
Memory Virtualization

(based on Scott Devine slides by VMWare)

Traditional Address Spaces

0 4GB

Current Process

0 4GB
Operating

System
Virtual

Address Space

Physical
Address Space

RAM ROM Devices Frame
Buffer

Process Virtual Address Space

0 4GB

Traditional Address Spaces

Background Process Operating
System Background Process

Operating
System

0 4GB

Current Process

0 4GB
Operating

System
Virtual

Address Space

Physical
Address Space

RAM ROM Devices Frame
Buffer

Memory Management Unit (MMU)

•  Virtual Address to Physical Address
Translation
–  Works in fixed-sized pages
–  Page Protection

•  Translation Look-aside Buffer
–  TLB caches recently used Virtual to Physical

mappings

•  Control registers
–  Page Table location
–  Current ASID
–  Alignment checking

Traditional Address Translation (I)

TLB Virtual Address Physical Address

1 2

Traditional Address Translation (II)

Process
Page
Table

Process
Page
Table

Process
Page
Table

Process
Page
Table

1

2 3

4 5

TLB Virtual Address Physical Address

Traditional Address Translation (III)

Process
Page
Table

Process
Page
Table

Process
Page
Table

Process
Page
Table

Page
Fault

Handler

1

2

3

7

4

5 8

6

TLB Virtual Address Physical Address

Virtualized Address Spaces

Current Guest Process

0 4GB

Guest OS Virtual
Address Spaces

0 4GB

0 4GB
Physical

Address Space

Machine
Address Space

RAM ROM Devices Frame
Buffer

Virtual RAM Virtual
ROM

Virtual
Devices

Virtual
Frame
Buffer

Virtualized Address Translation:
TLB Emulation

Physical
Page
Table

Emulated
TLB

1

2

3

7

4

5

96

TLB Virtual Address Machine Address

Guest
Page
Table

page
fault

VMM
traps

4

true
page
fault

Guest OS
page fault

handler

hidden
page
fault

8

Issues

•  Guest page table consistency
–  What happens when the guest changes an entry

in its page table?
–  What happens when the guest switches to a new

page table on a process context switch?

•  Performance
–  Guest context switches flush entire software TLB
–  Minimize hidden page faults
–  Aggressive flushing will cause flood of hpfs every

guest context switch
–  Keep one shadow page table per guest process

Virtualized Address Translation:
Shadow Page Tables

Guest
Page Table

Shadow
Page Table

Guest
Page Table

Guest
Page Table

Shadow
Page Table

Shadow
Page Table

Virtual
CR3

Real CR3

Guest Write to CR3

Guest
Page Table

Shadow
Page Table

Guest
Page Table

Guest
Page Table

Shadow
Page Table

Shadow
Page Table

Virtual
CR3

Real CR3

Guest Write to CR3

Guest
Page Table

Shadow
Page Table

Guest
Page Table

Guest
Page Table

Shadow
Page Table

Shadow
Page Table

Virtual
CR3

Real CR3

Undiscovered Guest Page Table

Guest
Page Table

Shadow
Page Table

Guest
Page Table

Guest
Page Table

Shadow
Page Table

Shadow
Page Table

Virtual
CR3

Real CR3

Guest
Page Table

Undiscovered Guest Page Table

Guest
Page Table

Shadow
Page Table

Guest
Page Table

Guest
Page Table

Shadow
Page Table

Shadow
Page Table

Virtual
CR3

Real CR3

Guest
Page Table

Shadow
Page Table

Virtualized Address Translation:
Shadow Page Table

Physical
Page
Table

Shadow
Page
Table

1

2

3

7

4

5

96

TLB Virtual Address Machine Address

Guest
Page
Table

page
fault

VMM
traps

4

true
page
fault

Guest OS
page fault

handler

hidden
page
fault

8

Issues

•  Benefits
–  Handle page faults in same way as Emulated TLB
–  Fast guest context switching

•  Page Table Consistency
–  Guest may not need invalidate TLB on writes to

off-line page tables
–  Need to trace writes to shadow page tables to

invalidate entries

•  Memory Bloat
–  Caching guest page tables takes memory
–  Need to determine when guest has reused page

tables

Hardware-assisted Virtualization:
Nested Page Tables

•  Nested paging uses an additional nested page table (nPT) to translate guest
physical addresses to system physical addresses

•  The gPT maps guest linear addresses to guest physical addresses. Nested page
tables (nPT) map guest physical addresses to system physical addresses.

•  Guest and nested page tables are set up by the guest and hypervisor respectively.
When a guest attempts to reference memory using a linear address and nested
paging is enabled, the page walker performs a 2-dimensional walk using the gPT
and nPT to translate the guest linear address to system physical address.

•  Nested paging removes the overheads associated with shadow paging. Unlike
shadow paging, once the nested pages are populated, the hypervisor does not
need to intercept and emulate guest’s modification of gPT.

•  However because nested paging introduces an additional level of translation, the

TLB miss cost could be larger.

Reclaiming Memory: ballooning

Guest OS

balloon

Guest OS

balloon

Guest OS

inflate balloon
(+ pressure)‏

deflate balloon
(– pressure)‏

may page out
to virtual disk

may page in
from virtual disk

guest OS manages memory
implicit cooperation

Page Sharing

•  Motivation
–  Multiple VMs running same OS, apps
–  Deduplicate redundant copies of code, data,

zeros

•  Transparent page sharing
–  Map multiple PPNs to single MPN copy-on-write
–  Pioneered by Disco [Bugnion et al. SOSP ’97],

but required guest OS hooks

•  VMware content-based sharing
–  General-purpose, no guest OS changes
–  Background activity saves memory over time

Page Sharing: Scan Candidate PPN

VM 1 VM 2 VM 3

011010
110101
010111
101100

Machine
Memory …06af

3
43f8
123b

Hash:
VM:
PPN:
MPN:

hint frame

hash
table

hash page contents …2bd806af

I/O Virtualization

Type of devices

•  Dedicated Devices
–  Monitor, keyboard, mouse
–  No virtualization required, but VMM routing because guest

OS runs in user mode
–  Interrupt handled by VM on activation by VMM

•  Partitioned Devices
–  Disks
–  VMM maintains a map of parameters and re-issues the

requests to physical devices
•  Shared Devices

–  Network adapter
–  VMM translates through a virtual device drivers

•  Spooled Devices
–  Printer

•  Nonexistent Devices
–  Comm network

Performing I/O

Applications

Operating System

Hardware

I/O Drivers

system calls

driver calls

I/O operations

Virtualizing I/O

•  I/O Operations level
–  I/O runs in privileged mode
–  Trap in user mode
–  Difficult to reverse engineer a complete I/O action

•  Device drivers level
–  Needs virtual device drivers
–  VMM intercepts calls to virtual device drivers
–  Must know guest OS device driver implementation
–  Real drivers needed for native VMMs

•  System calls level
–  Most efficient
–  Must know guest OS ABI to I/O and rewrite it taking

care of emulation of everything else not directly
related to I/O.

