Beyond Hadoop: Pig and Giraph

Franco Maria Nardini
HPCLab@ISTI

W] PO A
ISTI — CNR, Pisa, Italy SIS
".‘ A 0'
::fg:’:‘ %% ':_.‘;:5
@ ! \
i;‘ :"\ _ :%3
A P A C H E
GIRAPH

1 7*

2 * Licensed to the Apache Software Fc
3 * or more contributor license agreenr
4 * distributed with this work for add
5 * regarding copyright ownership. Th
6 * to you under the Apache License, V
7 * "License"); you may not use this f
8 * with the License. You may obtain
9 *

10 =* http://www.apache.org/licenses
11 *

12 * Unless required by applicable law
13 * distributed under the License is d
14 * WITHOUT WARRANTIES OR CONDITIONS @
15 * See the License for the specific 1
16 * limitations under the License.

17 */

18 package com.hadoop.examples.anagrams;

20 import java.io.IOException;
21 1import java.util.Arrays;

23 import org.apache.hadoop.io.Longhrita
24 import org.apache.hadoop.io.Text;

25 1import org.apache.hadoop.mapred.MapRe
26 1import org.apache.hadoop.mapred.Mappe
27 import org.apache.hadoop.mapred.Outpu
28 1import org.apache.hadoop.mapred.Repor
29 /**

30 >

The Anagram mapper class gets a wo

31 * letters in the word and writes its
32 * Key : sorted word (letters in the

33 * Value: the word itself as the valu
34 * When the reducer runs then we can

35 =*

36 * @author subbu iyer

37| *

38 */

39 public class AnagramMapper extends Ma
40 Mapper<LongWritable,

41

42 private Text sortedText = new
43 private Text orginalText = ne
44

45

46 public void map(LongWritable

47 OutputCollect
48 throws IOExce
49

50 String word = value.t
51 char[] wordChars = wc
52 Arrays.sort(wordChars
53 String sortediord = n
54 sortedText.set(sorted
55 orginalText.set(word)
56 outputCollector.colle
57 }

58

QWO NV S WN

WNHOOW~NO W WNHOOWR~NO W WNFHEFOWRIRNOUAEWNREOWOWRNOU S WN R

55

~
*

See

#OE X X X X X X X X X X X X ¥

*/

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

Licensed to the Apache Software Foundation (ASF) under one
or more contributor license agreements. See the NOTICE file
distributed with this work for additional information
regarding copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at

le

http://wwv.apache.org/1icenses/LICENSE-2.0
software

BASIS,
ss or implied.
sions and

the License for the specific language governing permissions and

limitations under the License.

package com.hadoop.examples.anagrams;

import
import
import
import
import
import
import
import

public

org.apache.hadoop. fs.Path;
org.apache.hadoop.io.Text;
org.apache.hadoop.mapred.FileInputFormat;
org.apache.hadoop.mapred.FileOutputFormat;
org.apache.hadoop.mapred.JobClient;
org.apache.hadoop.mapred.JobConf;
org.apache.hadoop.mapred.TextInputFormat;
org.apache.hadoop.mapred. TextOutputFormat;
keys that came in and

class Anagramlob { e word. if the values

/##
* @param args
*/
public static void main(String[] args) throws Exception{ Reducer<Text, Text, Text, Text> {
JobConf conf = new JobConf(AnagramJob.class);
conf.setJobName(“anagramcount™);

conf.setOutputKeyClass(Text.class);

conf.setOutputValueClass(Text.class); agramValues

Reporter reporter) throws IOException {
conf.setMapperClass(AnagramMapper.class);

// conf.setCombinerClass(AnagramReducer.class);
conf.setReducerClass(AnagramReducer.class);
conf.setInputFormat(TextInputFormat.class); "~
conf.setOutputFormat(TextOutputFormat.class); .
okenizer(output, "~");
FileInputFormat.setInputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));

JobClient.runlob(conf);
e);

Map-Reduce Limitations

* One-input, Two-stage dataflow
— That’s it!!!
* Other flows constantly hacked in

Join, Union Split Chains

 Need to program over and over (or to build library functions):
— Projections
— Filtering
— Aggregates
— Order By
— Distinct

Solution: Pig Latin

Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and Andrew Tomkins. 2008. Pig latin: a not-
so-foreign language for data processing. In Proceedings of the 2008 ACM SIGMOD international conference on
Management of data (SIGMOD '08). ACM, New York, NY, USA, 1099-1110.

* |tis a high-level declarative language (a la SQL)

and a low level procedural programming (a la
Map-Reduce)

 Example

— urls = LOAD ‘urls.txt’ AS (url,category,pagerank);
ok urls = FILTER urls BY pagerank > 0.2;
groups = GROUP good urls BY category;
big groups = FILTER groups BY COUNT (ok urls)>10"6
o = FOREACH big groups GENERATE category,
AVG (good urls.pagerank)

Step-by-Step Procedure Control

Target users are entrenched procedural programmers

The step-by-step method of creating a program in Pig is much cleaner and simpler to use
than the single block method of SQL. It is easier to keep track of what your variables are,

and where you are in the process of analyzing your data.

Jasmine Novak
Engineer, Yahoo!

With the various interleaved clauses in SQL, it is difficult to know what is actually happening
sequentially. With Pig, the data nesting and the temporary tables get abstracted away. Pig

has fewer primitives than SQL does, but it’'s more powerful.

David Ciemiewicz
Search Excellence, Yahoo!

Data Format

None!

The good news is that Pig is able to read text files.

No need to import data into a DB-like application.

Pig applications requirements are, often, the following:

— Read-only data analysis workload (no transactional consistency
guarantees)

— Scan-centric (no point lookups)
— Datasets are temporary (no curation needed)

Even a fixed schema is not necessary as in Pig you can refer
to dimensions in tuples via Si notation, e.g.,

ok urls = FILTER urls BY 52 > 0.2;

Nested Data Model

* Pig Latin has a fully-nestable data model with:
— Atomic values, tuples, bags (lists), and maps
4 PR

finance
yahoo, 4 email /

NEeWSs

\.) °

* More natural to programmers than flat tuples
* Avoids expensive joins

Nested vs. Relational Data Models

* We have an inverted file. For each term we have a list
of documentIDs with which positional information is
associated. E.g.,

terml ->doc1(1,4,5);doc2(2,3,5)

* In Pig you represent it as a
Map<termID, Set<Map<documentID, Set<positions>>>>

* |In Relational Data Models the same dataset should be
represented in Normal Form as:

term info (termID, termString, ..)
document info (termID, documentID, ..)
position info(termID, documentID, position)

Data Types

Atom: An atom contains a simple atomic value such as a string or a
number, e.g., ‘alice’

Tuple: A tuple is a sequence of fields, each of which can be any of the
data types, e.g., (‘alice’, ‘lakers’)

Bag: A bag is a collection of tuples with possible duplicates. The
schema of the constituent tuples is flexible, i.e., not all tuples in a bag
need to have the same number and type of fields, e.g.,

{(‘alice’, ‘lakers’), (‘alice’, (‘ipod’, ‘apple’))}
Map: A map is a collection of data items, where each item has an
associated key through which it can be looked up. As with bags, the
schema of the constituent data items is flexible, i.e., all the data items
in the map need not be of the same type. However, the keys are

requested to be data atoms, mainly for efficiency of lookups. Example
[‘fan of’ -> {(‘alice’), (‘lakers’)}, ‘age’ -> 20]

Expressions

¢)
t = (‘alice’,{ ((],':l;jZ?”ml) }, [‘age’ —>20])

Let fields of tuple t be called £1, £2, £3

Expression Type Example
Constant ‘bob’
Field by position $0
Field by name £3
Projection £2.8$0
Map Lookup f3#‘age’
Function Evaluation SUM(£2.$1)
Conditional f3#‘age’>187
Expression ‘adult’: ‘minor’
Flattening FLATTEN (£2)

Value for t

User Defined Functions (UDFs)

 To accomodate specialized data processing tasks,
Pig Latin has extensive support for user-defined
functions (UDFs).

e All aspects of processing in Pig Latin including
grouping, filtering, joining, and per-tuple
processing can be customized through the use of
UDFs.

e Originally, only Java UDFs were supported, now
Javascript and Python UDFs are supported as
well.

RO WN -

Pt et e et e e e e e e
WU WNE-=OW

An Example of UDF

* exp g = FOREACH queries
GENERATE myudfs.UPPER (gString) ;

package myudfs;

import java.io.IOException;

import org.apache.pig.EvalFunc;

import org.apache.pig.data.Tuple;

import org.apache.pig.impl.util.WrappedIOException;

public class UPPER extends EvalFunc<String>
{
public String exec(Tuple input) throws IOException {
if (input == null || input.size() == 0)
return null;
try{
String str = (String)input.get(0);
return str.toUpperCase();
}catch(Exception e){
throw WrappedIOException.wrap("“Caught exception processing input row

}

r

e);

Specifying Input Data: LOAD

* queriles

LOAD ‘query log.txt’

USING myLoad ()

AS (userId,
queryString,
timestamp) ;

Per-tuple Processing: FOREACH

FOREACH gqueries
GENERATE Exp (gString);

° eXp (d

ﬁ;ENERATE accepts Pig expressions.

¢ >
_(ciqsens | (‘lakers’, 1) o
t (alice ,{ (iPod’, 2) ,[age’ — 20]
Let fields of tuple t be called £1, £2, £3
Expression Type Example Value for t
Constant ‘bob’ Independent of t
Field by position $0 ‘alice’
Field by name £3 [‘age’ — 20]
_— (“lakers’)
Projection £2.$0 { (“iPod’)
Map Lookup £3#‘age’ 20
Function Evaluation SUM(£2.$1) 1+2=3
Conditional £3#‘age’>187 . s
Expression ‘adult’: ‘minor’ adult
. ‘lakers’, 1
Flattening FLATTEN (£2) “iPod’, 2

Tuple flattening: FLATTEN

* Flattening operates on bags by extracting the fields of the
tuples in the bag, and making them fields of the tuple being
output by GENERATE, thus removing one level of nesting. For
example, the output of the following command is shown as

the second step in the figure below.

exp q = FOREACH queriles
GENERATE userID, FLATTEN (Exp (gString));

queries:
(userld, queryString, timestamp)
FOREACH queries GENERATE (ahce,{}‘{zﬁ;isr:g:;)} (alice, lakers rumors)
(alice, lakers, 1) expandQuery(queryString) Wlth ﬂattenmg Calice, lakers news)

(bob, iPod, 3) - : (bob, iPod nano)
thout flatt Pod ’
(without flattening) (: L(*»(F:odo Sh":f"f@?e)}) (bob, iPod shuffle)

Discarding Unwanted Data: FILTER

 While scanning a dataset we might need to filter
out Ilnm
expres . . _ . . .

) Fofexa Filtering conditions in Pig Latin
queries €an involve a combination of
real g expressions, comparison

. rator has== eq, !

. Using U operators suc as. eq
real 4 heq, and the logical connec-

K tors AND, OR, and NOT. /

Getting Related Data Together: GROUP

* |f we want to merge together rows from a

dataset/ \

sroupel 10 group all tuples of a data
query_ | set together (e.g., to compute
the overall total revenue), one
uses the syntax
GROUP rewvenue ALL;

\ /

GROUP Results

* Warning. Results of GROUP operations are
non-intuitive.

B = GROUP A BY age;

DESCRIBE B;
B: {group: int, A: {name: chararray,age: int,gpa: float}}

ILLUSTRATE B;

etc ..

B	group: int	A: bag({name: chararray,age: int,gpa: float})
	18	{(John, 18, 4.0), (Joe, 18, 3.8)}
	20	{(Bill, 20, 3.9)}
DUMP B;

(18, {(John,18,4.0F), (Joe,18,3.8F)})
(19, { (Mary,19,3.8F)})
(20,{(Bill,20,3.9F)})

Merging Datasets: JOIN

* Given two datasets, normal equi-join
operations can be carried out by the JOIN
command.

joln result =
JOIN result BY gString,
revenue BY gString;

Stream Processing: STREAM

* Sends data to an external script or program.

>

LOAD 'data';
STREAM A THROUGH 'stream.pl -n 5';

oy,
|-

Asking for Output: STORE

* Materialization of results is obtained through
the Pig statement STORE:

STORE query revenues INTO
‘output’ USING myStore () ;

Other Commands

UNION: Returns the union of two or more
bags.

CROSS: Returns the cross product of two or
more bags.

ORDER: Orders a bag by the specified field(s).

DISTINCT: Eliminates duplicate tuplesin a
bag. This command is just a shortcut for
grouping the bag by all fields, and then
projecting out the groups.

Nested Operations

* grouped revenue = GROUP revenue BY gString;
query revenues =
FOREACH grouped revenue {
top slot = FILTER revenue BY adSlot eqg ‘top’;
GENERATE queryString,
SUM (top slot.amount),
SUM (revenue.amount) ;

PageRank on Pig

* Input format:

WWW .
WWW .
WWW .
WWW .
WWW .
WWW .

A.
. com
. com
. com
. com
. com

We use python scripts with Pig embedded. Useful for

MO QW

com

el el el e

et N et W et W e S e S

(
(
(
(
(
(

T 5 £ F 5 5

WW .
W

W
W
WW .
W.D.
W
W

W

W L]
W

W » W o oW

implementing iterative Pig scripts.

PageRank.py

from org.apache.pig.scripting import

#!/usr/bin/python

"o

P = Pig.compile(
— PR(A) = (1-d) + d (PR(T1)/C(Tl) + .. + PR(Tn)/C(Tn))

previous_pagerank =
LOAD ‘$docs_in’
USING PigStorage(‘\t‘)
AS (url: chararray, pagerank: float, links:{ link: (url: chararray) });

outbound pagerank =
FOREACH previous_pagerank
GENERATE
pagerank / COUNT (links) AS pagerank,
FLATTEN (links) AS to_url;

new_pagerank =
FOREACH
(COGROUP outbound pagerank BY to_url, previous_pagerank BY url INNER)
GENERATE
group AS url,
(1~8%d) + $d * SUM (outbound_pagerank.pagerank) AS pagerank,

FLATTEN (previous_pagerank.links) AS links;

STORE new_pagerank

INTO ‘$docs_out”’

USING PigStorage(‘\t’);
)

LinkedIn’s DataFu

DataFu is a collection of user-defined functions for working
with large-scale data in Hadoop and Pig. This library was born
out of the need for a stable, well-tested library of UDFs for
data mining and statistics. It is used at LinkedIn in many of our
off-line workflows for data derived products like "People You
May Know" and "Skills & Endorsements”. It contains functions
for:
— PageRank
— Quantiles (median), variance, etc.
— Sessionization
— Convenience bag functions (e.g., set operations, enumerating
bags, etc)
— Convenience utility functions (e.g., assertions, easier writing of
EvalFuncs)

* https://github.com/linkedin/datafu

Is Map-Reduce Enough?

* Map-Reduce is a functional-like easy-to-
understand paradigm.

* Complex programs are not easily portable in
Map-Reduce.

 Other programming models exists.

Is Map-Reduce Enough?

 Many practical computing problems concern large graphs

Large graph data Graph algorithms
Web graph PageRank
Transportation routes <: Shortest path
Citation relationships Connected components
Social networks Clustering techniques

 Map-Reduce is ill-suited for graph processing
— Many iterations are needed for parallel graph processing

— Materializations of intermediate results at every Map-Reduce iteration
harm performance

Bulk Synchronous Parallel (BSP) Model

»

Developed during 80s by Leslie G. Valiant
(2010 Turing Award winner)

Published in 1990:

— Leslie G. Valiant, A bridging model for parallel computation, Communicaﬁons |
of the ACM, Volume 33 Issue 8, Aug. 1990

* |s averysimple, yet powerful, bridging model.

— A bridging model "is intended neither as a hardware nor a
programming model but something in between”.

— It serves a purpose similar to the Parallel Random Access
Machine (PRAM) model.

— BSP differs from PRAM by not taking communication and
synchronization for granted.

-

The BSP Computer

Processors

A BSP computer consists of processors

connected by a communication network.

Each processor has a fast local memory, and

may follow different threads of computation. Local

A BSP computation proceeds in a series of Computation

global supersteps.

A superstep consists of three components:

— Local (concurrent) computation: Several compu-

tations take place on every participating processor
Each process only uses values stored in the local

memory of the processor. The computations are
independent in the sense that they occur

asynchronously of all the others. Barrier I

Synchronisation
— Communication: The processes exchange data
between themselves. This exchange takes the form of one-sided put and get calls, rather than
two-sided send and receive calls.

— Barrier synchronization: When a process reaches this point (the barrier), it waits until all
other processes have finished their communication actions.
The computation and communication actions do not have to be ordered in time. The
barrier synchronization concludes the superstep: it has the function of ensuring that
all one-sided communications are properly concluded. This global synchronization is
not needed in models based on two-sided communication, since these synchronize
processes implicitly.

Communication

Cost of Communications

e The BSP model considers communication actions en masse.
— All messages have fixed size

— Communications happen at the beginning and at the end of a
superstep

 The maximum number of incoming or outgoing messages
for a superstep is denoted by h.

* The ability of a communication network to deliver data is
captured by a parameter g, defined such that it takes time
hg for a processor to deliver h messages of size 1.

— A message of length m obviously takes longer to send than a
message of size 1. However, the BSP model does not make a

distinction between a message length of m or m messages of
length 1. In either case the cost is said to be mgh.

The Cost of a BSP Algorithm

* The cost of a superstep is determined as the
sum of three terms:

— the cost of the longest running local computation w

— the cost of global communication between the
processors hg

— the cost of the barrier synchronization at the end of
the superstep /

* Hence, the total cost of a BSP program is given
by

W+ Hg+ Sl = Z Ws + ¢ Z he + Sl
s=1 s=1

Why BSP?

* Google’s Pregel is based on the BSP model:

— @G. Malewicz, M. H. Austern, A. J.C Bik, J. C. Dehnert, |. Horn, N. Leiser, and G.
Czajkowski. 2010. Pregel: a system for large-scale graph processing. In

Proceedings of the 2010 ACM SIGMOD International Conference on Management
of data (SIGMOD '10).

* Pregel is suitable for computations on graph.

— In Pregel vertexes of a graph are abstracted as
processors.

— Vertex-centric approach.

* Pregel computations consist of a sequence of
iterations, called supersteps.

What's in a Pregel’s Superstep?

* During a superstep the framework invokes a
user-defined function for each vertex,
conceptually in parallel.

— The function specifies behavior at a single vertex V
and a single superstep S.

— |t can read messages sent to Vin superstep S - 1, send
messages to other vertices that will be received at
superstep S + 1, and modify the state of V and its
outgoing edges.

— Messages are typically sent along outgoing edges, but
a message may be sent to any vertex whose identifier
is known.

Recap: Model of Computation

* Superstep: the vertices compute in parallel

— Each vertex

— Termination condition
* All vertices are simultaneously inactive ([Active | (Inactive)

* There are no messages in transit

Receives messages sent in the previous superstep

Executes the same user-defined function

Modifies its value or that of its outgoing edges

Sends messages to other vertices (to be received in the next superstep)

Mutates the topology of the graph

Votes to halt if it has no further work to do

Vote to halt

-

J

—

\ _‘_/’ - -

Message received

Why Vertex-centric for Massive
Graphs?

iOnly two processors

| .1
|

B S

Apache Giraph

 Warning!

— Giraph is currently in
Apache incubator

— Modifications are
continuous:
* Some of them might cause
a complete program

rewrite...
— ... it happened to me! :)

Giraph Framework

TaskTracker TaskTracker TaskTracker
TaskTracker

ZooKeeper
JobTracker
NameNode

Tasks Assignment

 ZooKeeper: responsible for computation state
— partition/worker mapping
— global state: #superstep
— checkpoint paths, aggregator values, statistics
 Master: responsible for coordination
— assigns partitions to workers
— coordinates synchronization
— requests checkpoints
— aggregates aggregator values
— collects health statuses
* Worker: responsible for vertices
— invokes active vertices compute() function
— sends, receives and assigns messages
— computes local aggregation values

Anatomy of an Execution

Setup Teardown
* load the graph from disk * write back result
* assign vertices to workers » write back aggregators

* validate workers health

N

Compute Synchronize

* assigh messages to workers * send messages to workers
* iterate on active vertices * compute aggregators

* call vertices compute() * checkpoint

~_

Giraph Example: Connected
Components of an Undirected Graph

* algorithm: propagate smallest vertex label to
neighbors until convergence

e e

» °

3 3

* inthe end, all vertices of a component will have
the same label

©

N
*

*OXR X X X X X X X X X X X %

*

Create a Custom Vertex

Licensed to the Apache Software Foundation (ASF) under one
or more contributor license agreements. See the NOTICE file
distributed with this work for additional information
regarding copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

*/

package org.apache.giraph.examples;

import org.apache.giraph.graph.IntIntNullIntVertex;
import org.apache.hadoop.io.IntWritable;

import java.io.IOException;

Create a Custom Vertex

/**
* Implementation of the HCC algorithm that identifies connected components and
* assigns each vertex its "component identifier"” (the smallest vertex id
* in the component)
E
* The idea behind the algorithm is very simple: propagate the smallest
* vertex id along the edges to all vertices of a connected component. The
* number of supersteps necessary is equal to the length of the maximum
* diameter of all components + 1
| *
* The original Hadoop-based variant of this algorithm was proposed by Kang,
* Charalampos, Tsourakakis and Faloutsos in
* "PEGASUS: Mining Peta-Scale Graphs"”, 2010
£ 3
* http://www.cs.cmu. edu/~ukang/papers/PegasusKAIS. pdf
*/
@Algorithm(
name = "Connected components”,
description = "Finds connected components of the graph"

Create a Custom Vertex

public class ConnectedComponentsVertex extends IntIntNullIntVertex {

/**
* Propagates the smallest vertex id to all neighbors. Will always choose to
* halt and only reactivate if a smaller id has been sent to it
*
* @param messages Iterator of messages from the previous superstep.
* @throws IOException
*/

@0verride

public void compute(Iterable<IntWritable> messaged) throws IOException {
int currentComponent = getValue().get();

// First superstep is special, because we can simply look at the neighbors
if (getSuperstep() == 0) {
for (IntWritable neighbor : getNeighbors()) {
if (neighbor.get() < currentComponent) {
currentComponent = neighbor.get();

}

// Only need to send value if it is not the own id
if (currentComponent != getValue().get()) {
setValue(new IntWritable(currentComponent));
for (IntWritable neighbor : getNeighbors()) {
if (neighbor.get() > currentComponent) {
[sendMessage(new IntWritable(neighbor.get()), getValueQ)); |
}
}

}

return;

}

boolean changed = false;
// did we get a smaller id ?
for (IntWritable message : messages) {
int candidateComponent = message.get();
if (candidateComponent < currentComponent) {
currentComponent = candidateComponent;
changed = true;
}
}

// propagate new component id to the neighbors
if (changed) {
setValue(new IntWritable(currentComponent));
[sendMessageToAl1Edges(getValue());
}
}
}

Additional Stuff

* To read a custom data format we need to
create a custom input format class extending
an input format class available in Giraph, e.g.,

— public class ConnectedComponentsinputFormat extends
TextVertexIinputFormat<IintWritable, IntWritable, NullWritable, IntWritable>

* To output using a custom data format we
need to create a custom output format class
extending an output format class available in
Giraph, e.g.,

— public class VertexWithComponentTextOutputFormat extends
TextVertexOutputFormat<IntWritable, IntWritable, NullWritable>

How To Run a Giraph Job

hadoop jar giraph-0.2-SNAPSHOT-for-hadoop-0.20.203.0-jar-with-dependencies. jar

org.apache.giraph.GiraphRunner
usage: org.apache.giraph. Glrathunner [aw <arg>] [-c <arg>] [-ca <arg>]
rg>] [-h] [-if < 5 [-1la] [-mc <arg>] [-of
[-op <arg>] [-q] [-w <arg>] [-wc <arg>]
-aw, ——aggregatanr1ter <arg> AggregatorWriter class
-C, —_combiner < > VertexCombiner class
-ca, —f(ustnmAtguments <arg> plnv1de custom arguments for the job

>=<value2> etc.

-cf,--cacheFile <arg> Files for distributed cache
-h,--help Help
-if,--inputFormat <arg:> Graph inputformat
-ip,--inputPath <ar Graph input path
-la,--listAlgorithms List supported algorithms
-mc, --masterCompute <arg:> MasterCompute class
-of, --outputFormat rg> Graph outputformat

outputPath < Graph output path
-q,--quiet Quiet output
-w, --workers <arg:> Number of workers
-wc, --workerContext <arg> WorkerContext class

A PageRank Vertex

public class SimplePageRankVertex extends LongDoubleFloatDoubleVertex {
/** Number of supersteps for this test */
public static final int MAX_SUPERSTEPS = 30;
/** Logger */
private static final Logger LOG =
Logger.getLogger(SimplePageRankVertex.class);
/**% Sum aggregator name */
private static String SUM_AGG = "sum";
/** Min aggregator name */

private static String MIN_AGG = "min";
/** Max aggregator name */
private static String MAX_AGG = "max";

@0verride
public void compute(Iterable<DoubleWritable> messages) {
if (getSuperstep() >= 1) {
double sum = 9;
for (DoubleWritable message : messages) {
sum += message.get();
}
DoubleWritable vertexValue =
new DoubleWritable((@.15f / getTotalNumVertices()) + 0.85f * sum);
setValue(vertexValue);
aggregate(MAX_AGG, vertexValue);
aggregate(MIN_AGG, vertexValue);
aggregate(SUM_AGG, new LongWritable(1));
LOG.info(getId() + ": PageRank=" + vertexValue +
" max=" + getAggregatedValue(MAX_AGG) +
" min=" + getAggregatedValue(MIN_AGG));
}

if (getSuperstep() < MAX_SUPERSTEPS) {

long edges = getNumEdgesQ);

sendMessageToAllEdges(

new DoubleWritable(getValue().get() / edges));

} else {

voteToHalt(Q);
}

1

tions

Historical !dentifier

Collaborative
perspectives

lica

Distributed stream ..o, 2

k5 Extending [)iSGOVEIY Computer =
Collecti p
g Boosting llsec m;prlnratm'\(Problem mhrge -scale Criteria |I1[|BXBS nNew mage
g Overlays ppgyiders g L::ml;h e ::. Large Dynamic m Building Challenges Knnw Juh
. £ Clusterin £ e
"L interpreter Everythmg IdB“tlflEI‘Sﬂd,smme 8 'E’ Area
Ecomputin - E
Scomputing 2 gy Assigning =5 ciemm 3 2 o -
= In%ﬁ:‘npressmlllw C t t-B d E '=' = ' '"0"0'“0'“3' nreservmu g |-
onstraint Based & |; s’ Retri@val wemory £1;
o Patterns ,,':ﬂlas heduling 3 = o sf,
ap c e u In E g g flnw =
Q
=~ Model 1'_

Systems: o
xﬁi"i‘iutuﬁ“’““""é:‘f."&:q; Eli;f!ggne

& Performance hased
=| L
(7]
[—]
&

Past
computations

Balanc
Multl

Fulltext

Exploitation
e nPhIR
| . -h
|

con%sfé‘ga:‘e%Frequen Documefit

QUBI‘IBS expandable N

Infnrmatmn

=3 Condensed Assignment

wivaey B Recommender

Grid- enahled components Har'nessmg

rchltectures
Partltmmng

heterogeneous
risti

Peer-to-Pee
Capacity o autumatm java/jini Algorithm Detection para"ellsm Farms
=
wiro (W Restults
< Comparison

@ Prefetching Lu s
gs, . r‘5 Fast
; annotations Ownership preservation 3 Interactive
autonomic @ Property
Vederangine

fram

