@ RESTful Services Design

@ Design Methodology

1. Identify and name to be exposed by the service
- actors, movies
2. Model between resources that can be followed to get more details
- same actor in different movies, different actors in same movie
3. Define “nice” to address the resources
4. Map HTTP to resources
« GET movie, POST mouvie, ...
5. Design and document resource
- we want to serve JSON (and XML)
- the JSON mime-type is application/json (and application/xml)
6. and Web Service

7. with cURL or browser developer tools

™

ISTITUTO DI SCIENZA E TECNOLOGIE
DELLINFORMAZIONE “A. FAEDO”

@ REST API Design

1. Who will use the APIs?
2. What are we trying to achieve with the API?

- Make application developers as successful as possible
. Keep things simple

. Take the developer’s point of view!

@ Simple Nouns!

« REST URIs are opaque identifiers that are meant to be discovered
by following hyperlinks and not constructed by the client
- Simple and intuitive base URLs
« GOOD: /actors
- BAD: /peopleplayingin80iesmovies
- 2 base URLs per resource
« GOOD: /actors (collection)
« GOOD: /actors/1234 (specific element in collection)
- Keep verbs out of your base URLs
- BAD: /getAllActors

@ Simple Nouns!

- Using plural nouns might be more intuitive
- GOOD: /movies
- GOOD: /actors
- Singular nouns are OK, but avoid mixed model
» GOOD: /movie /actor
- BAD: /movies /actor
- Prefer a manageable number (12-24) of concrete entities over

abstraction

« GOOD: /movie /actor /producer /cinema

« BAD: /item

™

ISTITUTO DI SCIENZA E TECNOLOGIE
DELLINFORMAZIONE “A. FAEDO”

HTTP Verbs

POST DELETE
(create) (delete)

Resource

Distributed Enabling Platforms

@ Handle Errors

- Use HTTP status codes
- over 70 are defined; most APIs use only subset of 8-10
- Start by using
(... everything worked)
(... the application did something wrong)
(... the APl did something wrong)
- If you need more, add them
« 201 Created
- 304 Not Modified
401 Unauthorized
403 Forbidden
L]

ISTITUTO DI SCIENZA E TECNOLOGIE
DELLINFORMAZIONE “A. FAEDO”

@ HTTP Status Codes

500 Internal Server Error

100 Continue 501 Not Implemented

200 oK 400 Bad Request 502 Bad Gateway

201 Created 401 Unauthorized 503 Service Unavailable

202 Accepted 402 |Payment Required 504 Gateway Timeout

203 Non-Authoritative | 403 Forbidden 505 HTTP Version Not Supported
204 No Content 404 |Not Found

205 Reset Content 405 |Method Not Al lowed b5xx Server’s fault

206 Partial Content 406 Not Acceptable

300 Multiple Choices 407 |Proxy Authentication Required
301 Moved Permanently | 408 Request Timeout

302 Found 409 Conflict

303 See Other 410 | Gone .

304 Not Modified 411 Length Required

305 Use Proxy 412 Precondition Failed

307 Temporary Redirect 413 Request Entity Too Large
414 Request-URI Too Long

__y | 415|Unsupported Media Type o
Axx Client’s fault 416 Requested Range Not Satisfiable
417 Expectation Failed

™

ISTITUTO DI SCIENZA E TECNOLOGIE
DELLINFORMAZIONE “A. FAEDO”

@ Simple DOODLE

1. Resources: polls and votes 3. URIs embed ids of child instance resources

2. Containment relationships: 4. POST on the container is used to create

child resources

poll

K’{id 1) 5. PUT/DELETE for updating and removing

k} ote child resources
' O
»{id4} o ls ?
. 2 AR
11d5} — | = | | m
/PO vV |x|v]| %
{id2} /poll/{id} VI Iv|x|v
43 /poll/{id}/vote SEIARAE:
s /poll/fid}/vote/fid} |V |V | % | ?

™

ISTITUTO DI SCIENZA E TECNOLOGIE
DELLINFORMAZIONE “A. FAEDO”

@ Simple DOODLE APIs Example

1. Creating a poll (transfer the state of a new poll on the service)

POST /poll
<options>A,B,C</options>

201 Created
Location: /poll/090331x

2. Reading a poll (transfer the state of the poll from the service)

GET /poll1/090331x
200 OK

<options>A,B,C</options>
<votes href="/vote”/>

™

ISTITUTO DI SCIENZA E TECNOLOGIE
DELLINFORMAZIONE “A. FAEDO”

@ Simple DOODLE APIs Example

3. Creating a vote (Participating in a poll)
POST /pol1/090331x/vote

<name>N. Tonellotto</name>
<choice>B</choice>

201 Created
Location: /poll1/090331x/vote/1

4. Reading a poll (with votes)

GET /pol1/090331x
200 OK

<options>A,B,C</options>
<votes>
<vote 1d="1">
<name>N. Tonellotto</name>
<choice>B</choice>
</vote>
</votes>

™

ISTITUTO DI SCIENZA E TECNOLOGIE
DELLINFORMAZIONE “A. FAEDO”

@ Simple DOODLE APIs Example

5. Updating a vote (Changing a vote)

PUT /poll1/090331x/vote/1
<name>N. Tonellotto</name>
<choice>C</choice>

200 OK
6. Reading a poll (with votes changes)

GET /pol1/090331x
200 OK

<options>A,B,C</options>
<votes>
<vote 1d="1">
<name>N. Tonellotto</name>
<choice>C</choice>
</vote>
</votes>

™

ISTITUTO DI SCIENZA E TECNOLOGIE
DELLINFORMAZIONE “A. FAEDO”

@ Simple DOODLE APIs Example

3. Deleting a poll

DELETE /po11/090331x
200 OK

4. Reading a poll (delete)

GET /pol1/090331x
404 Not found

Info on the real DOODLE APIs: http://doodle.com/xsd1/RESTfulDoodle.pdf

™

ISTITUTO DI SCIENZA E TECNOLOGIE
DELLINFORMAZIONE “A. FAEDO”

http://doodle.com/xsd1/RESTfulDoodle.pdf

@ URI Design

http://tools.ietf.org/html|/rfc3986

scheme authority path

https.//www.google.ch/search?q=rest&start=10#1

qguery fra'gment

« REST does not advocate the use of “nice” URIs
- In most HTTP stacks URIs cannot have arbitrary length (4Kb)

- #Fragments are not sent to the server

« Do not hardcode URIs in the client!

™

ISTITUTO DI SCIENZA E TECNOLOGIE
DELLINFORMAZIONE “A. FAEDO”

@ URI Templates

- URI Templates specify how to construct and parse parametric URIs.

- On the service they are often used to configure “routing rules”

- On the client they are used to instantiate URIs from local parameters

parameters URI
oy !
client URI Template URI Template | service
! TR
UR] parameters

- Do not hardcode URI templates in the client!

- Reduce coupling by fetching the URI template from the service dynamically

and fill them out on the client

™

ISTITUTO DI SCIENZA E TECNOLOGIE
DELLINFORMAZIONE “A. FAEDO”

@ URI Examples
« URI Template:

http://www.myservice.com/order/{oid}/item/{iid}
- Example URI:
http://www.myservice.com/order/XYZ/item/12345
- URI Template:
http://www.google.com/search?{-join|&|g,num}
- Example URI:
http://www.google.com/search?q=REST&num=10

IIIIIIIIIIIIIIIIIIIIIIIIIIII
EEEEEEEEEEEEEEEEEEEEEEEEEE

http://www.google.com/search?q=REST&num=10

@ Uniform Interface Constraints

CREATE POST Create a (sub)resource NO

Retrieve the current state of the
READ GET e YES

Initialize or update the state of

UPDATE PUT .
a resource at a given URI

NO

Clear a resource, after the URI

DELETE DELETE : :
is no longer valid

NO

YES

YES

YES

@ Redirection

e Problem:

- URIs for business or technical reasons.
- It may not be possible to replace all references to old links simultaneously risking to
introduce broken links.

- How can consumers of a RESTful service service locations and URIs are
?

« Solution:

- HTTP Redirection
- HTTP natively supports redirection using a combination of 3xx status codes and
standard headers:
» 301 Moved Permanently

» 307 Temporary Redirect —GET /old
» Location: /newURI

+301I: Permanently moved
Location: /new

— GET /new
<200 OK

™

ISTITUTO DI SCIENZA E TECNOLOGIE
DELLINFORMAZIONE “A. FAEDO”

@ Content Negotiation

- Problem:
- Service consumers may make

- A service may have to old and new consumers
a specific interface for each kind of consumer.
. Solution:
- Specific content and data representation formats to be accepted or returned
by a service capability is as
- The service contract refers tom

— GET /resource

Accept: text/html, application/xml, application/json
<200 OK
Content- Type: application/json

™

ISTITUTO DI SCIENZA E TECNOLOGIE
DELLINFORMAZIONE “A. FAEDO”

