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Partitioning
• Partitioning is dividing the dataset into smaller distinct independent 

sets 

• Partitioning is used to reduce the impact of dataset growth since 
each partition is a subset of the data. 

• Partitioning improves performance by limiting the amount of data to 
be examined and by locating related data in the same partition. 

• Partitioning improves availability by allowing partitions to fail 
independently, increasing the number of nodes that need to fail 
before availability is sacrificed. 

• Partitioning is also very much application-specific, so it is hard to 
say much about it without knowing the specifics. 



Replication
• Replication is making copies of the same data on multiple 

machines; this allows more servers to take part in the 
computation. 

• Replication - copying or reproducing something - is the primary 
way in which we can fight latency. 

• Replication improves performance by making additional 
computing power and bandwidth applicable to a new copy of 
the data. 

• Replication improves availability by creating additional copies of 
the data, increasing the number of nodes that need to fail before 
availability is sacrificed.



Replication & Consistency
• one of many problems in distributed systems 

• it is often the part that people are most interested in 

• provides a context for many subproblems, such as leader election, failure detection, 
consensus and atomic broadcast 

• References: 

• Coulouris, Dollimore, Kindberg, Blair, Distributed Systems - Concepts and Design, ch 15 

• http://book.mixu.net/distsys 

• http://research.microsoft.com/en-us/people/philbe/chapter7.pdf 

• http://research.microsoft.com/en-us/um/people/lamport/pubs/paxos-simple.pdf 

• http://static.googleusercontent.com/media/research.google.com/it//archive/
paxos_made_live.pdf

http://book.mixu.net/distsys
http://research.microsoft.com/en-us/people/philbe/chapter7.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/paxos-simple.pdf
http://static.googleusercontent.com/media/research.google.com/it//archive/paxos_made_live.pdf


Communication Patterns

Synchronous Asynchronous

Request Response



Synchronous

Request Response

• Three stages 

• Client blocks 

• N-to-N write 

• Transactions

• High latency 

• Low network 
robustness 

• Low availability 

• High durability

Synchronous Replication 
or active, or eager, or push, or pessimistic



Asynchronous Replication 
or passive, or pull, or lazy

Request

Asynchronous

Response

• Master answers 
immediately 

• Client does not 
block 

• 1-to-N write  

• Low latency 

• High network 
robustness 

• High availability 

• Weak or 
probabilistic 
durability



Designing Replication 
Strategies

Asynch 
(lazy)

Synch 
(eager)

Master 
(primary)

Group 
(everywhere)



Pros & Cons
Synchronous 

+ No inconsistencies 
+ Local copies always updated 
+ Atomic changes 
 - Global single transaction  
 - Performance

Asynchronous 
+ Local transaction 
+ Performance 
 - Inconsistencies 
 - Local copies not updated 
 - Replication not transparent

Group 
+ Anyone transaction 
+ Load balancing 
- Synchronized copies 

Primary 
+ Simple 
+ Centralized updates 
 - Load unbalancing 
 - Single POF 
 - Local copies not updated



Asynch + Primary
• Primary Copy Replication 

• Simplest approach: 

• All requests go to primary copy 

• Other copies serve as backups 

• Widely used in practice 

• Keep backups of important services 

• Backup can go “live” when primary fails



Primary Copy Replication
• All updates are performed on the 

primary 

• log of operations (or alternatively, 
changes) is shipped across the 
network to the backup replicas 

• Asynch and synch variants 

• Asynch used by MySQL and 
MongoDB



Primary Copy Fault 
Tolerance

• Failures can cause violations to 
consistency guarantees 

• Site failures, network partitions, 
undelivered messages 

• We need an atomic 
commitment protocol (ACP) 

• Commonly used in database 
systems (i.e., transactions)



Atomic Commitment 
Protocols

• 1 coordinator, N participants 

• Coordinator knows the names of all participants  

• Participants know the name of the coordinator, 
not necessarily each other 

• Each site contains a distributed transaction log 
surviving failures 

• Each process may cast exactly one of two votes: 
Yes or No  

• Each process can reach exactly one of two 
decisions: Commit or Abort  

• Consensus Problem!!!!



ACP Conditions
1. All processes that reach a decision reach the 

same one. 

2. A process cannot reverse its decision after it has 
reached one. 

3. The Commit decision can only be reached if all 
processes voted Yes. 

4. If there are no failures and all processes voted 
Yes, then the decision will be to Commit. 

5. Consider any execution containing only failures 
that the algorithm is designed to tolerate. At any 
point in this execution, if all existing failures are 
repaired and no new failures occur for sufficiently 
long, then all processes will eventually reach a 
decision.



Two Phase Commit (2PC)

Coordinator

Participants

Ready?

Coordinator

Participants

Yes/No



Two Phase Commit (2PC)

Coordinator

Participants

Commit/Abort
• Terminates if no faults 

• Satisfy conditions 1-4 

• Does not satisfy 
condition 5 (as expected) 

• 3n messages for n nodes 

• What happens with 
faults?



2PC - Phase 1
1: coordinator sends ready to all participants 

1: if a participant receives ready from the coordinator: 

2:   if it is ready to commit: 

3:   send yes to the coordinator 

4:  else: 

5:   send no to the coordinator



2PC - Phase 2
1: if the coordinator receives only yes messages:  

2:  send commit to all nodes 

3: else 

4:   send abort to all nodes 

1: if a node receives commit from the coordinator:  

2:  commit the transaction 

3:  else (abort received)  

4:  abort the transaction



2PC and Faults
• Fail-stop model: We assume that a failed node does not 

re-emerge 

• Failures are detected (instantly) 

• Timeouts are used in practical systems to detect 
failures (FLP theorem does not apply there!) 

• When a waiting process is interrupted by a timeout, the 
process must take special action, called a timeout 
action. 



Timeout Actions
• Coordinator waiting: no decision taken yet, can decide 

to send abort or commit to participants 

• Participant waiting for ready: can unilaterally decide 
abort before it sends yes 

• Participant waiting for commit/abort: has already voted 
yes, so it can not unilaterally decide. 2PC blocks. 

• We need a safety mechanism to deal with block (not 
part of 2PC).



Safety Mechanism
• All participants must know each other 

• Coordinator failures is detected 

• A new coordinator is selected 

• It must ask the other participants if a participant has already received a 
commit 

• A participant that has received a commit replies yes, otherwise it sends no 
and promises not to accept a commit that may arrive from the old coordinator 

• If some participant replied yes, the new coordinator broadcasts commit

• What if we have multiple failures???



2PC and multiple failures
• Multiple participant failures: 

• No problem as long as the coordinator lives 

• Coordinator and participant failures: 

• The remaining participants cannot take a decision

AbortNo

Yes

Yes

Abort

X
X
?
?



2PC and multiple failures
• Solution: Add another phase to the protocol! 

• The new phase precedes the commit phase 

• The goal is to inform all participants that all are ready to 
commit or abort 

• At the end of this phase, every participant knows whether 
or not all participants want to commit before any 
participant has actually committed or aborted! 

• This protocol is called the three-phase commit protocol (3PC)



Three Phase Commit (3PC)

Coordinator

Participants

Ready?

Coordinator

Participants

Yes



Three Phase Commit (3PC)

Coordinator

Participants

Prepare

Coordinator

Participants

Ack



Three Phase Commit (3PC)

Coordinator

Participants

Commit



PAXOS



PAXOS
• Leslie Lamport. The part-time parliament. ACM Transactions on 

Computer Systems, 16(2):133–169, May 1998.  

• Leslie Lamport described in 1990 the algorithm as the solution to a 
problem of the parliament on a fictitious Greek island called Paxos 
(not Italy) 

• Many readers were so distracted by the description of the activities 
of the legislators, they did not understand the meaning and 
purpose of the algorithm. The paper was rejected. 

• Leslie Lamport refused to rewrite the paper. He later wrote that he 
“was quite annoyed at how humorless everyone working in the 
field seemed to be” 

• After a few years, some people started to understand the 
importance of the algorithm 

• After eight years, Leslie Lamport submitted the paper again, 
basically unaltered. It got accepted!

Leslie Lamport 
ACM Turing Award 2014



Consensus (again)
• We have a collection of processes 

• Each process can propose a value 

• A single value among the proposed values is chosen 

• If no value is proposed, no value should be chosen 

• If a value has been chosen, processes should be able to 
learn the chosen value



System Model
• Asynchronous communications 

• Non-byzantine failures: 

• Nodes crash 

• Messages can be lost, duplicated arbitrarily late 

• No corrupted messages 

• Fail-recover: crashed nodes may recover later



Roles
• Each nodes has one or more of 3 roles 

• Proposer: a node that can propose a certain value for 
acceptance 

• Acceptor: a node that receives proposals from proposers and 
that can either accept or reject a proposal 

• Learner: a node not involved in the decision process that wants 
to know the final result of the decision process 

• We will assume all nodes act both as proposer and as acceptor



Acceptors

• A single acceptor (a.k.a. coordinator) can fail and block 
the whole procedure 

• There is not a coordinator, but multiple acceptors. 

• An acceptor may accept a single value (e.g., express a 
single vote) 

• How many acceptors do we need?



Majority
• To ensure that a single value is chosen, any majority (50% +1) of acceptors is enough 
• The intersection of two majorities is not empty 
• An acceptor may accept a single value 
• A value is chosen when a majority of acceptors has accepted it 
• If a majority choses a value, no other majority can chose a different value 
• If an acceptor crashes, chosen value still available



Acceptors
Since there can be a single proposer, the algorithm must guarantee that

P1: An acceptor must accept the 
first proposed value it receives

Since there can be a single proposer, the algorithm must guarantee that a 
single value is chosen only when it is accepted by a majority of acceptors



Split Votes

time
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Split Votes

An acceptor must accept the first proposed value it receives 
(and can accept more than one proposed value)
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Split Votes

An acceptor must accept the first proposed value it receives 
(and can accept more than one proposed value)

An acceptor can accept any number of proposed values, but an accepted 
proposed value may not necessarily be chosen.
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Conflicting choices
Should acceptors accept every proposed value? No
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Proposals
• A proposal (v, n) consists in the proposed value v and a proposal number n 

• Whenever a proposer issues a new proposal, it chooses a strictly-increasing proposal 
number  

• For a given proposer, a new proposal number must be greater than anything it has seen/
used before 

• Simple implementation 

• Each server stores MAXROUND, i.e., the largest round number it has seen so far 

• To generate a new proposal number: increment MAXROUND and concatenate with NODEID 

• Proposers must persist MAXROUND on disk: must not reuse proposal numbers after crash/
restart

ROUNDNUMBER NODEID

Slides based on https://ramcloud.stanford.edu/~ongaro/userstudy/
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Phase 1: PREPARE
• A proposer broadcasts a prepare proposal (v, n) with its own proposal value 

v and proposal number n 

• An acceptor receives a prepare proposal (v, n): 

• if it has never received a prepare proposal: 

• it promises to never accept proposal numbers lesser than n (nmin = n) 

• it returns (∅, 0); 

• otherwise it checks its promise: 

• if n > nmin it sends its last accepted proposal (vlast, nlast); note that    
nlast < n. 

• otherwise it does nothing



Phase 2: PROPOSE
• When a proposer receives a majority of responses, it 

broadcast to them a propose proposal (v’, n) 

• If all acceptors returned (∅, 0), v’ is its own proposal value v 

• Otherwise v’ is the vlast proposal value in the returned 
proposals with the greatest proposal number nlast 

• If a majority of acceptors replies with ACK, the proposal is 
chosen 

• Note that after a timeout, the proposer gives up and may send 
a new proposal 



PAXOS Algorithm
Proposers Acceptors

Slides based on https://ramcloud.stanford.edu/~ongaro/userstudy/

1) Choose new proposal number n > np

2) Broadcast PREPARE(v,n) to all nodes

0) np = 0  highest prepare number seen 
    na = 0  highest accepted proposal number 
    va = ∅  highest accepted proposal value

3) Handle PREPARE(v,n): 
 If (n > np) then 
  np = n 
  REPLY(va, na)4) If REPLY(va, na) from majority: 

 v’ = va with greatest na 
   If v’ = ∅ then 
  v’ = v
5) Broadcast PROPOSE(v’,n) to all nodes 6) Handle PROPOSE(v’,n): 

 If (n ≥ np) then 
  np = n 
  (va, na) = (v’,n) 
  ACCEPT(v’, n)7) If ACCEPT(v’, n) from majority: 

 Broadcast DECIDED(v’) to all nodes
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1) Choose new proposal number n > np

2) Broadcast PREPARE(v,n) to all nodes

0) np = 0  highest prepare number seen 
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  np = n 
  (va, na) = (v’,n) 
  ACCEPT(v’, n)7) If ACCEPT(v’, n) from majority: 

 Broadcast DECIDED(v’) to all nodes

These value must 
stably persist on disk
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Learning a decision
• After a proposal is chosen, only the proposer knows about it! 

• How do the other nodes get informed? 

1. The proposer could inform all nodes directly 

• If the proposer fails, the others are not informed (directly)... 

2. The acceptors could broadcast every time they accept a proposal 

• Much more fault-tolerant 

• Many accepted proposals may not be chosen... 

• Moreover, choosing a value costs O(n2) messages without failures! 

3. The proposer could inform some nodes directly 

• They will broadcast the decision to other nodes



PAXOS is safe!

• Assume that there is a proposed proposal (u,m) for which m > n 
and u ≠ v. Consider such a proposal with the smallest m. 

• Consider the non-empty intersection S of the two majority sets of 
nodes that are acceptors for (v,n) and (u,m) proposals. 

• Since proposal (v,n) has been accepted and m > n, nodes in S 
must have received PREPARE(u,m) after (v,n) has been accepted, 
thus returning REPLY(v,n’), with n ≤ n’ < m.  

• As a consequence, the proposer of (u,m) should propose (v, m), 
hence u = v, that is a contradiction.

If a proposal (v,n) is chosen, then for every proposed 
proposal (u,m) for which m > n it holds that v = u



PAXOS is correct!

• Once a proposal (v,n) is chosen, each following proposal 
(u,m) has the same proposal value, i.e., u = v, according 
to the previous theorem. 

• Since every following proposal has the same value v, 
every proposal that is accepted after (v,n) is chosen will 
have the same proposal value v. 

• Since no other value than v can be accepted, no other 
values can be chosen.

If a value is chosen, all acceptors choose this value



PAXOS is great?
• PAXOS is a deterministic algorithm working for 

asynchronous systems and tolerating f < n/2 failures. 

• Many optimizations exists (Multi-PAXOS, Disk-PAXOS, 
RAFT) 

• FLP Theorem [1985]. No totally correct consensus 
algorithm exists (for the given system model). 

• PAXOS disproves the FLP Theorem?



No Liveness Guarantees 
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Correctness vs. Termination
• In asynchronous systems, we cannot guarantee termination and correctness 

at the same time 

• PAXOS is correct, so termination is not guaranteed 

• PAXOS cannot guarantee that a consensus is reached in a finite number of 
steps 

• In practice, PAXOS can be optimized to reduce probability of no termination 

• For example, the acceptors could send NAK if they do not accept a prepare 
message or a proposal (this optimization increases the message 
complexity) 

• PAXOS is used in Apache’s Zookeeper and Google’s Chubby




