consistency

in all fair executions (including those in which messages are lost).

CAP Theorem 2

Partially synchronous, i. e. every node has a clock, and all clocks
increase at the same rate. However, they are not synchronized.

Proof 1 Sketch

V0 V0 V0

• Let v0 be the initial value
of an atomic object.

• A single write of a value
not equal to v0 occurs.
Assume that no other
client requests occur.

• We know that this write
completes, by the
availability requirement.

• A single read occurs,
and no other client
requests occur, ending
with the termination of
the read operation.

• The read operation
returns v1.

No partition

Proof 1 Sketch

V0 V0

• Let v0 be the initial value
of an atomic object.

• A single write of a value
not equal to v0 occurs.
Assume that no other
client requests occur.

• We know that this write
completes, by the
availability requirement.

• A single read occurs,
and no other client
requests occur, ending
with the termination of
the read operation.

• The read operation
returns v1.

No partition

V1

Proof 1 Sketch

V1 V1 V1

• Let v0 be the initial value
of an atomic object.

• A single write of a value
not equal to v0 occurs.
Assume that no other
client requests occur.

• We know that this write
completes, by the
availability requirement.

• A single read occurs,
and no other client
requests occur, ending
with the termination of
the read operation.

• The read operation
returns v1.

No partition

Proof 1 Sketch

V1 V1

• Let v0 be the initial value
of an atomic object.

• A single write of a value
not equal to v0 occurs.
Assume that no other
client requests occur.

• We know that this write
completes, by the
availability requirement.

• A single read occurs,
and no other client
requests occur, ending
with the termination of
the read operation.

• The read operation
returns v1.

V1

No partition

V1

Proof 1 Sketch

V0 V0

• Let v0 be the initial value
of an atomic object.

• Assume the network is
divided into two disjoint
sets {G1,G2} and that all
messages between G1
and G2 are lost.

• A single write of a value
not equal to v0 occurs in
G1. Assume that no other
client requests occur.

• We know that this write
completes, by the
availability requirement.

• A single read occurs in
G2, and no other client
requests occur, ending
with the termination of the
read operation.

• The read operation
returns v0.

No consistency

G1 G2

V0

Proof 1 Sketch

V0

• Let v0 be the initial value
of an atomic object.

• Assume the network is
divided into two disjoint
sets {G1,G2} and that all
messages between G1
and G2 are lost.

• A single write of a value
not equal to v0 occurs in
G1. Assume that no other
client requests occur.

• We know that this write
completes, by the
availability requirement.

• A single read occurs in
G2, and no other client
requests occur, ending
with the termination of the
read operation.

• The read operation
returns v0.

No consistency

G1 G2

V0V1

Proof 1 Sketch

V1 V1

• Let v0 be the initial value
of an atomic object.

• Assume the network is
divided into two disjoint
sets {G1,G2} and that all
messages between G1
and G2 are lost.

• A single write of a value
not equal to v0 occurs in
G1. Assume that no other
client requests occur.

• We know that this write
completes, by the
availability requirement.

• A single read occurs in
G2, and no other client
requests occur, ending
with the termination of the
read operation.

• The read operation
returns v0.

No consistency

G1 G2

V0

Proof 1 Sketch

V1 V1

• Let v0 be the initial value
of an atomic object.

• Assume the network is
divided into two disjoint
sets {G1,G2} and that all
messages between G1
and G2 are lost.

• A single write of a value
not equal to v0 occurs in
G1. Assume that no other
client requests occur.

• We know that this write
completes, by the
availability requirement.

• A single read occurs in
G2, and no other client
requests occur, ending
with the termination of the
read operation.

• The read operation
returns v0.

No consistency

G1 G2

V0

V0

Proof 1 Sketch

V0 V0

• Let v0 be the initial value
of an atomic object.

• Assume the network is
divided into two disjoint
sets {G1,G2} and that all
messages between G1
and G2 are lost.

• A single write of a value
not equal to v0 occurs in
G1. Assume that no other
client requests occur.

• The write operation does
not terminate. The
availability requirement is
violated.

• A single read occurs in
G2, and no other client
requests occur, ending
with the termination of the
read operation.

• The read operation
returns v0.

No availability

G1 G2

V0

Proof 1 Sketch

V0

• Let v0 be the initial value
of an atomic object.

• Assume the network is
divided into two disjoint
sets {G1,G2} and that all
messages between G1
and G2 are lost.

• A single write of a value
not equal to v0 occurs in
G1. Assume that no other
client requests occur.

• The write operation does
not terminate. The
availability requirement is
violated.

• A single read occurs in
G2, and no other client
requests occur, ending
with the termination of the
read operation.

• The read operation
returns v0.

G1 G2

V0V0

No availability

X

Proof 1 Sketch

V0 V0

• Let v0 be the initial value
of an atomic object.

• Assume the network is
divided into two disjoint
sets {G1,G2} and that all
messages between G1
and G2 are lost.

• A single write of a value
not equal to v0 occurs in
G1. Assume that no other
client requests occur.

• The write operation does
not terminate. The
availability requirement is
violated.

• A single read occurs in
G2, and no other client
requests occur, ending
with the termination of the
read operation.

• The read operation
returns v0.

G1 G2

V0

V0

No availability

Consequences of CAP

Consequences of CAP
• When partitions are rare (e.g., parallel systems),

CAP should allow perfect C and A most of the time

• In distributed systems it is not possible to avoid
network partitions.

• There is not a need to choose between either C or
A, instead, it is more an act of balancing between
the two properties.

Practical Consequences of CAP
• Many system designs used in early distributed relational database systems

did not take into account partition tolerance (e.g. they were CA designs).

• There is a tension between strong consistency and high availability during
network partitions. A distributed system consisting of independent nodes
connected by an unpredictable network cannot behave in a way that is
indistinguishable from a non-distributed system.

• There is a tension between strong consistency and performance in normal
operation. Strong consistency requires that nodes communicate and agree
on every operation. This results in high latency during normal operation.

• If we do not want to give up availability during a network partition, then we
need to explore whether consistency models other than strong consistency
are workable for our purposes.

