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1. Identify and name resources to be exposed by the service  

• actors, movies 

2. Model relationships between resources that can be followed to get more details 

• same actor in different movies, different actors in same movie 

3. Define “nice” URIs to address the resources 

4. Map HTTP verbs to resources 

• GET movie, POST movie, … 

5. Design and document resource representations 

• we want to serve JSON (and XML)  

• the JSON mime-type is application/json (and application/xml) 

6. Implement and deploy Web Service 

7. Test with cURL or browser developer tools
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1. Who will use the APIs? 

2. What are we trying to achieve with the API? 

!

•  Make application developers as successful as possible 

•  Keep things simple 

•  Take the developer’s point of view!
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• REST URIs are opaque identifiers that are meant to be discovered 

by following hyperlinks and not constructed by the client 

• Simple and intuitive base URLs  

• GOOD: /actors 

• BAD: /peopleplayingin80iesmovies 

• 2 base URLs per resource 

• GOOD: /actors (collection) 

• GOOD: /actors/1234 (specific element in collection) 

• Keep verbs out of your base URLs  

• BAD: /getAllActors
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• Using plural nouns might be more intuitive 

• GOOD: /movies 

• GOOD: /actors 

• Singular nouns are OK, but avoid mixed model  

• GOOD: /movie /actor 

• BAD: /movies /actor 

• Prefer a manageable number (12-24) of concrete entities over 

abstraction 

• GOOD: /movie /actor /producer /cinema  

• BAD: /item
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Resource
POST	



(create)	


GET	



(read)
PUT	



(update)
DELETE	


(delete)

/actors Create a 
new actors

List actors Bulk update 
actors

Delete all 
actors

/actors/1234 Error Show actor 
1234

If exists 
update actor 

1234 else 
error

Delete actor 
1234
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• Use HTTP status codes 

• over 70 are defined; most APIs use only subset of 8-10 

• Start by using 

• 200 OK (… everything worked) 

• 400 Bad Request (… the application did something wrong)  

• 500 Internal Server Error (… the API did something wrong) 

• If you need more, add them 

• 201 Created 

• 304 Not Modified 

• 401 Unauthorized 

• 403 Forbidden 

• …
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1. Resources: polls and votes 

2. Containment relationships:

3. URIs embed ids of child instance resources 

4. POST on the container is used to create 

child resources 

5. PUT/DELETE for updating and removing 

child resources
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1. Creating a poll (transfer the state of a new poll on the service) 

!

!

!

!

2. Reading a poll (transfer the state of the poll from the service)

POST /poll  

<options>A,B,C</options>	



201 Created 
Location: /poll/090331x 

GET /poll/090331x 

200 OK  

<options>A,B,C</options>  

<votes href=“/vote”/>	
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3. Creating a vote (Participating in a poll) 

!

!

!

4. Reading a poll (with votes)

POST /poll/090331x/vote  

<name>N. Tonellotto</name> 

<choice>B</choice>

201 Created 
Location: /poll/090331x/vote/1

GET /poll/090331x

200 OK  

<options>A,B,C</options>	



<votes> 

  <vote id=“1”> 

    <name>N. Tonellotto</name>  

    <choice>B</choice> 

  </vote> 

</votes>
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5. Updating a vote (Changing a vote) 

!

!

!

6. Reading a poll (with votes changes)

PUT /poll/090331x/vote/1 

<name>N. Tonellotto</name> 

<choice>C</choice>

200 OK

GET /poll/090331x

200 OK  

<options>A,B,C</options>	



<votes> 

  <vote id=“1”> 

    <name>N. Tonellotto</name>  

    <choice>C</choice> 

  </vote> 

</votes>
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3. Deleting a poll 

!

!

!

4. Reading a poll (delete) 

!

!

!

Info on the real DOODLE APIs: http://doodle.com/xsd1/RESTfulDoodle.pdf

DELETE /poll/090331x

200 OK

GET /poll/090331x

404 Not found

http://doodle.com/xsd1/RESTfulDoodle.pdf
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http://tools.ietf.org/html/rfc3986

scheme authority path

https://www.google.ch/search?q=rest&start=10#1 
fragmentquery

• REST does not advocate the use of “nice” URIs  

• In most HTTP stacks URIs cannot have arbitrary length (4Kb)  

• #Fragments are not sent to the server  

• Do not hardcode URIs in the client!



Distributed Enabling Platforms

URI Templates

 15

• URI Templates specify how to construct and parse parametric URIs. 
• On the service they are often used to configure “routing rules” 

• On the client they are used to instantiate URIs from local parameters 

!

!

!

!

!

!

• Do not hardcode URI templates in the client! 

• Reduce coupling by fetching the URI template from the service dynamically 

and fill them out on the client

URI Template URI Templateclient service

URI

URIparameters

parameters
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• URI Template: 

http://www.myservice.com/order/{oid}/item/{iid} 

• Example URI: 

http://www.myservice.com/order/XYZ/item/12345 

• URI Template:  

http://www.google.com/search?{-join|&|q,num} 

• Example URI: 

 http://www.google.com/search?q=REST&num=10

http://www.google.com/search?q=REST&num=10
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CRUD REST Action Safe Idempotent

CREATE POST Create a (sub)resource NO NO

READ GET
Retrieve the current state of the 

resource	

 YES YES

UPDATE PUT
Initialize or update the state of 

a resource at a given URI NO YES

DELETE DELETE
Clear a resource, after the URI 

is no longer valid NO YES
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Redirection
• Problem:  

- URIs may change over time for business or technical reasons.  
- It may not be possible to replace all references to old links simultaneously risking to 

introduce broken links.  
- How can consumers of a RESTful service adapt when service locations and URIs are 

restructured?  
!

• Solution:  
- HTTP Redirection 
- HTTP natively supports redirection using a combination of 3xx status codes and 

standard headers: 
‣301 Moved Permanently 
‣307 Temporary Redirect 
‣  Location: /newURI
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→GET /old	


←301: Permanently moved	


    Location: /new	


→GET /new	


←200 OK
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Content Negotiation
• Problem:  

- Service consumers may make different assumptions about the messaging 
format 

- A service may have to support both old and new consumers without having 
to introduce a specific interface for each kind of consumer.  

• Solution:  
-  Specific content and data representation formats to be accepted or returned 

by a service capability is negotiated at runtime as part of its invocation.  
- The service contract refers to multiple standardized “media types”. 
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→GET /resource	


    Accept: text/html, application/xml, application/json	


←200 OK	


   Content-Type: application/json


