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Basic Idea 
•  Observation 

–  Hardware resources are typically under-utilized 
–  Hardware resources directly relate to cost 

•  Goal 
–  Improve hardware utilization 

•  How 
–  Share hardware resources across multiple machines 
–  May make sense for network attached storage, but what about 

processor, memory, etc.? 

•  Approach 
–  Decouple machine from hardware 

•  Virtual Machine (VM) 
–  A machine decoupled from the hardware, i.e. does not necessarily 

correspond to the hardware  
–  Multiple “Virtual Machines” on the same physical host could share the 

underlying hardware 
–  First VM: IBM System/360 Model 40 VM [1965] 



Why Virtualize? 

•  Consolidate resources 
–  Server consolidation 
–  Client consolidation 

•  Improve system management 
–  For both hardware and software 
–  From the desktop to the data center 

•  Improve the software lifecycle 
–  Develop, debug, deploy and maintain 

applications in virtual machines 

•  Increase application availability 
–  Fast, automated recovery  



Consolidate resources 

•  Server consolidation 
–  reduce number of servers 
–  reduce space, power and cooling 
–  70-80% reduction numbers cited in industry 

•  Client consolidation 
–  developers: test multiple OS versions, distributed 

application configurations on a single machine 
–  end user: Windows on Linux, Windows on Mac 
–  reduce physical desktop space, avoid managing 

multiple physical computers 



Improve system management 

•  Data center management 
–  VM portability and live migration a key enabler 
–  automate resource scheduling across a pool of 

servers  
–  optimize for performance and/or power consumption 
–  allocate resources for new applications on the fly 
–  add/remove servers without application downtime 

•  Desktop management 
–  centralize management of desktop VM images 
–  automate deployment and patching of desktop VMs 
–  run desktop VMs on servers or on client machines 

•  Industry-cited 10x increase in sysadmin 
efficiency 



Improve the software lifecycle 

•  Develop, debug, deploy and maintain 
applications in virtual machines 

•  Power tool for software developers 
–  record/replay application execution deterministically 
–  trace application behavior online and offline 
–  model distributed hardware for multi-tier applications 

•  Application and OS flexibility 
–  run any application or operating system 

•  Virtual appliances 
–  a complete, portable application execution 

environment 



Increase application availability 

•  Fast, automated recovery  
–  automated failover/restart within a cluster 
–  disaster recovery across sites 
–  VM portability enables this to work reliably across 

potentially different hardware configurations 

•  Fault tolerance 
–  hypervisor-based fault tolerance against hardware 

failures [Bressoud and Schneider, SOSP 1995] 
–  run two identical VMs on two different machines, 

backup VM takes over if primary VM’s hardware 
crashes 

–  commercial prototypes beginning to emerge (2008) 



Background 



Modern Computer System 

•  Modern computer system is very complex 
–  Hundreds of millions of transistors 
–  Interconnected high-speed I/O devices 
–  Networking infrastructures 
–  Operating systems, libraries, applications 
–  Graphics and networking software 

•  To manage this complexity: Levels of 
Abstractions 
–  Allows implementation details at lower levels of 

design to be ignored or simplified 
–  Each level is separated by well-defined interfaces, so 

that the design of a higher level can be decoupled 
from the lower levels 



Layers of Abstraction 

•  Abstraction 
–  used to manage complexity 
–  typically defined in layers (VMi) 
–  each layer has its own language 

(Li) and data structures (Ri) 
–  lowest layers implemented in 

hardware 
–  higher layers implemented in 

software 

•  Machine: denotes the system 
on which software is executed.  
–  to an operating system this is 

generally the physical system 
–  to an application program a 

machine is defined by the 
combination of hardware and 
OS-implemented abstractions 
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•  Typical Layers 
–  VM4: Applications 
–  VM3: Operating System 
–  VM2: Assembler Machine 
–  VM1: Firmware Machine 
–  VM0: Hardware Machine 



Interfaces (I) 

•  Abstraction layers have well defined interfaces 
–  A processors instruction set defines such an interface: IA-32, IBM 

PowerPC, ARM 

•  Instruction Set Architecture (ISA)  
–  defines hardware/software boundary 
–  user ISA: portion of architecture visible to an application program 
–  system ISA: portion of architecture visible to the supervisor software 

(e.g., OS) 
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Interfaces (II) 

•  Application Binary Interface (ABI) 
–  defines program interface to the hardware resources and services 
–  user ISA 

•  system instructions are not included in the ABI 
•  user instructions allow program direct access to hardware 

–  system calls 
•  indirect interface for accessing shared system resources and services 

•  implemented by the supervisor software 

•  Application Programming Interface (API) 
–  defined in terms of a high-level language (HHL) 
–  typically implemented as a system library and defined at the source level (for example libc which is linked 

into programʼ’s address space) 
–  specifies operations available by system which are implemented by the operating system or other system 

software 
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What is Virtualization 

Hardware 

Virtual Machine Monitor 

Linux Linux 
(devel) XP Vista MacOS 



General concept 

Construction of an isomorphism that maps a guest VM to an 
existing host VM such that:  
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–  maps the guest state Ri (collection 
of guest virtualization objects) onto 
the host state Ri’ through some 
function V() such that 

V(Ri) = Ri’ 
 

–  for every policy P() transforming the 
state Ri in state Rj in the guest, there 
is a corresponding policy P’() in the 
host that performs an equivalent 
modification of the host state  

P’ ◦ V(Ri)=V ◦ P(Ri) 



Virtualization Properties 

•  Isolation 
•  Encapsulation 
•  Interposition 



Isolation 

•  Fault Isolation 
–  Fundamental property of virtualization 

•  Software Isolation 
–  Software versioning 
–  DLL Hell 

•  Performance Isolation 
–  Accomplished through scheduling and resource 

allocation 



Encapsulation 

•  All VM state can be captured into a file 
–  Operate on VM by operating on file 
–  mv, cp, rm 

•  Complexity  
–  Proportional to virtual HW model 
–  Independent of guest software configuration 



Interposition 

•  All guest actions go through monitor 
•  Monitor can inspect, modify, deny 

operations 
•  Examples: 
–  Compression 
–  Encryption 
–  Profiling 
–  Translation 



Concrete Perspectives 

•  Process perspective: The system ABI defines the interface 
between the process and machine 
–  user-level hardware access: logical memory space, user-level 

registers and instructions 
–  OS mediated: Machine I/O or any shared resource or operations 

requiring system privilege. 

•  Operating system perspective: ISA defines the interface between 
OS and machine 
–  system is defined by the underlying machine 
–  direct access to all resources 
–  manage sharing 

•  Virtual machine executes software (process or operating system) 
in the same manner as target machine 
–  Implemented with both hardware and software 
–  VM resources may differ from that of the physical machine 
–  Generally not necessary for VM to have equivalent performace 



Where is the VM? 
•  Process virtual machine: supports an individual process 

–  Emulates user-level instructions and operating system calls 
–  Virtualizing software placed at the ABI layer 

•  System Virtual Machines: emulates the target hardware ISA 
–  guest and host environment may use the same ISA 

•  Virtual Machines are implemented as combination of 
–  Real hardware 
–  Virtualizing software 
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Terminology 
•  host environment: layers under the VM 
•  guest environment: layers above the VM 
•  runtime: virtualizing software in process VMs. 
•  virtual machine monitor (VMM): virtualizing software 

in system VMs 



VM Capabilities 
Virtual machines can provide emulation, optimization 
and replication 
•  emulation: cross platform compatibility 
•  optimization: by considering implementation specific 

information 
•  replication: making a single resource or platform appear as 

many 
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Process VM Examples 

•  Same ISA 
– Multiprogrammed Systems 
– Binary Optimizers 

•  Different ISA 
– Emulators & Dynamic Binary Translators 
– Higher Level Language (HLL) VMs 

 



System VM Examples 
•  Whole System 

–  Same/Different ISA 
–  Bare Hardware/Native/Bare Metal/Type 1 
–  Hosted/Type 2 

•  Codesigned 
–  innovative ISAs and/or hardware implementations for 

improved performance, power efficiency, or both. 
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Taxonomy 
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