Distributed Plattforms

e References:
e hitp://book.mixu.net/distsys

e http://macs.citadel.edu/rudolphg/cscie04/

ImpossibilityofConsensus.pdf

 http://lpd.epfl.ch/sqilbert/pubs/BrewersConjecture-SigAct.pdf

* http://cs-wwwarchiv.cs.unibas.ch/lehre/hs10/cs341/
Downloads/Workshop/Reports/2010-HS-DIS-I__Giangreco-
CAP_Theorem-Report.pdf

e Any serious recent distributed systems book &

http://book.mixu.net/distsys
http://macs.citadel.edu/rudolphg/csci604/ImpossibilityofConsensus.pdf
http://lpd.epfl.ch/sgilbert/pubs/BrewersConjecture-SigAct.pdf
http://cs-wwwarchiv.cs.unibas.ch/lehre/hs10/cs341/_Downloads/Workshop/Reports/2010-HS-DIS-I_Giangreco-CAP_Theorem-Report.pdf

Scalability

* The ability of a system, network, or process, to handle a growing amount of work in a
capable manner or its ability to be enlarged to accommodate that growth.

* We can measure growth in almost any terms. But there are three particularly interesting
things to look at:

» Size scalability: adding more nodes should make the system linearly faster; growing
the dataset should not increase latency

e Geographic scalability: it should be possible to use multiple data centers to reduce
the time it takes to respond to user queries, while dealing with cross-data center
latency in some sensible manner.

 Administrative scalability: adding more nodes should not increase the administrative
costs of the system (e.g. the administrators-to-machines ratio).

» A scalable system is one that continues to meet the needs of its users as scale
increases. There are two particularly relevant aspects - performance and availability -
which can be measured in various ways.

Performance (and latency)

Characterization of the amount of useful work accomplished by a computer
system compared to the time and resources used.

Depending on the context, this may involve achieving one or more of the
following:

. Short response time/low latency for a given piece of work
. High throughput (rate of processing work)

. Low utilization of computing resource(s)

Latency: the state of being latent; delay, a period between the initiation of
something and the occurrence.

Latent: From Latin /atens, latentis, present participle of /ateo ("lie hidden").
Existing or present but concealed or inactive.

Avallability (and fault tolerance)

* the proportion of time a system is in a functioning condition. If a user cannot
access the system, it is said to be unavailable.

* In formula, availability = uptime / (uptime + downtime)
* from a technical perspective, availability is mostly about being fault tolerant.

e Fault tolerance is the ability of a system to behave in a well-defined manner
once faults occur

Availability Nickname Downtime per year
90% one nine more than a month
99% two nines less than 4 days

99.9% three nines less than 9 hours
99.99% four nines less than 1 hour
99.999% five nines about 5 minutes

99.9999% SIX NiNes about 31 seconds

Coordination

Consensus & Agreement

* |tis generally important that the processes within a
distributed system have some sort of agreement

e Coordination among multiple parties involves
agreement among those parties

 Agreement & Consensus < Consistency

 Agreement is difficult in a dynamic asynchronous
system in which processes may fail or join/leave

Abstraction

Abstractions, fundamentally, are fake.
Abstractions make the world manageable.

Abstractions help to get rid of everything that is not
essential.

Impossibility results are particularly important.

Distributed System Example

» Programs in a distributed system:

run concurrently on independent nodes

« are connected by a network that may introduce nondeterminism and message loss

have no shared memory or shared clock.

* There are many implications:

each node executes a program concurrently

knowledge is local: nodes have fast access only to their local state, and any information about global
state is potentially out of date

nodes can fail and recover from failure independently

messages can be delayed or lost (independent of node failure; it is not easy to distinguish network failure
and node failure)

and clocks are not synchronized across nodes (local timestamps do not correspond to the global real
time order, which cannot be easily observed)

o COMPLEXITY!!

System Model

* A system model is a set of assumptions about the environment
and facilities on which a distributed system is implemented.

* Assumptions include:

* what capabilities the nodes have and how they may fall
 how communication links operate and how they may fail and

e overall properties of the system, such as assumptions about
time and order

* A robust system model is one that makes the weakest
assumptions

Node Model

* Nodes serve as hosts for computation and storage. They have:
* the abillity to execute a program

e the ability to store data into volatile memory (which can be
lost upon failure) and into stable state (which can be read
after a failure)

e a clock (which may or may not be assumed to be accurate)

 Nodes execute deterministic algorithms: the local computation,
the local state after the computation, and the messages sent are
determined uniguely by the message received and local state
when the message was received.

Node Faillures @8 O

There are many possible failure models which describe
the ways in which nodes can ftall.

Crash taults: nodes can only fail by crashing, and can
(possibly) recover after crashing at some later point.

Omissione faults: nodes can fail by crashing or by
dropping messages

Byzantine faults: nodes can fail by misbehaving in any
arbitrary way. Sending wrong messages, ignoring
messages, sending useless messages, taking state, etc...

| Ink Model

Links connect individual nodes to each other.
Messages sent in either direction.

Network is unreliable and subject to message loss and
delays.

A network partition occurs when the network fails while
the nodes themselves remain operational.

Partitioned nodes may be accessible by some clients,
and so must be treated ditferently from crashed nodes.

Communication Patterns
. :

N~ - :

/N
PAMLY:

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

Timing/Ordering

e Synchronous system model:

e processes execute in lock-step;
e there is a known upper bound on message transmission delay;
e each process has an accurate clock

e Asynchronous system model:

e NO timing assumptions;

processes execute at independent rates;

there is no bound on message transmission delay:;

useful clocks do not exist

Impossibility heorems

« Two fundamental theorems, FLP and CAP, influences the system
design choices

 FLP theorem: asynchronicity vs synchronicity

Consensus is impossible to implement in such a way that it
both a) is always correct and b) always terminates if even one
machine might fail in an asynchronous system with crash-*
stop failures

o CAP theorem: what happens when network partitions are included
In the failure model

You can’t implement consistent storage and respond to all
requests if you might drop messages between processes.

FLP

* Impossibility of Distributed Consensus with One
Faulty Process, by Fischer, Lynch and Paterson
(1985)

 Consensus Problem: we have a set of processes,
each one with a private input; the processes
communicate; the processes must agree on on
SOMe Process’s input.

Consensus Is important

« With consensus we can implement anything we can imagine:

e |eader decision
e mutual exclusion
e transaction commitment

e Mmuch more...

* |n some models consensus is possible, in some other models, it is
Not

e The goal is to learn whether, for a given model, consensus is
possible or not... and prove it!

(Wrong) Consensus Protocol

 Model:

* N> 1 processes

* shared memory (may be accessed simultaneously by multiple processes)

e processors can atomically read and write (not both) a shared memory location
e Protocol:

* There is a specific memory location C

« Initially Cis in a special state |

* Processor 7 writes its value v, into C, then decides on v,

 Processors j # 1read C until they read something else than _| and then decide on that

* Problems with this protocol?

Consensus Properties

1. Agreement: Every correct process must agree on the
same value.

2. Inteqrity: Every correct process decides at most one
value, and if it decides some value, then it must have
been proposed by some process.

3. lermination: All correct processes eventually reach a
decision.

4. Validity: It all correct processes propose the same
value V, then all correct processes decide V.

FLP System Model

* Asynchronous communication model, i.e., no upper bound on the
amount of time processors may take to receive, process and
respond to an iIncoming message

 Communication links between processors are assumed to be
reliable. It is well known that given arbitrarily unreliable links no
solution for consensus could be found even in a synchronous
model.

* Processors are allowed to fail according to the crash tfault model —
this simply means that processors that tfail do so by ceasing to
work correctly. There are more general failure models, such as
byzantine failures where processors fail by deviating arbitrarily
from the algorithm they are executing.

Notation (I)

There are N > 1 processors which communicate by sending messages.

A message is a pair (p,m)where p is the processor the message is
intended for, and m is the contents of the message.

Messages are stored in an abstract data structure called the message
buftter which is a multiset — simply a set where more than one of any
element is allowed — which supports two operations, send and receive.

send(p,m) simply places the message (p,m) in the message buffer.

receive(p) either returns a (random) message for processor p (and
removes it from the message buffer) or the special value @, which does
nothing.

Notation (Il

« Configuration: the internal state of all of the processors — the current step in the algorithm that they are
executing and the contents of their memory — together with the contents of the message buffer.

o Step: the system moves from one configuration to the next by a step which consists of a processor p
performing receive(p) and moving to another configuration, i.e.:

» based on p local state and m, send an arbitrary but finite number of messages
* based on p local state and m, change p local state to some new state

» Event: each step is therefore uniquely defined by the message that is received (possibly @) and the process p
that received it. That pair is called an event (equivalent to a message)

« Configurations move from one to another through events.

* An event e can be applied to a configuration C if either mis @ or (p,m) is in the message buffer

« C’'=¢(C)means that if we apply event e to configuration C we move to configuration C’

» Execution: a possibly infinite sequence of events from a specific initial configuration.

« Since the receive operation is non-deterministic, there are many different possible executions for a given
initial configuration.

Notation (I

* Schedule & Run: a particular execution g, defined by a possibly infinite sequence of events
from a starting configuration, is called a schedule and the sequence of steps taken to realize
the schedule is a run.

* Non-faulty processes take infinitely many steps in a run (presumably eventually just
receiving @ once the algorithm has finished its work) — otherwise a process is considered
faulty.

* o can be applied to configuration C if the events in o can be applied to Cin order

 C’'=0(C)means that if we apply schedule oto configuration C we move to configuration C’

* An admissible run is one where at most one process is faulty (capturing the failure requirements
of the system model) and every message is eventually delivered (this means that every
processor eventually gets chosen to receive infinitely many times).

* We say that a run is a deciding run provided that some process eventually decides according

to the properties of consensus, and that a consensus protocol is totally correct if every
admissible run is a deciding run.

Proof Sketch

« FLP Theorem [1985]. No totally correct consensus
algorithm exists (for the given system model).

* [he idea behind it is to show that there is some
aadmissible run —i.e., one with only one processor
failure and eventual delivery of every message — that
IS not a deciding run —1.e., In which no processor
eventually decides and the result is a protocol which
runs for ever (because no processor decides).

* [wo processors and binary consensus values

Proof Sketch

undecided
configuration

messages I
delivered

messages
delivered

initial
undecided
configuration

Proof Sketch

undecided
configuration

messages -
delivered

3 messages
\ , , delivered
Lemma 2: This always exists

initial
undecided
configuration

Proof Sketch

Lemma 3: We can always get here undecided

N)nfiguration

messages T
delivered

3 messages
\ , , delivered
Lemma 2: This always exists

initial
undecided
configuration

L emma 2

 We want to show that there is some initial
configuration in which the decision is not
oredetermined by the values of the processors, but
it is a result of the messages exchanges and the
occurrence of any failure

* We proceed by contradiction, using two processors
and boolean decisions.

* Assume all initial configurations have
predetermined executions

Two nodes system

Configuration Configuration Configuration Configuration

P1:0 P-:0 P1:0 Po: 1 : Z P1:1 P2:0

Decision Decision Decision Decision

V: V:0 V:0 V:0

Two nodes system

Configuration Configuration Configuration Configuration

P1:0 P-:0 P1:0 Po: 1 : Z P1:1 P2:0

Decision Decision Decision Decision

V: V:0 V:0 V:0

whatever happens
(any sequence of messages delivered)

| decide 1 | decide O

Two nodes system

Co e P> initially fails, no messages
Bl R sent or received
Decision e Py can't know P2 initial value

C+
b ¢
%
l * They must decide on the

| decide 1 eciie o same value, but they do not!

V:0

e There is a run from Cg

deciding 0 event if P2 fails
e [he same run can also be

made by Cj

Valency

A given configuration C is a bivalent if the decision
If not predetermined, i.e. outcome can be 0 or 1.

A given configuration C is univalent if it is not
bivalent, e.g. O-valent and 1-valent configurations.

Undecided contiguration is equivalent to bivalent

Predetermined configuration is equivalent to
univalent

Commutativity Lemma

* | et oy and o2 be two schedules such that the set of
processes executing steps in gy are disjoint from
the set that execute steps in oz. Then for any
configuration C that o7 and o2 can both be applied,

we have o1(o2(C)) = o2(o1(C)).

» Proof by induction on k = max(|o|, |o2|)

Induction Base

* We want to prove that es(es(C)) = es(e1(C))

e Suppose er = (p1, Mm1)and e = (P2, M2). SInce e can
be applied to C, it means either myis @ or (p1, m1)is
INn the message system. The same is for eo. Because
D1 = P2, €7 can be applied to eo(C) and e can be
applied to e+(C).

e Let C7=e1(eo(C))and Co = ex(e1(C)). Then the state of
the message system is the same in Cyas in Co. The

states of all processes are the same in Cyand Cs as
well. Thus Ct; = Co.

Induction Step

» Case 1. |o1| = k+1, |oo| <k

Suppose the first event in oyis e and o7 = (o,e). Then

01(02(C)) = o(e(02(C))) = o(02(e(C))) = oz(0(e(C))) = 02(01(C))
» Case 2: |o7| <k, |0o| = k+1

Same as Case 1.
» Case 3: |o7| = k+1, 02| = k+1

Suppose the first event in o2is e and 0. = (0,€). Then

01(02(C)) = o1(0(e(C))) = o(o1(e(C))) = o(e(01(C))) = 02(01(C))

(we used Case 1 here)

Delayed message Lemma

* et C be a configuration, and e = (p,m) is an event
that can be applied to C. Let W be the set of
configurations that is reachable from C without
applying e, then e can be applied to any state in W.

e Proof: trivial.

|l emma 3

We want to show that we can keep the system in a bivalent state

Formally, let C be a bivalent configuration, and e=(p,m) any
event that can be applied to C. Let W be the set of
configurations that is reachable from C without applying e, and
V = e(W) to be the set of configurations reached by applying e
to the configurations in W. Then V contains a bivalent
configuration.

We need 4 intermediate claims.

We proceed by contradiction, assuming V contains univalent
configurations only (in claims too) and reaching a contradiction.

Claim

e There is a 0-valent configuration F such that F = o(C), i.e. Fis reachable from
C, and o contains the event e.

Proof: Cis bivalent, so we must have a 0-valent configuration C, reachable
from C where Cy= 04(C)

- Case 1: gy contains e. Hence F = C, and o0 = 0.

- Case 2: o, does not contain e. We let F = ¢(Cp) and 0 = (04,€). Since Cyis
O-valent, F must be O-valent as well.

O = 01
O),
C

Co=F
@ - 00
C Co F

Claim 2

* There must a O-valent configuration Coin V.

Proof: Consider the F as defined in Claim 1, and
the prefix o’ of cwhose last event is e. Let Cop =
o'(C) eV. Because V does not contain bivalent

states and because the O-valent state FIs
reachable from Co, Co must be 0O-valent.

Claim 3

here must a 1-valent configuration Cyin V.

Proof: as per Claims 1 & 2

Claim 4

* There must be Fpand F;in W, such that e(Fp) is O-
valent, e(F1)is 1-valent, and fpand Frare
neighbors, i.e., either F1 = d(Fo) or Fo = d(F1).

* Proof: by simple induction, assuming w.l.0.g. ¢(C)
IS O-valent

L emma 3 Proof

Consider F,and F, in W, such that e(fF,) = C,is O-valent, e(F,) = C, is 1-valent, and w.l.0.g.
assume F, = d(F,) (by Claim 4)

e and d must occur on the same process p because otherwise C, = e(F,) = e(d(F,)) = d(C,) will
have a decision of O (by Commutativity Lemma)

Consider all possible executions starting from configuration F,. By termination requirement (and
also to tolerate one process failure), there must be an execution where

1) some process decides, and

i) process p does not execute any steps. Let the configuration immediately after some process
decides be T where T = o(F,) and o does not contain any step by process p.

We have e(T) = e(o(F,)) =o(e(F,)) =0(C,) which is 0-valent (by Commutativity Lemma)

We also have e(d(T)) = e(d(o(F,))) = o(e(d(F,))) = o(e(F,)) =o(C,) which is 1-valent (by
Commutativity Lemma)

But some process has already decided in T. Regardless of whether the decision is O or 1,
agreement can be violated. Contradiction.

Consequences of FLP

There Is no way to solve the consensus problem under a very
minimal system model in a way that cannot be delayed forever

Complete correctness if not possible in asynchronous models

In practice, we may live with very low probability of disagreement
(give up safety)

In practice, we may live with very low probability of blocking (give
up liveness)

Two-phase commit or even three-phase commit can block forever

This result is particularly relevant to people designing algorithms

CAP

Presented as Brewer’s Conjecture in 2000

Formalized and proved in Brewer’s Conjecture and the Feasibility of
Consistent, Available, Partition-Tolerant Web Services, by Lynch and
Gilbert (2002)

Consistency, availability and partition-tolerance cannot be achieved all at
the same time in a distributed system.

Simply, in an asynchronous network that performs as expected, where
messages may be lost (partition-tolerance), it is impossible to implement a
service providing correct data (consistency) and eventually responding to
every request (availability) under every pattern of message loss.

Slides from http://cs-wwwarchiv.cs.unibas.ch/lehre/hs10/cs341/ Downloads/
Workshop/Talks/2010-HS-DIS-I_Giangreco-CAP_Theorem-Talk.pdf

http://cs-wwwarchiv.cs.unibas.ch/lehre/hs10/cs341/_Downloads/Workshop/Talks/2010-HS-DIS-I_Giangreco-CAP_Theorem-Talk.pdf

Consistency

* All the nodes in the system see the same state of the data
e Formally, we speak of atomic or linearizable consistency
e There exists a sequential order on all operations which is consistent

with the order of invocations and responses, such that each operation
looks as if it were completed at a single instant.

> 2

‘\ ‘\ ‘\
TN T T
. . .
— “— “—

Avallapility

* Every request received by a non-failing node
should be processed and must result In a response

Partition lolerance

e |f some nodes crash and/or some communications
fail, system still performs as expected

CAP Theorem 1

L It Is Impossible in the asynchronous network model to
1 implement a read/write data object that guarantees the following
properties:

l

* Availability

e Atomic consistency

Asynchronous, i. e. there is no clock, nodes make decisions
based only on the messages received and local computation.

CAP Theorem 2

L It Is iImpossible in the partially synchronous network model to
1 implement a read/write data object that guarantees the following
properties:

l

* Availability

e Atomic consistency

Partially synchronous, 1. e. every node has a clock, and all clocks
Increase at the same rate. However, they are not synchronized.

Proof 1 Sketch

Let vo be the initial value

of an atomic object.

A single write of a value
not equal to vo occurs.
Assume that no other
client requests occur.

We know that this write
completes, by the
availability requirement.

A single read occurs,
and no other client
requests occur, ending
with the termination of
the read operation.

The read operation
returns vi.

No partition

Proof 1 Sketch

et vo be the initial value

of an atomic object.

A single write of a value
not equal to vo occurs.
Assume that no other
client requests occur.

We know that this write
completes, by the
availability requirement.

A single read occurs,
and no other client
requests occur, ending
with the termination of
the read operation.

The read operation
returns vi.

No partition

Proof 1 Sketch

et vo be the initial value

of an atomic object.

A single write of a value
not equal to vo occurs.
Assume that no other
client requests occur.

We know that this write
completes, by the
availability requirement.

A single read occurs,
and no other client
requests occur, ending
with the termination of
the read operation.

The read operation
returns vi.

No partition

Proof 1 Sketch

et vo be the initial value

of an atomic object.

A single write of a value
not equal to vo occurs.
Assume that no other
client requests occur.

We know that this write
completes, by the
availability requirement.

A single read occurs,
and no other client
requests occur, ending
with the termination of
the read operation.

The read operation
returns vsi.

No partition

No consistency

Proof 1 Sketch

* Let vo be the initial value
of an atomic object.

* Assume the network is
divided into two disjoint
sets {G1,G2} and that all
messages between G
and Go are lost.

|
|
|
|
'
E |

G Go

Let vo be the initial value
of an atomic object.

Assume the network is
divided into two disjoint
sets {G1,G2} and that all
messages between G+
and G2 are lost.

A single write of a value
not equal to vo occurs in
G1. Assume that no other
client requests occur.

We know that this write
completes, by the
availability requirement.

A single read occurs in
G2, and no other client
requests occur, ending
with the termination of the
read operation.

The read operation
returns vo.

Proof 1 Sketch

No consistency

Let vo be the initial value
of an atomic object.

Assume the network is
divided into two disjoint
sets {G1,G2} and that all
messages between G+
and G2 are lost.

A single write of a value
not equal to vo occurs in
G+. Assume that no other
client requests occur.

We know that this write
completes, by the
availability requirement.

A single read occurs in
G2, and no other client
requests occur, ending
with the termination of the
read operation.

The read operation
returns vo.

Proof 1 Sketch

No consistency

Let vo be the initial value
of an atomic object.

Assume the network is
divided into two disjoint
sets {G1,G2} and that all
messages between G+
and Gz are lost.

A single write of a value
not equal to vo occurs in
G+. Assume that no other
client requests occur.

We know that this write
completes, by the
availability requirement.

A single read occurs in
G2, and no other client
requests occur, ending
with the termination of the
read operation.

The read operation
returns vo.

Proof 1 Sketch

No consistency

No availability

Proof 1 Sketch

* Let vo be the initial value
of an atomic object.

* Assume the network is
divided into two disjoint
sets {G1,G2} and that all
messages between Gj
and Go are lost.

Go

G

No availability

Proof 1 Sketch

* A single write of a value
not equal to vp occurs in <
G1. Assume that no other .
client requests occur.

* The write operation does r v
not terminate. The \ /
availability requirement is G‘l GZ
violated.

et vo be the initial value
of an atomic object.

Assume the network is
divided into two disjoint
sets {G1,G2} and that all
messages between G
and G2 are lost.

A single write of a value
not equal to vo occurs in
G+. Assume that no other
client requests occur.

The write operation does
not terminate. The
availability requirement is
violated.

A single read occurs in
Go, and no other client
requests occur, ending
with the termination of the
read operation.

The read operation
returns vo.

Proof 1 Sketch

No availability

Consequences of CAP

= A

Pick Two

Consequences of CAP

 \WWhen partitions are rare (e.q., parallel systems),
CAP should allow perfect C and A most of the time

* |n distributed systems it is not possible to avoid
network partitions.

* There is not a need to choose between either C or
A, Instead, it iIs more an act of balancing between
the two properties.

Practical Consequences of CAP

* Many system designs used in early distributed relational database systems
did not take into account partition tolerance (e.g. they were CA designs).

* There is a tension between strong consistency and high availability during
network partitions. A distributed system consisting of independent nodes
connected by an unpredictable network cannot behave in a way that is
indistinguishable from a non-distributed system.

* There is a tension between strong consistency and performance in normal
operation. Strong consistency requires that nodes communicate and agree
on every operation. This results in high latency during normal operation.

* |f we do not want to give up availability during a network partition, then we
need to explore whether consistency models other than strong consistency
are workable for our purposes.

