
Replication & Availability
• Internet-scale services must be partition-tolerant

• What if Amazon hangs if my client can not communicate with a server in India?

• Internet-scale services must be always available

• What if Facebook hangs because busy propagating consist status updates?

• We must give up (strong) consistency for (weak) consistency

• P + A + (s)C is impossible

• P + A - (s)C is possible but useless

• P + A + (w)C is possible

• References:

• http://book.mixu.net/distsys

• Bailis, Ghodsi, Eventual Consistency Today: Limitations, Extensions, and Beyond, ACM Queue,
2013

• Shapiro, Saito, Optimistic Replication, ACM Computing Surveys, 2005. https://www.ece.cmu.edu/
~ece845/sp06/docs/optimistic-data-rep.pdf

http://book.mixu.net/distsys
https://www.ece.cmu.edu/~ece845/sp06/docs/optimistic-data-rep.pdf

Consistency
• A consistency model is a contract between programmer and system, wherein the

system guarantees that if the programmer follows some specific rules, the results
of operations on the data store will be predictable.

• Strong consistency models guarantee that the apparent order and visibility of
updates is equivalent to a non-replicated system

• Linearizable consistency

• Sequential consistency

• Weak consistency models are not strong:

• Client-centric consistency models

• Causal consistency: strongest model available

• Eventual consistency models

Strong Consistency Models
• Linearizable consistency: Under linearizable

consistency, all operations appear to have
executed atomically in an order that is consistent
with the global real-time ordering of operations.
(Herlihy & Wing, 1991)

• Sequential consistency: Under sequential
consistency, all operations appear to have
executed atomically in some order that is
consistent with the order seen at individual nodes
and that is equal at all nodes. (Lamport, 1979)

Weak Consistency Models
• Client-centric consistency models are consistency

models that involve the notion of a client or session
in some way.

• The eventual consistency model says that if you
stop changing values, then after some undefined
amount of time all replicas will agree on the same
value.

• Since it is trivially satisfiable (liveness property
only), it is useless without supplemental information.

Giving up consistency, but…

• If I upload a document on my desktop computer, I
want to download it sooner or later from my tablet

• If I upload a new version of the document on my
desktop computer, and I downloaded it
successfully on my tablet, I do not want to
download the older version in subsequent
downloads

• Sooner better than later!

Weak Consistency Example
Each update is transmitted independently, and

applied to each replica whenever it arrives

C1

N1

N2

C2

x = 0, y = 0, z = 0

Weak Consistency Example
Each update is transmitted independently, and

applied to each replica whenever it arrives

C1

N1

N2

C2

WRITE(x, 5)

x = 0, y = 0, z = 0

Weak Consistency Example
Each update is transmitted independently, and

applied to each replica whenever it arrives

C1

N1

N2

C2

WRITE(x, 5)

x = 0, y = 0, z = 0

Weak Consistency Example
Each update is transmitted independently, and

applied to each replica whenever it arrives

C1

N1

N2

C2

WRITE(x, 5) WRITE(z, 5)

x = 0, y = 0, z = 0
WRITE(y,7)

Weak Consistency Example
Each update is transmitted independently, and

applied to each replica whenever it arrives

C1

N1

N2

C2

WRITE(x, 5) WRITE(z, 5)

x = 0, y = 0, z = 0
WRITE(y,7)

Weak Consistency Example
Each update is transmitted independently, and

applied to each replica whenever it arrives

C1

N1

N2

C2

WRITE(x, 5) WRITE(z, 5) GETALL()

x = 0, y = 0, z = 0
WRITE(y,7)

Weak Consistency Example
Each update is transmitted independently, and

applied to each replica whenever it arrives

C1

N1

N2

C2

WRITE(x, 5) WRITE(z, 5) GETALL()

x = 0, y = 0, z = 0
WRITE(y,7)

Weak Consistency Example
Each update is transmitted independently, and

applied to each replica whenever it arrives

C1

N1

N2

C2

WRITE(x, 5) WRITE(z, 5) GETALL()

x = 0, y = 0, z = 0
WRITE(y,7)

Weak Consistency Example
Each update is transmitted independently, and

applied to each replica whenever it arrives

C1

N1

N2

C2

WRITE(x, 5) WRITE(z, 5) GETALL() x = 5, y = 0, z = 0

x = 0, y = 0, z = 0
WRITE(y,7)

Weak Consistency Example
Each update is transmitted independently, and

applied to each replica whenever it arrives

C1

N1

N2

C2

WRITE(x, 5) WRITE(z, 5) GETALL() x = 5, y = 0, z = 0

x = 0, y = 0, z = 0
WRITE(y,7) GETALL()

Weak Consistency Example
Each update is transmitted independently, and

applied to each replica whenever it arrives

C1

N1

N2

C2

WRITE(x, 5) WRITE(z, 5) GETALL() x = 5, y = 0, z = 0

x = 0, y = 0, z = 0
WRITE(y,7) GETALL()

Weak Consistency Example
Each update is transmitted independently, and

applied to each replica whenever it arrives

C1

N1

N2

C2

WRITE(x, 5) WRITE(z, 5) GETALL() x = 5, y = 0, z = 0

x = 0, y = 0, z = 0
WRITE(y,7) GETALL()

Weak Consistency Example
Each update is transmitted independently, and

applied to each replica whenever it arrives

C1

N1

N2

C2

WRITE(x, 5) WRITE(z, 5) GETALL() x = 5, y = 0, z = 0

x = 0, y = 0, z = 0
WRITE(y,7) GETALL() x =0, y =7, z =7

Weak Consistency Example
Each update is transmitted independently, and

applied to each replica whenever it arrives

C1

N1

N2

C2

WRITE(x, 5) WRITE(z, 5) GETALL() x = 5, y = 0, z = 0

x = 0, y = 0, z = 0
WRITE(y,7) GETALL() x =0, y =7, z =7

Weak Consistency Example
Each update is transmitted independently, and

applied to each replica whenever it arrives

C1

N1

N2

C2

WRITE(x, 5) WRITE(z, 5) GETALL() x = 5, y = 0, z = 0

x = 0, y = 0, z = 0
WRITE(y,7) GETALL() x =0, y =7, z =7

This execution is not sequentially consistent

Switching Perspective
• Problem: Sharing data in mobile computing scenario

• A client connects with different replicas over time

• Differences between replicas should be made transparent

• No particular problems of simultaneous updates, here

• Client-centric consistency models

• In essence, they ensure that whenever a client connects to a
new replica, that replica is up to date according to the
previous accesses of the client to the same data in the other
replicas on different sites

New Scenario
• Large, distributed data store with almost no update conflicts

• Typically, a single authority updating, with many processes simply reading

• The only conflict is read-write conflict where one process wants to update a data item
while another concurrently attempts to read the same data

• Examples: DNS changes, Web content

Issues

• Non-updated data may be provided to readers

• In most cases, such an inconsistency might be acceptable to readers

• Typically, if no update takes place for a while, gradually all replicas will become
consistent

• This sort of consistency is called eventual consistency

Eventual Consistency

• Special form of weak consistency

• “Eventual” network partitions tolerated

• Requires “conflict resolution” mechanisms to
disseminate write

• The message exchange is a.k.a. anti-entropy

If no new updates are made to the data object, eventually
all accesses will return the last updated value.

Monotonic Read

• A data store is said to provide monotonic-read
consistency if the following condition holds

If a process reads the value of a data item x, any
successive read operation on x by the process will
always return that same value or a more recent value

• Example: distributed email database

Monotonic Write
• A data store is said to provide monotonic-write

consistency if the following condition holds

A write operation by a process on a data item x is
completed before any successive operation on x by
the same process

• The order of updates is maintained over distributed
replicas

• Example: concurrent software development systems

Read Your Writes
• A data store is said to provide read-your-writes

consistency if the following condition holds

The effect of a write operation by a process on data
item x will always be seen by a successive read
operation on x by the same process

• Avoid the “web page failed update” effect

• Example: password updates

Writes Follow Reads
• A data store is said to provide writes-follow-reads

consistency if the following condition holds

A write operation by a process on data item x
following a previous read operation on x by the same
process is guaranteed to take place on the same or
a more recent value of x that was read

• Writes affect only up-to-date data items

• Example: comments to posts on Facebook

• Service providing persistent data storage to other
services running on Amazon’s distributed
computing infrastructure.

• Dynamo: Amazon’s Highly Available Key-value
Store, SOSP 2007

• First paper discussing implementation of weak
consistent, highly available data replication service

Dynamo

Amazon’s Platform Architecture

Request Routing

Request Routing

Client Requests

S3

Page Rendering Services

Stateless Aggregator Services

Stateful Services

Datastores

Dynamo Instances

• Replication for high availability and durability

• replication technique: synchronous or asynchronous?

• conflict resolution: when and who?

• Dynamo’s goal is to be “always writable”

• rejecting writes may result in poor Amazon customer experience

• data store needs to be highly available for writes, e.g., accept writes
during failures and allow write conversations without prior context

• Design choices

• optimistic (asynchronous) replication for non-blocking writes

• conflict resolution on read operation for high write throughput

• conflict resolution by client for user-perceived consistency

Design Issues

• Incremental Scalability
• scale out (and in) one node at a time
• minimal impact on both operators of the systems and the system itself

• Symmetry
• every node should have the same set of responsibilities
• no distinguished nodes or nodes that take on a special role
• symmetry simplifies system provisioning and maintenance

• Decentralization
• favor decentralized peer-to-peer techniques
• achieve a simpler, more scalable, and more available system

• Heterogeneity
• exploit heterogeneity in the underlying infrastructure
• load distribution proportional to capabilities of individual servers
• adding new nodes with higher capacity without upgrading all nodes

Design Principles

• Data objects (blobs) are identified through an hash key
• Two single object operations, no group operations
• Read operation: GET(K) → [OBJECT(S), CONTEXT]

• Locate object replicas associated with key k
• Return single object or multiple conflicting version of the

same object with context
• Write operation: PUT(K, OBJECT, CONTEXT)

• Determine where the replicas should be placed based on
key k

• Write the replicas to disks
• Context

• System metadata, opaque to the caller
• Include information on object, such as versioning

Interfaces

• Consisten Hashing
• Load distribution
• Arrival and departures have neighbor impact

Partitioning

A

B
C

D

E

2128 keys

• Every data item is replicated at N hosts
• N is configured “per-instance” of Dynamo
• each key k is assigned a coordinator host that handles write

requests for k
• coordinator is also in charge of replication of data items

within its range
• Coordinator stores data item with key k locally
• Coordinator stores data item at N-1 clockwise successors

nodes
• Every node is responsible for the region of the ring between

itself and its predecessor
• Preference list enumerates nodes that are responsible for

storing a key k – contains more than N nodes to account for
node failures

Replication

• Replication performed after a response is sent to a client
• This is called asynchronous replication
• May result in inconsistencies under network partitions

• But operations should not be lost
• “add to cart” should not be rejected but also not forgotten
• If “add to cart” is performed when latest version is not

available it is performed on an older version
• We may have different versions of a key/value pair

• Once a partition heals versions are merged
• The goal is not to lose any “add to cart”

• Data versioning technique: Vector clocks
• Capture causality between different versions of an object

Data Versioning

• Each write to a key k is associated with a vector clock
VC(k)

• VC(k) is an array (map) of integers
• In theory: one entry VC(k)[i] for each node i

• When node i handles a write of key k it increments VC(k)[i]
• VCs are included in the context of the put call

• In practice:
• VC(k) will not have many entries (only nodes from the

preference list should normally have entries), and
• Dynamo truncates entries if more than a threshold

(say 10)

Vector Clocks

1. Client A
• writes new object D
• node N1 writes version D1

2. Client A
• updates object D
• node N1 writes version D2

3. Client A
• updates object D
• node N2 writes version D3

4. Client B
• reads and updates object D
• node N3 writes version D4

5. Client C
• reads object D (i.e., D3 and D4)
• client performs reconciliation
• node N1 write version D5

Data Versioning
WRITE handled

by N1

WRITE handled
by N1

WRITE handled
by N3

WRITE handled
by N2

Reconciliation and
WRITE handled by N1

D1[N1,1]

D2[N1,2]

D3[N1,2][N2,1] D4[N1,2][N3,1]

D5[N1,3][N2,1] [N3,1]

Dx[Ny,Z]

handling node

logical clockobject version
1

2

3 4

5

• Any node can receive GET/PUT request for any key.
• This node is selected by

• Generic load balancer
• By a client library that immediately goes to coordinator nodes in a

preference list
• If the request comes from the load balancer

• Node serves the request only if in preference list
• Otherwise, the node routes the request to the first node in preference

list
• Each node has routing info to all other nodes
• Extended preference list: N nodes from preference list + some additional

nodes (following the circle) to account for failures
• Failure-free case: nodes from preference list are involved in get/put
• Failures case: first N alive nodes from extended preference list are

involved

Handling PUT/GET

• R = number of nodes that need to participate in a GET
• W = number of nodes that need to participate in a PUT
• R + W > N (a quorum system)
• Handling PUT (by coordinator) // rough sketch

1. Generate new VC, write new version locally
2. Send value and VC to N selected nodes from preference list
3. Wait for W -1

• Handling GET (by coordinator) // rough sketch
1. Send read to N selected nodes from preference list
2. Wait for R
3. Select highest versions per VC, return all such versions
4. Reconcile/merge different versions
5. Write back reconciled version

R and W

• Formally, a quorum system S = {S1, …, SN} is a
collection of quorum sets Si ⊆U such that two
quorum sets have at least an element in common

• For replication, we consider two quorum sets, a read
quorum R and a write quorum W

• Rules:
1. Any read quorum must overlap with any write

quorum
2. Any two write quorums must overlap

• U is the set of replicas, i.e., |U| = N

Quorum Systems

• Read rule: |R| + |W| > N ⇒ read and write quorums overlap

• Write rule: 2 |W| > N ⇒ two write quorums overlap

• The quorum sizes determine the costs for read and write
operations

• Minimum quorum sizes for are

• Write quorums requires majority
• Read quorum requires at least half of the nodes

• ROWA (R,W,N) = (1,N,N)
• Typical Dynamo (R,W,N) = (2,2,3)

Quorum Rules

min |W | =

�
N
2

�
+ 1 min |R | =

�
N
2

�

• Read rule: |R| + |W| > N ⇒ read and write quorums overlap

• Write rule: 2 |W| > N ⇒ two write quorums overlap

• The quorum sizes determine the costs for read and write operations
• Minimum quorum sizes for are

• Write quorums requires majority
• Read quorum requires at least half of the nodes

• ROWA (R,W,N) = (N = N, R = 1, W = N)
• Amazon’s Dynamo (N = 3, R = 2, W = 2)
• Linkedin's Voldemort (N = 2 or 3, R = 1, W = 1 default)
• Apache's Cassandra (N = 3, R = 1, W = 1 default)

Quorum Examples

min |W | =

�
N
2

�
+ 1 min |R | =

�
N
2

�

• N selected nodes are the first N healthy nodes
• Might change from request to request
• Hence these quorums are “Sloppy” quorums

• Sloppy vs. strict quorums
• sloppy allow availability under a much wider range of
• partitions (failures) but sacrifice consistency

• Also, important to handle failures of an entire data center
• Power outages, cooling failures, network failures, disasters
• Preference list accounts for this (nodes spread across data centers)

• Hinted Handoff
• if a node is unreachable, a hinted replica is sent to next healthy

node
• nodes receive hinted replicas keep them in a separate database
• hinted replica is delivered to original node when it recovers

Handling Failures

• Using vector clocks, concurrent and out of date updates
can be detected.
• Performing read repair then becomes possible
• In some cases (concurrent changes) we need to ask

the client to pick a value.
• What about node rejoining?

• Nodes rejoining the cluster after being partitioned
• When a failed node is replaced or partially recovered

• Replica synchronization is used:
• to bring nodes up to date after a failure
• for periodically synchronizing replicas with each other

Replica Synchronization

• A node holding data received via “hinted handoff”
may crash before it can pass data to unavailable
node in preference list

• Need another way to ensure each (k, v) pair
replicated N times

• Nodes nearby on ring periodically compare the (k, v)
pairs they hold, and copy any they are missing that
are held by the other

Replica Reconciliation

• Idea: hierarchically summarize the (k, v) pairs a node
holds by ranges of keys

• Leaf node: hash of one (k, v) pair
• Internal node: hash of concatenation of children
• Compare roots; if match, done
• If don’t match, compare children; recur…
• Benefits

• minimize the amount of data to be transferred for
synch

• reduce the number of required disk reads

Merkle Trees

• Dynamo uses Merkle trees for anti-entropy as follows
• each node maintains a separate Merkle tree for

each key range it hosts
• two nodes exchange the root of the Merkle tree of

the key ranges that they host in common
• using the synch mechanism described before, the

nodes determine if they have any differences and
perform the appropriate synch

Anti Entropy in Dynamo

Techniques used in Dynamo
Problem Technique Advantage

Partitioning Consistent hashing Incremental scalability

High availability
for writes

Vector clocks with
reconciliation during

reads
Version size is decoupled from update rates

Handling
temporary failures

Sloppy quorum and
hinted handoff

Provides high availability and durability guarantee
when some of the replicas are not available

Recovering from
permanent failures

AntiI-entropy using
Merkle trees Synchronizes divergent replicas in the background

Membership and
failure detecIon

Gossip-based
membership protocol
and failure detecIon

Preserves symmetry and avoids having a
centralized registry for storing membership and

node liveliness informaIon

