
Distributed Enabling Platform

RESTful Services

 1

Distributed Enabling Platform

https://dev.twitter.com/docs/api

 2

https://dev.twitter.com/docs/api

Distributed Enabling Platform

http://developer.linkedin.com/apis

 3

http://developer.linkedin.com/apis

Distributed Enabling Platform

http://docs.aws.amazon.com/AmazonS3/latest/API/APIRest.html

 4

http://docs.aws.amazon.com/AmazonS3/latest/API/APIRest.html

Distributed Enabling Platform

Web Architectural Components

 5

1. Identification: URI

‣uniform resource identifier

2. Interaction: HTTP

‣hypertext transfer protocol

3. Standard Document Format: HTML, XML, JSON

‣hypertext markup language

‣extensible markup language

‣javascript object notation

Distributed Enabling Platform

URIs

 6

• URIs identify interesting things in the Web
‣documents on the Web
‣relevant aspects of a data set

• A URN (uniform resource name) defines an item's identity
‣A URN functions like a person's name

• A URL (uniform resource locator) provides a method for finding an
item
‣A URL resembles that person's street address, while

• A URI can be a URL, a URN or both

Distributed Enabling Platform

URI Examples

 7

• HTTP URIs name and address resources in a Web system
‣A URI names and identifies one resource
‣A resource can have more than one name

•http://example.com/software/latest-release
•http://example.com/software/release-1.4

• A resource can have several representations:

Distributed Enabling Platform

Interacting with resources

 8

• We interact with resource representations
‣not the resources themselves
‣representations can be in any format

• defined by media type

• Each resource implements a standard uniform interface: HTTP
‣a small set of verbs applied to a large set of nouns
‣verbs are universal and not invented on a per-application basis

Client

HTTP

XML JSON

HTML
Server

Resource

Resource

Resource
Un

ifo
rm

 In
te

rfa
ce

Logical
Resources

Physical
Resources

Resources
Representations

Distributed Enabling Platform

REST and ROA

 9

• Representational State Transfer (REST)

• Based on chapter 5 of Roy Fielding’s PhD thesis (2000)

• An architectural style for building loosely coupled systems

• The Web itself is an instance of that style

• Can be used to build Web services

• Resource Oriented Architecture (ROA)

• A set of design principles to build RESTful Web services

Distributed Enabling Platform

Architectural Principles
• Addressability

• Uniform Interface

• Connectedness

• Statelessness

 10

Distributed Enabling Platform

Addressability
• An addressable application

- exposes the interesting aspects of its dataset as resources
- exposes a URI for every piece of information it might serve
- which is usually an infinite number of URIs

• A resource
- is anything that is important enough to be referenced as a thing in itself
- usually something
‣ that you want to serve information about
‣ that can be represented as a stream of bits

• actors
• movies

- a resource must have at least one name (URI)
• Resource names

- the URI is the name and address of a resource
- resource’s URI should be descriptive:

 11

GOOD: http://example.com/movies
!
BAD: http://example.com/overview.php?list=all,type=movie

http://example.com/overview.php?list=all,type=movie

Distributed Enabling Platform

Uniform Interface
• The same set of operations applies to everything (every resource)

• A small set of verbs (methods) applied to a large set of nouns (resources)

• Verbs are universal and not invented on a per-application base

- Natural language works in the same way (new verbs rarely enter language)

• HTTP defines a small set of verbs (methods) for acting on URI-identified resources

!

• RESTful Web Services use HTTP to its full extent

- Methods: GET, POST, PUT, DELETE, (...)

- Request headers: Authorization, Content-Type, Last-Modified

- Response Codes: 200 OK, 304 Not Modified, 401 Unauthorized, 500 Internal Server Error

- Body: an envelope for data to be transported from A to B

 12

Distributed Enabling Platform

CRUD with HTTP
• With HTTP we have all methods we need to manipulate Web resources

• CRUD interface:

- Create = POST (or PUT)

- Read = GET

- Update = PUT

- Delete = DELETE

• Safe and idempotent behavior

- Safe methods can be ignored or repeated without side-effects: GET and HEAD

- Idempotent methods can be repeated without side-effects: PUT and DELETE

- Unsafe and non-idempotent methods should be treated with care: POST

 13

Distributed Enabling Platform

CREATE
• CREATE a new resource with HTTP POST

 14

Distributed Enabling Platform

POST Semantics
• POST creates a new resource

• The server decides on the resource’s URI

• POST is not idempotent

- A sequence of two or more POST requests has side-effects

- Human Web:

‣ “Do you really want to post this form again?”

‣ “Are you sure you want to purchase that item again?”

- Programmatic Web:

‣ if you post twice, you create two resources

 15

Distributed Enabling Platform

READ
• READ an existing resource with HTTP GET

 16

Distributed Enabling Platform

GET Semantics
• GET retrieves the representation (i.e., the current state) of

a resource

• GET is safe (implies idempotent)

- does not change state of resource

- has no side-effects

• If GET goes wrong

- GET it again!

- no problem because it safe (and idempotent)

 17

Distributed Enabling Platform

UPDATE
• UPDATE an existing resource with HTTP PUT

 18

Distributed Enabling Platform

PUT Semantics
• PUT creates a new resource

• The client decides on the resource’s URI

• PUT is idempotent

- multiple PUT requests have no side effects

- but it changes the resource state

 19

Distributed Enabling Platform

DELETE
• DELETE an existing resource with HTTP DELETE

 20

Distributed Enabling Platform

DELETE Semantics
• Stop the resource from being accessible

- logical delete

- not necessarily physical

• If DELETE goes wrong

- try it again!

- DELETE is idempotent

 21

Distributed Enabling Platform

Representations in HTTP
• In HTTP, the format of a resource is identified through a

MIME code

- Multimedia Internet Mail Extension

- format: type/subtype

• Examples:

- text/plain, text/html

- application/xml

- image/jpeg

 22

Distributed Enabling Platform

Connectedness
• RESTful services representations are hypermedia documents
• These are documents that contain not just data, but links to other

resources
• The server guides the client's path by serving “hypermedia”: links and

forms inside hypertext representations
• The server sends the client guidelines about which states are near

the current one.
• The quality of having links is called “connectedness”.
• Resources should link to each other in their representations.
• Hence, why the human web is easy to use because it is well

connected

 23

Distributed Enabling Platform

Statelessness
• Statelessness = every HTTP request executes in complete isolation
• The request contains all the information necessary for the server to fulfill

that request
• The server never relies on information from a previous request

- if information is important (e.g., user- authentication), the client must send it again
• This constraint does not say “stateless applications”!

- for many RESTful applications, state is essential (e.g., shopping carts)

• It means to move state to clients or resources

• State in resources
- the same for every client working with the service
- when a client changes resource state other clients see this change as well

• State in clients (e.g., cookies)
- specific to client and has to be maintained by each client – makes sense for

maintaining session state (login / logout)

 24

Distributed Enabling Platform

Tools and Frameworks
• Restlet - framework for mapping REST concepts to Java classes

- http://www.restlet.org
• Django - framework for building RESTful Web applications in Python

- http://django-rest-framework.org
• Ruby on Rails - a framework for building RESTful Web applications

- http://www.rubyonrails.org/
• JAX-RS - a specification provides a Java API for RESTful Web Services

over the HTTP protocol
- https://jax-rs-spec.java.net

• Jersey - the open source reference implementation of JAX-RS
- https://jersey.java.net

• RESTEasy - JBoss project that provides various frameworks for
building RESTful Web Services and RESTful Java applications. Fully
certified JAX-RS implementation.
- http://www.jboss.org/resteasy/

 25

http://www.jboss.org/resteasy/

