
Data Design Techniques

Partitioning
• Partitioning is dividing the dataset into smaller distinct independent

sets

• Partitioning is used to reduce the impact of dataset growth since
each partition is a subset of the data.

• Partitioning improves performance by limiting the amount of data to
be examined and by locating related data in the same partition.

• Partitioning improves availability by allowing partitions to fail
independently, increasing the number of nodes that need to fail
before availability is sacrificed.

• Partitioning is also very much application-specific, so it is hard to
say much about it without knowing the specifics.

Replication
• Replication is making copies of the same data on multiple

machines; this allows more servers to take part in the
computation.

• Replication - copying or reproducing something - is the primary
way in which we can fight latency.

• Replication improves performance by making additional
computing power and bandwidth applicable to a new copy of
the data.

• Replication improves availability by creating additional copies of
the data, increasing the number of nodes that need to fail before
availability is sacrificed.

Replication & Consistency
• one of many problems in distributed systems

• it is often the part that people are most interested in

• provides a context for many subproblems, such as leader election, failure detection,
consensus and atomic broadcast

• References:

• Coulouris, Dollimore, Kindberg, Blair, Distributed Systems - Concepts and Design, ch 15

• http://book.mixu.net/distsys

• http://research.microsoft.com/en-us/people/philbe/chapter7.pdf

• http://research.microsoft.com/en-us/um/people/lamport/pubs/paxos-simple.pdf

• http://static.googleusercontent.com/media/research.google.com/it//archive/
paxos_made_live.pdf

http://book.mixu.net/distsys
http://research.microsoft.com/en-us/people/philbe/chapter7.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/paxos-simple.pdf
http://static.googleusercontent.com/media/research.google.com/it//archive/paxos_made_live.pdf

Communication Patterns

Synchronous Asynchronous

Request Response

Synchronous

Request Response

• Three stages

• Client blocks

• N-to-N write

• Transactions

• High latency

• Low network
robustness

• Low availability

• High durability

Synchronous Replication
or active, or eager, or push, or pessimistic

Asynchronous Replication
or passive, or pull, or lazy

Request

Asynchronous

Response

• Master answers
immediately

• Client does not
block

• 1-to-N write

• Low latency

• High network
robustness

• High availability

• Weak or
probabilistic
durability

Designing Replication
Strategies

Asynch
(lazy)

Synch
(eager)

Master
(primary)

Group
(everywhere)

Pros & Cons
Synchronous

+ No inconsistencies
+ Local copies always updated
+ Atomic changes
 - Global single transaction
 - Performance

Asynchronous
+ Local transaction
+ Performance
 - Inconsistencies
 - Local copies not updated
 - Replication not transparent

Group
+ Anyone transaction
+ Load balancing
- Synchronized copies

Primary
+ Simple
+ Centralized updates
 - Load unbalancing
 - Single POF
 - Local copies not updated

Asynch + Primary
• Primary Copy Replication

• Simplest approach:

• All requests go to primary copy

• Other copies serve as backups

• Widely used in practice

• Keep backups of important services

• Backup can go “live” when primary fails

Primary Copy Replication
• All updates are performed on the

primary

• log of operations (or alternatively,
changes) is shipped across the
network to the backup replicas

• Asynch and synch variants

• Asynch used by MySQL and
MongoDB

Primary Copy Fault
Tolerance

• Failures can cause violations to
consistency guarantees

• Site failures, network partitions,
undelivered messages

• We need an atomic
commitment protocol (ACP)

• Commonly used in database
systems (i.e., transactions)

Atomic Commitment
Protocols

• 1 coordinator, N participants

• Coordinator knows the names of all participants

• Participants know the name of the coordinator,
not necessarily each other

• Each site contains a distributed transaction log
surviving failures

• Each process may cast exactly one of two votes:
Yes or No

• Each process can reach exactly one of two
decisions: Commit or Abort

• Consensus Problem!!!!

ACP Conditions
1. All processes that reach a decision reach the

same one.

2. A process cannot reverse its decision after it has
reached one.

3. The Commit decision can only be reached if all
processes voted Yes.

4. If there are no failures and all processes voted
Yes, then the decision will be to Commit.

5. Consider any execution containing only failures
that the algorithm is designed to tolerate. At any
point in this execution, if all existing failures are
repaired and no new failures occur for sufficiently
long, then all processes will eventually reach a
decision.

Two Phase Commit (2PC)

Coordinator

Participants

Ready?

Coordinator

Participants

Yes/No

Two Phase Commit (2PC)

Coordinator

Participants

Commit/Abort
• Terminates if no faults

• Satisfy conditions 1-4

• Does not satisfy
condition 5 (as expected)

• 3n messages for n nodes

• What happens with
faults?

2PC - Phase 1
1: coordinator sends ready to all participants

1: if a participant receives ready from the coordinator:

2: if it is ready to commit:

3: send yes to the coordinator

4: else:

5: send no to the coordinator

2PC - Phase 2
1: if the coordinator receives only yes messages:

2: send commit to all nodes

3: else

4: send abort to all nodes

1: if a node receives commit from the coordinator:

2: commit the transaction

3: else (abort received)

4: abort the transaction

2PC and Faults
• Fail-stop model: We assume that a failed node does not

re-emerge

• Failures are detected (instantly)

• Timeouts are used in practical systems to detect
failures (FLP theorem does not apply there!)

• When a waiting process is interrupted by a timeout, the
process must take special action, called a timeout
action.

Timeout Actions
• Coordinator waiting: no decision taken yet, can decide

to send abort or commit to participants

• Participant waiting for ready: can unilaterally decide
abort before it sends yes

• Participant waiting for commit/abort: has already voted
yes, so it can not unilaterally decide. 2PC blocks.

• We need a safety mechanism to deal with block (not
part of 2PC).

Safety Mechanism
• All participants must know each other

• Coordinator failures is detected

• A new coordinator is selected

• It must ask the other participants if a participant has already received a
commit

• A participant that has received a commit replies yes, otherwise it sends no
and promises not to accept a commit that may arrive from the old coordinator

• If some participant replied yes, the new coordinator broadcasts commit

• What if we have multiple failures???

2PC and multiple failures
• Multiple participant failures:

• No problem as long as the coordinator lives

• Coordinator and participant failures:

• The remaining participants cannot take a decision

AbortNo

Yes

Yes

Abort

X
X
?
?

2PC and multiple failures
• Solution: Add another phase to the protocol!

• The new phase precedes the commit phase

• The goal is to inform all participants that all are ready to
commit or abort

• At the end of this phase, every participant knows whether
or not all participants want to commit before any
participant has actually committed or aborted!

• This protocol is called the three-phase commit protocol (3PC)

Three Phase Commit (3PC)

Coordinator

Participants

Ready?

Coordinator

Participants

Yes

Three Phase Commit (3PC)

Coordinator

Participants

Prepare

Coordinator

Participants

Ack

Three Phase Commit (3PC)

Coordinator

Participants

Commit

PAXOS

PAXOS
• Leslie Lamport. The part-time parliament. ACM Transactions on

Computer Systems, 16(2):133–169, May 1998.

• Leslie Lamport described in 1990 the algorithm as the solution to a
problem of the parliament on a fictitious Greek island called Paxos
(not Italy)

• Many readers were so distracted by the description of the activities
of the legislators, they did not understand the meaning and
purpose of the algorithm. The paper was rejected.

• Leslie Lamport refused to rewrite the paper. He later wrote that he
“was quite annoyed at how humorless everyone working in the
field seemed to be”

• After a few years, some people started to understand the
importance of the algorithm

• After eight years, Leslie Lamport submitted the paper again,
basically unaltered. It got accepted!

Leslie Lamport
ACM Turing Award 2014

Consensus (again)
• We have a collection of processes

• Each process can propose a value

• A single value among the proposed values is chosen

• If no value is proposed, no value should be chosen

• If a value has been chosen, processes should be able to
learn the chosen value

System Model
• Asynchronous communications

• Non-byzantine failures:

• Nodes crash

• Messages can be lost, duplicated arbitrarily late

• No corrupted messages

• Fail-recover: crashed nodes may recover later

Roles
• Each nodes has one or more of 3 roles

• Proposer: a node that can propose a certain value for
acceptance

• Acceptor: a node that receives proposals from proposers and
that can either accept or reject a proposal

• Learner: a node not involved in the decision process that wants
to know the final result of the decision process

• We will assume all nodes act both as proposer and as acceptor

Acceptors

• A single acceptor (a.k.a. coordinator) can fail and block
the whole procedure

• There is not a coordinator, but multiple acceptors.

• An acceptor may accept a single value (e.g., express a
single vote)

• How many acceptors do we need?

Majority
• To ensure that a single value is chosen, any majority (50% +1) of acceptors is enough
• The intersection of two majorities is not empty
• An acceptor may accept a single value
• A value is chosen when a majority of acceptors has accepted it
• If a majority choses a value, no other majority can chose a different value
• If an acceptor crashes, chosen value still available

Acceptors
Since there can be a single proposer, the algorithm must guarantee that

P1: An acceptor must accept the
first proposed value it receives

Since there can be a single proposer, the algorithm must guarantee that a
single value is chosen only when it is accepted by a majority of acceptors

Split Votes

time

N1

N2

N3

N4

N5

Slides based on https://ramcloud.stanford.edu/~ongaro/userstudy/

https://ramcloud.stanford.edu/~ongaro/userstudy/

Split Votes

time

N1

N2

N3

N4

N5

propose 5

propose 73

propose 109

Slides based on https://ramcloud.stanford.edu/~ongaro/userstudy/

https://ramcloud.stanford.edu/~ongaro/userstudy/

Split Votes

time

N1

N2

N3

N4

N5

propose 5

propose 73

propose 109

accept 5

accept 5

Slides based on https://ramcloud.stanford.edu/~ongaro/userstudy/

https://ramcloud.stanford.edu/~ongaro/userstudy/

Split Votes

time

N1

N2

N3

N4

N5

propose 5

propose 73

propose 109

accept 5

accept 5

accept 73

accept 73

Slides based on https://ramcloud.stanford.edu/~ongaro/userstudy/

https://ramcloud.stanford.edu/~ongaro/userstudy/

Split Votes

time

N1

N2

N3

N4

N5

propose 5

propose 73

propose 109

accept 5

accept 5

accept 73

accept 73

accept 109

Slides based on https://ramcloud.stanford.edu/~ongaro/userstudy/

https://ramcloud.stanford.edu/~ongaro/userstudy/

Split Votes

time

N1

N2

N3

N4

N5

propose 5

propose 73

propose 109

accept 5

accept 5

accept 73

accept 73

accept 109

No

majority

Slides based on https://ramcloud.stanford.edu/~ongaro/userstudy/

https://ramcloud.stanford.edu/~ongaro/userstudy/

Split Votes

An acceptor must accept the first proposed value it receives
(and can accept more than one proposed value)

time

N1

N2

N3

N4

N5

propose 5

propose 73

propose 109

accept 5

accept 5

accept 73

accept 73

accept 109

No

majority

Slides based on https://ramcloud.stanford.edu/~ongaro/userstudy/

https://ramcloud.stanford.edu/~ongaro/userstudy/

Split Votes

An acceptor must accept the first proposed value it receives
(and can accept more than one proposed value)

An acceptor can accept any number of proposed values, but an accepted
proposed value may not necessarily be chosen.

time

N1

N2

N3

N4

N5

propose 5

propose 73

propose 109

accept 5

accept 5

accept 73

accept 73

accept 109

No

majority

Slides based on https://ramcloud.stanford.edu/~ongaro/userstudy/

https://ramcloud.stanford.edu/~ongaro/userstudy/

Conflicting choices
Should acceptors accept every proposed value? No

time

N1

N2

N3

N4

N5

Slides based on https://ramcloud.stanford.edu/~ongaro/userstudy/

https://ramcloud.stanford.edu/~ongaro/userstudy/

Conflicting choices
Should acceptors accept every proposed value? No

time

N1

N2

N3

N4

N5

propose 5

Slides based on https://ramcloud.stanford.edu/~ongaro/userstudy/

https://ramcloud.stanford.edu/~ongaro/userstudy/

Conflicting choices
Should acceptors accept every proposed value? No

time

N1

N2

N3

N4

N5

accept 5

accept 5

accept 5

propose 5

Slides based on https://ramcloud.stanford.edu/~ongaro/userstudy/

https://ramcloud.stanford.edu/~ongaro/userstudy/

Conflicting choices
Should acceptors accept every proposed value? No

time

N1

N2

N3

N4

N5

accept 5

accept 5

accept 5

5 is chosen

propose 5

Slides based on https://ramcloud.stanford.edu/~ongaro/userstudy/

https://ramcloud.stanford.edu/~ongaro/userstudy/

Conflicting choices
Should acceptors accept every proposed value? No

time

N1

N2

N3

N4

N5

accept 5

accept 5

accept 5

5 is chosen

propose 5

propose 73

Slides based on https://ramcloud.stanford.edu/~ongaro/userstudy/

https://ramcloud.stanford.edu/~ongaro/userstudy/

Conflicting choices
Should acceptors accept every proposed value? No

time

N1

N2

N3

N4

N5

accept 5

accept 5

accept 5

5 is chosen

propose 5

propose 73

accept 73

accept 73

accept 73

Slides based on https://ramcloud.stanford.edu/~ongaro/userstudy/

https://ramcloud.stanford.edu/~ongaro/userstudy/

Conflicting choices
Should acceptors accept every proposed value? No

time

N1

N2

N3

N4

N5

accept 5

accept 5

accept 5

5 is chosen

propose 5

propose 73

accept 73

accept 73

accept 73

73 is chosen

Slides based on https://ramcloud.stanford.edu/~ongaro/userstudy/

https://ramcloud.stanford.edu/~ongaro/userstudy/

Conflicting choices
Should acceptors accept every proposed value? No

time

N1

N2

N3

N4

N5

accept 5

accept 5

accept 5

5 is chosen

propose 5

propose 73

accept 73

accept 73

accept 73

73 is chosen

Once a value has been chosen, proposers must propose that same value

Slides based on https://ramcloud.stanford.edu/~ongaro/userstudy/

https://ramcloud.stanford.edu/~ongaro/userstudy/

Conflicting choices
Should acceptors accept every proposed value? No

time

N1

N2

N3

N4

N5

accept 5

accept 5

accept 5

5 is chosen

propose 5

propose 73

accept 73

accept 73

accept 73

73 is chosen

Once a value has been chosen, proposers must propose that same value

We need a two-phase protocol
Slides based on https://ramcloud.stanford.edu/~ongaro/userstudy/

https://ramcloud.stanford.edu/~ongaro/userstudy/

Conflicting choices

time

N1

N2

N3

N4

N5

Once a value has been chosen, older proposed values must be ignored

We need a to order proposed values and reject old ones

Slides based on https://ramcloud.stanford.edu/~ongaro/userstudy/

https://ramcloud.stanford.edu/~ongaro/userstudy/

Conflicting choices

time

N1

N2

N3

N4

N5

accept 5propose 5

Once a value has been chosen, older proposed values must be ignored

We need a to order proposed values and reject old ones

Slides based on https://ramcloud.stanford.edu/~ongaro/userstudy/

https://ramcloud.stanford.edu/~ongaro/userstudy/

Conflicting choices

time

N1

N2

N3

N4

N5

accept 5propose 5

propose 73

Once a value has been chosen, older proposed values must be ignored

We need a to order proposed values and reject old ones

Slides based on https://ramcloud.stanford.edu/~ongaro/userstudy/

https://ramcloud.stanford.edu/~ongaro/userstudy/

Conflicting choices

time

N1

N2

N3

N4

N5

accept 5propose 5

propose 73

accept 73

accept 73

accept 73

Once a value has been chosen, older proposed values must be ignored

We need a to order proposed values and reject old ones

Slides based on https://ramcloud.stanford.edu/~ongaro/userstudy/

https://ramcloud.stanford.edu/~ongaro/userstudy/

Conflicting choices

time

N1

N2

N3

N4

N5

accept 5propose 5

propose 73

accept 73

accept 73

accept 73

73 is chosen

Once a value has been chosen, older proposed values must be ignored

We need a to order proposed values and reject old ones

Slides based on https://ramcloud.stanford.edu/~ongaro/userstudy/

https://ramcloud.stanford.edu/~ongaro/userstudy/

Conflicting choices

time

N1

N2

N3

N4

N5

accept 5propose 5

accept 5

accept 5

propose 73

accept 73

accept 73

accept 73

73 is chosen

Once a value has been chosen, older proposed values must be ignored

We need a to order proposed values and reject old ones

Slides based on https://ramcloud.stanford.edu/~ongaro/userstudy/

https://ramcloud.stanford.edu/~ongaro/userstudy/

Conflicting choices

time

N1

N2

N3

N4

N5

5 is chosen

accept 5propose 5

accept 5

accept 5

propose 73

accept 73

accept 73

accept 73

73 is chosen

Once a value has been chosen, older proposed values must be ignored

We need a to order proposed values and reject old ones

Slides based on https://ramcloud.stanford.edu/~ongaro/userstudy/

https://ramcloud.stanford.edu/~ongaro/userstudy/

Proposals
• A proposal (v, n) consists in the proposed value v and a proposal number n

• Whenever a proposer issues a new proposal, it chooses a strictly-increasing proposal
number

• For a given proposer, a new proposal number must be greater than anything it has seen/
used before

• Simple implementation

• Each server stores MAXROUND, i.e., the largest round number it has seen so far

• To generate a new proposal number: increment MAXROUND and concatenate with NODEID

• Proposers must persist MAXROUND on disk: must not reuse proposal numbers after crash/
restart

ROUNDNUMBER NODEID

Slides based on https://ramcloud.stanford.edu/~ongaro/userstudy/

https://ramcloud.stanford.edu/~ongaro/userstudy/

Phase 1: PREPARE
• A proposer broadcasts a prepare proposal (v, n) with its own proposal value

v and proposal number n

• An acceptor receives a prepare proposal (v, n):

• if it has never received a prepare proposal:

• it promises to never accept proposal numbers lesser than n (nmin = n)

• it returns (∅, 0);

• otherwise it checks its promise:

• if n > nmin it sends its last accepted proposal (vlast, nlast); note that
nlast < n.

• otherwise it does nothing

Phase 2: PROPOSE
• When a proposer receives a majority of responses, it

broadcast to them a propose proposal (v’, n)

• If all acceptors returned (∅, 0), v’ is its own proposal value v

• Otherwise v’ is the vlast proposal value in the returned
proposals with the greatest proposal number nlast

• If a majority of acceptors replies with ACK, the proposal is
chosen

• Note that after a timeout, the proposer gives up and may send
a new proposal

PAXOS Algorithm
Proposers Acceptors

Slides based on https://ramcloud.stanford.edu/~ongaro/userstudy/

1) Choose new proposal number n > np

2) Broadcast PREPARE(v,n) to all nodes

0) np = 0 highest prepare number seen
 na = 0 highest accepted proposal number
 va = ∅ highest accepted proposal value

3) Handle PREPARE(v,n):
 If (n > np) then
 np = n
 REPLY(va, na)4) If REPLY(va, na) from majority:

 v’ = va with greatest na
 If v’ = ∅ then
 v’ = v
5) Broadcast PROPOSE(v’,n) to all nodes 6) Handle PROPOSE(v’,n):

 If (n ≥ np) then
 np = n
 (va, na) = (v’,n)
 ACCEPT(v’, n)7) If ACCEPT(v’, n) from majority:

 Broadcast DECIDED(v’) to all nodes

https://ramcloud.stanford.edu/~ongaro/userstudy/

PAXOS Algorithm
Proposers Acceptors

Slides based on https://ramcloud.stanford.edu/~ongaro/userstudy/

1) Choose new proposal number n > np

2) Broadcast PREPARE(v,n) to all nodes

0) np = 0 highest prepare number seen
 na = 0 highest accepted proposal number
 va = ∅ highest accepted proposal value

3) Handle PREPARE(v,n):
 If (n > np) then
 np = n
 REPLY(va, na)4) If REPLY(va, na) from majority:

 v’ = va with greatest na
 If v’ = ∅ then
 v’ = v
5) Broadcast PROPOSE(v’,n) to all nodes 6) Handle PROPOSE(v’,n):

 If (n ≥ np) then
 np = n
 (va, na) = (v’,n)
 ACCEPT(v’, n)7) If ACCEPT(v’, n) from majority:

 Broadcast DECIDED(v’) to all nodes

These value must
stably persist on disk

https://ramcloud.stanford.edu/~ongaro/userstudy/

Learning a decision
• After a proposal is chosen, only the proposer knows about it!

• How do the other nodes get informed?

1. The proposer could inform all nodes directly

• If the proposer fails, the others are not informed (directly)...

2. The acceptors could broadcast every time they accept a proposal

• Much more fault-tolerant

• Many accepted proposals may not be chosen...

• Moreover, choosing a value costs O(n2) messages without failures!

3. The proposer could inform some nodes directly

• They will broadcast the decision to other nodes

PAXOS is safe!

• Assume that there is a proposed proposal (u,m) for which m > n
and u ≠ v. Consider such a proposal with the smallest m.

• Consider the non-empty intersection S of the two majority sets of
nodes that are acceptors for (v,n) and (u,m) proposals.

• Since proposal (v,n) has been accepted and m > n, nodes in S
must have received PREPARE(u,m) after (v,n) has been accepted,
thus returning REPLY(v,n’), with n ≤ n’ < m.

• As a consequence, the proposer of (u,m) should propose (v, m),
hence u = v, that is a contradiction.

If a proposal (v,n) is chosen, then for every proposed
proposal (u,m) for which m > n it holds that v = u

PAXOS is correct!

• Once a proposal (v,n) is chosen, each following proposal
(u,m) has the same proposal value, i.e., u = v, according
to the previous theorem.

• Since every following proposal has the same value v,
every proposal that is accepted after (v,n) is chosen will
have the same proposal value v.

• Since no other value than v can be accepted, no other
values can be chosen.

If a value is chosen, all acceptors choose this value

PAXOS is great?
• PAXOS is a deterministic algorithm working for

asynchronous systems and tolerating f < n/2 failures.

• Many optimizations exists (Multi-PAXOS, Disk-PAXOS,
RAFT)

• FLP Theorem [1985]. No totally correct consensus
algorithm exists (for the given system model).

• PAXOS disproves the FLP Theorem?

No Liveness Guarantees
• PAXOS only guarantees that if a value is chosen, the other nodes can only

choose the same value

• PAXOS does not guarantee that a value is chosen!

No Liveness Guarantees

time

• PAXOS only guarantees that if a value is chosen, the other nodes can only
choose the same value

• PAXOS does not guarantee that a value is chosen!

No Liveness Guarantees

time

PREPARE(5,1)

• PAXOS only guarantees that if a value is chosen, the other nodes can only
choose the same value

• PAXOS does not guarantee that a value is chosen!

No Liveness Guarantees

time

PREPARE(5,1)

• PAXOS only guarantees that if a value is chosen, the other nodes can only
choose the same value

• PAXOS does not guarantee that a value is chosen!

REPLY(∅,0)

No Liveness Guarantees

time

PREPARE(5,1)

• PAXOS only guarantees that if a value is chosen, the other nodes can only
choose the same value

• PAXOS does not guarantee that a value is chosen!

REPLY(∅,0)
PREPARE(13,2)

No Liveness Guarantees

time

PREPARE(5,1)

• PAXOS only guarantees that if a value is chosen, the other nodes can only
choose the same value

• PAXOS does not guarantee that a value is chosen!

REPLY(∅,0)

REPLY(∅,0)

PREPARE(13,2)

No Liveness Guarantees

time

PREPARE(5,1)

• PAXOS only guarantees that if a value is chosen, the other nodes can only
choose the same value

• PAXOS does not guarantee that a value is chosen!

REPLY(∅,0)

REPLY(∅,0)

PREPARE(13,2)

PROPOSE(5,1)

No Liveness Guarantees

time

PREPARE(5,1)

• PAXOS only guarantees that if a value is chosen, the other nodes can only
choose the same value

• PAXOS does not guarantee that a value is chosen!

REPLY(∅,0)

REPLY(∅,0)

PREPARE(13,2)

PROPOSE(5,1)
Timeout!

No Liveness Guarantees

time

PREPARE(5,1)

• PAXOS only guarantees that if a value is chosen, the other nodes can only
choose the same value

• PAXOS does not guarantee that a value is chosen!

REPLY(∅,0)

REPLY(∅,0)

PREPARE(13,2)

PROPOSE(5,1)
Timeout!

PREPARE(5,3)

REPLY(∅,0)

No Liveness Guarantees

time

PREPARE(5,1)

• PAXOS only guarantees that if a value is chosen, the other nodes can only
choose the same value

• PAXOS does not guarantee that a value is chosen!

REPLY(∅,0)

REPLY(∅,0)

PREPARE(13,2)

PROPOSE(5,1)
Timeout!

PREPARE(5,3)

REPLY(∅,0) PROPOSE(13,2)

No Liveness Guarantees

time

PREPARE(5,1)

• PAXOS only guarantees that if a value is chosen, the other nodes can only
choose the same value

• PAXOS does not guarantee that a value is chosen!

REPLY(∅,0)

REPLY(∅,0)

PREPARE(13,2)

PROPOSE(5,1)
Timeout!

PREPARE(5,3)

REPLY(∅,0) PROPOSE(13,2)
Timeout!

No Liveness Guarantees

time

PREPARE(5,1)

• PAXOS only guarantees that if a value is chosen, the other nodes can only
choose the same value

• PAXOS does not guarantee that a value is chosen!

REPLY(∅,0)

REPLY(∅,0)

PREPARE(13,2)

PROPOSE(5,1)
Timeout!

PREPARE(5,3)

REPLY(∅,0) PROPOSE(13,2)
Timeout!

PREPARE(13,4)

REPLY(∅,0)

Correctness vs. Termination
• In asynchronous systems, we cannot guarantee termination and correctness

at the same time

• PAXOS is correct, so termination is not guaranteed

• PAXOS cannot guarantee that a consensus is reached in a finite number of
steps

• In practice, PAXOS can be optimized to reduce probability of no termination

• For example, the acceptors could send NAK if they do not accept a prepare
message or a proposal (this optimization increases the message
complexity)

• PAXOS is used in Apache’s Zookeeper and Google’s Chubby

