
MCSN - N. Tonellotto - Distributed Enabling Platforms 68

Design Patterns for the Cloud

MCSN - N. Tonellotto - Distributed Enabling Platforms

based on

69

http://media.amazonwebservices.com/AWS_Cloud_Best_Practices.pdf

Amazon Web Services

Architecting for the Cloud:
Best Practices

Jinesh Varia

MCSN - N. Tonellotto - Distributed Enabling Platforms

Amazon Web Services

70

MCSN - N. Tonellotto - Distributed Enabling Platforms

Amazon Web Services

71

MCSN - N. Tonellotto - Distributed Enabling Platforms

Scalable Architectures

72

A scalable architecture is critical to take advantage of a scalable
infrastructure

The cloud is designed to provide conceptually infinite
scalability.

Characteristics of Truly Scalable Service

• Increasing resources results in a proportional increase in performance
• A scalable service is capable of handling heterogeneity
• A scalable service is operationally efficient
• A scalable service is resilient
• A scalable service becomes more cost effective when it grows

MCSN - N. Tonellotto - Distributed Enabling Platforms

1. Design for Failure
• “Everything fails, all then time” - Werner Vogels, Amazon’s CTO
• Avoid single points of failure
• Assume everything fails, and design backwards
• Goal: Applications should continue to function even if the

underlying physical hardware fails or is removed or replicated
• The following strategies can help in event of failure:

1. Have a coherent backup and restore strategy for your data and automate it
2. Build process threads that resume on reboot
3. Allow the state of the system to re-sync by reloading messages from queues
4. Keep pre-configured and pre-optimized virtual images to support (2) and

(3) on launch/boot
5.Avoid in-memory sessions or stateful user context, move that to data stores.

73

MCSN - N. Tonellotto - Distributed Enabling Platforms

1. AWS Tactics
1. Elastic IP is a static IP that is dynamically re-mappable. You can quickly remap and failover

to another set of servers so that your traffic is routed to the new servers.
2. Availability Zones are conceptually like logical datacenters. By deploying your

architecture to multiple availability zones, you can ensure highly availability.
3. Maintain an Amazon Machine Image so that you can restore and clone environments

very easily in a different Availability Zone.
4. Utilize Amazon CloudWatch (or various real-time open source monitoring tools) to get

more visibility and take appropriate actions in case of hardware failure or performance
degradation.

5. Setup an Auto scaling group to maintain a fixed fleet size so that it replaces unhealthy
Amazon EC2 instances by new ones.

6. Utilize Amazon EBS and set up cron jobs so that incremental snapshots are automatically
uploaded to Amazon S3 and data is persisted independent of your instances.

7. Utilize Amazon RDS and set the retention period for backups, so that it can perform
automated backups.

74

MCSN - N. Tonellotto - Distributed Enabling Platforms

2. Design Loosely Coupled Systems
• The cloud reinforces the SOA design principle that the more loosely

coupled the components of the system, the bigger and better it
scales.

• Build components that do not have tight dependencies on each
other.

• Build asynchronous systems and scaling horizontally become very
important in the context of the cloud.

• Build systems to scale out by adding more instances of same
component

75

MCSN - N. Tonellotto - Distributed Enabling Platforms

2. AWS Tactics
1. Use Amazon SQS as buffers between components
2. Design every component such that it expose a service interface and is

responsible for its own scalability in all appropriate dimensions and interacts
with other components asynchronously

3. Bundle the logical construct of a component into an Amazon Machine Image so
that it can be deployed more often

4. Make your applications as stateless as possible. Store session state outside of
component (in Amazon SimpleDB, if appropriate)

76

MCSN - N. Tonellotto - Distributed Enabling Platforms

3. Implement Elasticity
• Elasticity can be implemented in three ways:

1. Proactive Cyclic Scaling: Periodic scaling that occurs at fixed interval (daily,
weekly, monthly, quarterly)

2. Proactive Event-based Scaling: Scaling just when you are expecting a big
surge of traffic requests due to a scheduled business event (new product
launch, marketing campaigns)

3. Auto-scaling based on demand. By using a monitoring service, your system
can send triggers to take appropriate actions so that it scales up or down based
on metrics (utilization of the servers or network i/o, for instance)

• To implement “Elasticity”, one has to first automate the deployment
process and streamline the configuration and build process. This will
ensure that the system can scale without any human intervention.

77

MCSN - N. Tonellotto - Distributed Enabling Platforms

3. Design your AMI
• The cloud allows you to automate your deployment process.
• Take the time to create an automated deployment process early on

during the migration process and not wait till the end.
• Creating an automated and repeatable deployment process will help

reduce errors and facilitate an efficient and scalable update process.
• To automate the deployment process:

- Create a library of “recipes” – small frequently-used scripts (for installation
and configuration)

- Manage the configuration and deployment process using agents bundled
inside an AMI

- Bootstrap your instances

78

MCSN - N. Tonellotto - Distributed Enabling Platforms

3. AMI Design Approaches

79

OS

Framework

DB

Packages

Libraries

Your code

MVC

App Server

Web Server

1. Inventory of static AMIs

2. Golden AMIs with fetch on boot

3. AMIs with Just Enough OS and agent

Easier to
setup

Easier to
maintain

MCSN - N. Tonellotto - Distributed Enabling Platforms

3. Inventory of static AMIs

80

OS

Framework

DB

Packages

Libraries

Your code

MVC

App Server

Web Server

OS

Framework

DB

Packages

Libraries

Your code

MVC

App Server

Web Server

Amazon EC2

OS

Framework

DB

Packages

Libraries

Your code

MVC

App Server

Web Server

OS

Framework

DB

Packages

Libraries

Your code

MVC

App Server

Web Server

OS

Framework

DB

Packages

Libraries

Your code

MVC

App Server

Web Server

MCSN - N. Tonellotto - Distributed Enabling Platforms

3. Golden AMIs with fetch on boot

81

OS

Framework

DB

Packages

Libraries

Your code

MVC

Your code

App Server

Web Server

Amazon EC2

DB

Packages

Libraries

MVC

OS

Framework

App Server

Web Server

Amazon S3

Local SVN Repository

Fetch on AMI
boot time

Your code

DB

Packages

Libraries

MVC

OS

Framework

App Server

Web Server

OS

Framework

App Server

Web Server

OS

Framework

App Server

Web Server

MCSN - N. Tonellotto - Distributed Enabling Platforms

3. AMI with JeOS and agent

82

OS

Framework

DB

Packages

Libraries

Your code

MVC

Your code

App Server

Web Server

Amazon EC2

Amazon S3

Local SVN Repository

Fetch on AMI
boot time

Your code

OS

Agent

OS

Agent

DB

Packages

Libraries

MVC

Framework

App Server

Web Server

DB

Packages

Libraries

MVC

Framework

App Server

Web Server
Recipe Database

Download recipe on
agent request

MCSN - N. Tonellotto - Distributed Enabling Platforms

3. AWS Tactics
1. Define Auto-scaling groups for different clusters
2. Monitor your system metrics (CPU, Memory, Disk I/O, Network I/O) using Amazon CloudWatch and take

appropriate actions (launching new AMIs dynamically using the Auto-scaling service) or send notifications.
3. Store and retrieve machine configuration information dynamically: Utilize Amazon SimpleDB to fetch

config data during boot-time of an instance (eg. database connection strings). SimpleDB may also be used
to store information about an instance such as its IP address, machine name and role.

4. Design a build process such that it dumps the latest builds to a bucket in Amazon S3; download the
latest version of an application from during system startup.

5. Invest in building resource management tools (Automated scripts, pre-configured images) or Use smart
open source configuration management tools.

6. Bundle Just Enough Operating System (JeOS) and your software dependencies into an Amazon Machine
Image so that it is easier to manage and maintain. Pass configuration files or parameters at launch time and
retrieve user data and instance metadata after launch.

7. Reduce bundling and launch time by booting from Amazon EBS volumes and attaching multiple Amazon
EBS volumes to an instance. Create snapshots of common volumes and share snapshots among accounts
wherever appropriate.

8. Application components should not assume health or location of hardware it is running on.

83

