
Virtualization
Technologies

Basic Idea
•  Observation

–  Hardware resources are typically under-utilized
–  Hardware resources directly relate to cost

•  Goal
–  Improve hardware utilization

•  How
–  Share hardware resources across multiple machines
–  May make sense for network attached storage, but what about

processor, memory, etc.?

•  Approach
–  Decouple machine from hardware

•  Virtual Machine (VM)
–  A machine decoupled from the hardware, i.e. does not necessarily

correspond to the hardware
–  Multiple “Virtual Machines” on the same physical host could share the

underlying hardware
–  First VM: IBM System/360 Model 40 VM [1965]

Why Virtualize?

•  Consolidate resources
–  Server consolidation
–  Client consolidation

•  Improve system management
–  For both hardware and software
–  From the desktop to the data center

•  Improve the software lifecycle
–  Develop, debug, deploy and maintain

applications in virtual machines

•  Increase application availability
–  Fast, automated recovery

Consolidate resources

•  Server consolidation
–  reduce number of servers
–  reduce space, power and cooling
–  70-80% reduction numbers cited in industry

•  Client consolidation
–  developers: test multiple OS versions, distributed

application configurations on a single machine
–  end user: Windows on Linux, Windows on Mac
–  reduce physical desktop space, avoid managing

multiple physical computers

Improve system management

•  Data center management
–  VM portability and live migration a key enabler
–  automate resource scheduling across a pool of

servers
–  optimize for performance and/or power consumption
–  allocate resources for new applications on the fly
–  add/remove servers without application downtime

•  Desktop management
–  centralize management of desktop VM images
–  automate deployment and patching of desktop VMs
–  run desktop VMs on servers or on client machines

•  Industry-cited 10x increase in sysadmin
efficiency

Improve the software lifecycle

•  Develop, debug, deploy and maintain
applications in virtual machines

•  Power tool for software developers
–  record/replay application execution deterministically
–  trace application behavior online and offline
–  model distributed hardware for multi-tier applications

•  Application and OS flexibility
–  run any application or operating system

•  Virtual appliances
–  a complete, portable application execution

environment

Increase application availability

•  Fast, automated recovery
–  automated failover/restart within a cluster
–  disaster recovery across sites
–  VM portability enables this to work reliably across

potentially different hardware configurations

•  Fault tolerance
–  hypervisor-based fault tolerance against hardware

failures [Bressoud and Schneider, SOSP 1995]
–  run two identical VMs on two different machines,

backup VM takes over if primary VM’s hardware
crashes

–  commercial prototypes beginning to emerge (2008)

Background

Modern Computer System

•  Modern computer system is very complex
–  Hundreds of millions of transistors
–  Interconnected high-speed I/O devices
–  Networking infrastructures
–  Operating systems, libraries, applications
–  Graphics and networking software

•  To manage this complexity: Levels of
Abstractions
–  Allows implementation details at lower levels of

design to be ignored or simplified
–  Each level is separated by well-defined interfaces, so

that the design of a higher level can be decoupled
from the lower levels

Layers of Abstraction

•  Abstraction
–  used to manage complexity
–  typically defined in layers (VMi)
–  each layer has its own language

(Li) and data structures (Ri)
–  lowest layers implemented in

hardware
–  higher layers implemented in

software

•  Machine: denotes the system
on which software is executed.
–  to an operating system this is

generally the physical system
–  to an application program a

machine is defined by the
combination of hardware and
OS-implemented abstractions

R1

Ri

Rn Ln

Li

L1V M1

V Mi

V Mn

Concretization
EmulationAbstraction

Virtualization

•  Typical Layers
–  VM4: Applications
–  VM3: Operating System
–  VM2: Assembler Machine
–  VM1: Firmware Machine
–  VM0: Hardware Machine

Interfaces (I)

•  Abstraction layers have well defined interfaces
–  A processors instruction set defines such an interface: IA-32, IBM

PowerPC, ARM

•  Instruction Set Architecture (ISA)
–  defines hardware/software boundary
–  user ISA: portion of architecture visible to an application program
–  system ISA: portion of architecture visible to the supervisor software

(e.g., OS)

Operating
System

Execution
Hardware

Applications

ISA
system ISA user ISA

Interfaces (II)

•  Application Binary Interface (ABI)
–  defines program interface to the hardware resources and services
–  user ISA

•  system instructions are not included in the ABI
•  user instructions allow program direct access to hardware

–  system calls
•  indirect interface for accessing shared system resources and services

•  implemented by the supervisor software

•  Application Programming Interface (API)
–  defined in terms of a high-level language (HHL)
–  typically implemented as a system library and defined at the source level (for example libc which is linked

into programʼ’s address space)
–  specifies operations available by system which are implemented by the operating system or other system

software

Operating
System

Execution
Hardware

Applications

ABI

Library

API

Virtualization

What is Virtualization

Hardware

Virtual Machine Monitor

Linux Linux
(devel) XP Vista MacOS

General concept

Construction of an isomorphism that maps a guest VM to an
existing host VM such that:

R�
i

P �(R�
i)

R�
j

Ri Rj

P (Ri)

V (Ri) V (Rj)

–  maps the guest state Ri (collection
of guest virtualization objects) onto
the host state Ri’ through some
function V() such that

V(Ri) = Ri’

–  for every policy P() transforming the
state Ri in state Rj in the guest, there
is a corresponding policy P’() in the
host that performs an equivalent
modification of the host state

P’ ◦ V(Ri)=V ◦ P(Ri)

Virtualization Properties

•  Isolation
•  Encapsulation
•  Interposition

Isolation

•  Fault Isolation
–  Fundamental property of virtualization

•  Software Isolation
–  Software versioning
–  DLL Hell

•  Performance Isolation
–  Accomplished through scheduling and resource

allocation

Encapsulation

•  All VM state can be captured into a file
–  Operate on VM by operating on file
–  mv, cp, rm

•  Complexity
–  Proportional to virtual HW model
–  Independent of guest software configuration

Interposition

•  All guest actions go through monitor
•  Monitor can inspect, modify, deny

operations
•  Examples:
–  Compression
–  Encryption
–  Profiling
–  Translation

Concrete Perspectives

•  Process perspective: The system ABI defines the interface
between the process and machine
–  user-level hardware access: logical memory space, user-level

registers and instructions
–  OS mediated: Machine I/O or any shared resource or operations

requiring system privilege.

•  Operating system perspective: ISA defines the interface between
OS and machine
–  system is defined by the underlying machine
–  direct access to all resources
–  manage sharing

•  Virtual machine executes software (process or operating system)
in the same manner as target machine
–  Implemented with both hardware and software
–  VM resources may differ from that of the physical machine
–  Generally not necessary for VM to have equivalent performace

Where is the VM?
•  Process virtual machine: supports an individual process

–  Emulates user-level instructions and operating system calls
–  Virtualizing software placed at the ABI layer

•  System Virtual Machines: emulates the target hardware ISA
–  guest and host environment may use the same ISA

•  Virtual Machines are implemented as combination of
–  Real hardware
–  Virtualizing software

ISA

Operating System

Virtualization Software

Process

ISA

Operating System

Virtualization Software

Applications

Terminology
•  host environment: layers under the VM
•  guest environment: layers above the VM
•  runtime: virtualizing software in process VMs.
•  virtual machine monitor (VMM): virtualizing software

in system VMs

VM Capabilities
Virtual machines can provide emulation, optimization
and replication
•  emulation: cross platform compatibility
•  optimization: by considering implementation specific

information
•  replication: making a single resource or platform appear as

many

OS

Apps

OS

Apps

ISA

OS

Apps

OS

Apps

ISA

OS

Apps

ISA

Emulation Replication Composition

Process VM Examples

•  Same ISA
– Multiprogrammed Systems
– Binary Optimizers

•  Different ISA
– Emulators & Dynamic Binary Translators
– Higher Level Language (HLL) VMs

System VM Examples
•  Whole System

–  Same/Different ISA
–  Bare Hardware/Native/Bare Metal/Type 1
–  Hosted/Type 2

•  Codesigned
–  innovative ISAs and/or hardware implementations for

improved performance, power efficiency, or both.

Hardware

VMM
Scheduler

MMU
HW

Drivers

VM 1 VM 2

Native Virtualization

Hardware

OS
Scheduler

MMU

Hosted Virtualization

OS OS VMM

HW
Drivers

VM 1 VM 2
OS OS

Scheduler MMU

Taxonomy

Process	
 VMs	
 System	
 VMs	

Same	

ISA	

Different	

ISA	

Same	

ISA	

Different	

ISA	

Mul$programmed	

Systems	

Dynamic	

Translators	

Classic-­‐System	

VMs	

Whole-­‐System	

VMs	

Dynamic	

Binary	

Op$mizers	

HLL	
 VMs	
 Hosted	

VMs	

Codesigned	

VMs	

