
Distributed Enabling Platforms

RESTful Services Design

 1

Distributed Enabling Platforms

Design Methodology

 2

1. Identify and name resources to be exposed by the service

• actors, movies

2. Model relationships between resources that can be followed to get more details

• same actor in different movies, different actors in same movie

3. Define “nice” URIs to address the resources

4. Map HTTP verbs to resources

• GET movie, POST movie, …

5. Design and document resource representations

• we want to serve JSON (and XML)

• the JSON mime-type is application/json (and application/xml)

6. Implement and deploy Web Service

7. Test with cURL or browser developer tools

Distributed Enabling Platforms

REST API Design

 3

1. Who will use the APIs?

2. What are we trying to achieve with the API?

!

• Make application developers as successful as possible

• Keep things simple

• Take the developer’s point of view!

Distributed Enabling Platforms

Simple Nouns!

 4

• REST URIs are opaque identifiers that are meant to be discovered

by following hyperlinks and not constructed by the client

• Simple and intuitive base URLs

• GOOD: /actors

• BAD: /peopleplayingin80iesmovies

• 2 base URLs per resource

• GOOD: /actors (collection)

• GOOD: /actors/1234 (specific element in collection)

• Keep verbs out of your base URLs

• BAD: /getAllActors

Distributed Enabling Platforms

Simple Nouns!

 5

• Using plural nouns might be more intuitive

• GOOD: /movies

• GOOD: /actors

• Singular nouns are OK, but avoid mixed model

• GOOD: /movie /actor

• BAD: /movies /actor

• Prefer a manageable number (12-24) of concrete entities over

abstraction

• GOOD: /movie /actor /producer /cinema

• BAD: /item

Distributed Enabling Platforms

HTTP Verbs

 6

Resource
POST	

(create)	

GET	

(read)
PUT	

(update)
DELETE	

(delete)

/actors Create a
new actors

List actors Bulk update
actors

Delete all
actors

/actors/1234 Error Show actor
1234

If exists
update actor

1234 else
error

Delete actor
1234

Distributed Enabling Platforms

Handle Errors

 7

• Use HTTP status codes

• over 70 are defined; most APIs use only subset of 8-10

• Start by using

• 200 OK (… everything worked)

• 400 Bad Request (… the application did something wrong)

• 500 Internal Server Error (… the API did something wrong)

• If you need more, add them

• 201 Created

• 304 Not Modified

• 401 Unauthorized

• 403 Forbidden

• …

Distributed Enabling Platforms

HTTP Status Codes

 8

Distributed Enabling Platforms

Simple DOODLE

 9

1. Resources: polls and votes

2. Containment relationships:

3. URIs embed ids of child instance resources

4. POST on the container is used to create

child resources

5. PUT/DELETE for updating and removing

child resources

Distributed Enabling Platforms

Simple DOODLE APIs Example

 10

1. Creating a poll (transfer the state of a new poll on the service)

!

!

!

!

2. Reading a poll (transfer the state of the poll from the service)

POST /poll

<options>A,B,C</options>	

201 Created
Location: /poll/090331x

GET /poll/090331x

200 OK

<options>A,B,C</options>

<votes href=“/vote”/>	

Distributed Enabling Platforms

Simple DOODLE APIs Example

 11

3. Creating a vote (Participating in a poll)

!

!

!

4. Reading a poll (with votes)

POST /poll/090331x/vote

<name>N. Tonellotto</name>

<choice>B</choice>

201 Created
Location: /poll/090331x/vote/1

GET /poll/090331x

200 OK

<options>A,B,C</options>	

<votes>

 <vote id=“1”>

 <name>N. Tonellotto</name>

 <choice>B</choice>

 </vote>

</votes>

Distributed Enabling Platforms

Simple DOODLE APIs Example

 12

5. Updating a vote (Changing a vote)

!

!

!

6. Reading a poll (with votes changes)

PUT /poll/090331x/vote/1

<name>N. Tonellotto</name>

<choice>C</choice>

200 OK

GET /poll/090331x

200 OK

<options>A,B,C</options>	

<votes>

 <vote id=“1”>

 <name>N. Tonellotto</name>

 <choice>C</choice>

 </vote>

</votes>

Distributed Enabling Platforms

Simple DOODLE APIs Example

 13

3. Deleting a poll

!

!

!

4. Reading a poll (delete)

!

!

!

Info on the real DOODLE APIs: http://doodle.com/xsd1/RESTfulDoodle.pdf

DELETE /poll/090331x

200 OK

GET /poll/090331x

404 Not found

http://doodle.com/xsd1/RESTfulDoodle.pdf

Distributed Enabling Platforms

URI Design

 14

http://tools.ietf.org/html/rfc3986

scheme authority path

https://www.google.ch/search?q=rest&start=10#1
fragmentquery

• REST does not advocate the use of “nice” URIs

• In most HTTP stacks URIs cannot have arbitrary length (4Kb)

• #Fragments are not sent to the server

• Do not hardcode URIs in the client!

Distributed Enabling Platforms

URI Templates

 15

• URI Templates specify how to construct and parse parametric URIs.
• On the service they are often used to configure “routing rules”

• On the client they are used to instantiate URIs from local parameters

!

!

!

!

!

!

• Do not hardcode URI templates in the client!

• Reduce coupling by fetching the URI template from the service dynamically

and fill them out on the client

URI Template URI Templateclient service

URI

URIparameters

parameters

Distributed Enabling Platforms

URI Examples

 16

• URI Template:

http://www.myservice.com/order/{oid}/item/{iid}

• Example URI:

http://www.myservice.com/order/XYZ/item/12345

• URI Template:

http://www.google.com/search?{-join|&|q,num}

• Example URI:

 http://www.google.com/search?q=REST&num=10

http://www.google.com/search?q=REST&num=10

Distributed Enabling Platforms

Uniform Interface Constraints

 17

CRUD REST Action Safe Idempotent

CREATE POST Create a (sub)resource NO NO

READ GET
Retrieve the current state of the

resource	

 YES YES

UPDATE PUT
Initialize or update the state of

a resource at a given URI NO YES

DELETE DELETE
Clear a resource, after the URI

is no longer valid NO YES

Distributed Enabling Platforms

Redirection
• Problem:

- URIs may change over time for business or technical reasons.
- It may not be possible to replace all references to old links simultaneously risking to

introduce broken links.
- How can consumers of a RESTful service adapt when service locations and URIs are

restructured?
!

• Solution:
- HTTP Redirection
- HTTP natively supports redirection using a combination of 3xx status codes and

standard headers:
‣301 Moved Permanently
‣307 Temporary Redirect
‣ Location: /newURI

 18

→GET /old	

←301: Permanently moved	

 Location: /new	

→GET /new	

←200 OK

Distributed Enabling Platforms

Content Negotiation
• Problem:

- Service consumers may make different assumptions about the messaging
format

- A service may have to support both old and new consumers without having
to introduce a specific interface for each kind of consumer.

• Solution:
- Specific content and data representation formats to be accepted or returned

by a service capability is negotiated at runtime as part of its invocation.
- The service contract refers to multiple standardized “media types”.

 19

→GET /resource	

 Accept: text/html, application/xml, application/json	

←200 OK	

 Content-Type: application/json

