Lab Lecture #3

Introduction

Suppose we have a set of English text documents and wish to determine which document is
most relevant to the query "the brown cow". A simple way to start out is by eliminating
documents that do not contain all three words "the", "brown" and "cow", but this still leaves
many documents. To further distinguish them, we might count the number of times each term
occurs in each document and sum them all together; the number of times a term occurs in a
document is called its term frequency. However, because the term "the" is so common, this
will tend to incorrectly emphasize documents which happen to use the word "the" more,
without giving enough weight to the more meaningful terms "brown" and "cow". Also the term
"the" is not a good keyword to distinguish relevant and non-relevant documents and terms
like "brown" and "cow" that occur rarely are good keywords to distinguish relevant
documents from the non-relevant documents. Hence an inverse document frequency factor
is incorporated which diminishes the weight of terms that occur very frequently in the
collection and increases the weight of terms that occur rarely.

The term count in the given document is simply the number of times a given term appears in
that document. This count is usually normalized to prevent a bias towards longer documents
(which may have a higher term count regardless of the actual importance of that term in the
document) to give a measure of the importance of the term ¢; within the particular document
dj. Thus we have the term frequency, defined as follows.
iy =~
) N)

J
where nj is the number of occurrences of the considered term (¢;) in document dj, and the
denominator N; is the sum of number of occurrences of all terms in document d; (the
document length).
The inverse document frequency is a measure of the general importance of the term
(obtained by dividing the total number of document by the number of documents containing
the term, and then taking the logarithm of that quotient).
. D
idf, =log M,
where:
* |D| is total number of documents in the corpus;
* Mi=|{d: ti € d}| is the number of documents where the term ¢t; appears in.

Then
(tf - ldf),] = tfu ldfz

A high weight in tf-idf is reached by a high term frequency (in the given document) and a low
document frequency of the term in the whole collection of documents; the weights hence tend
to filter out common terms. The tf-idf value for a term will always be greater than or equal to
ZEero.

Consider a document containing 100 words wherein the word “cow” appears 3 times.
Following the previously defined formulas, the term frequency (TF) for “cow” is then 0.03.
Now, assume we have 10 million documents and “cow” appears in one thousand of these.
Then, the inverse document frequency is calculated as In(10000000/1000) = 9.21. The tf-idf
score is the product of these quantities: 0.03 x 9.21 = 0.28.

Compute TF-IDF using MapReduce

Given a small collection of documents, we are going to implement tf-idf scores using Hadoop.
We will need the following information:

* number of times term ¢t; appears in a given document (n)
* number of terms in each document (N)

* number of documents term ¢; appears in (m)

* total number of documents (|D|)

We use multiple rounds of Map/Reduce to gradually compute tf-idf:

1. Word frequency in document: starting from a directory containing a set of text files,
we will produce another set of files associating the couple (t;, d;) to the number n of
times the term ¢; appears in the document d,.

Mapper: input: (doc name, doc contents)
output: ((word, doc name), 1)

Reducer: sums counts for word in document
outputs ((word, doc name), n)

2. Word count in document: starting from the directory containing the output of the
previous job, we will produce another set of files associating the couple (t;, d;) to the
couple (n, N), where N represents the total number of terms in the document d;.

Mapper: input: ((word, doc name), n)
output: (doc name, (word, n))

Reducer: sums frequencies n for individual terms in the same document
outputs ((word, doc name), (n, N))

3. Word frequency in collection: starting from the directory containing the output of
the previous job, we will produce another set of files associating the couple (¢;, d;) to
the triple (n, N, m), where m represents the number of documents the term t; appears
in the document d;.

Mapper: input: ((word, doc name), (n, N))
output: (word, (doc name, n, N))

Reducer: sums counts for word in collection
output: ((word, doc name), (n, N, m))

4. Calculate tf-idf: starting from the directory containing the output of the previous job,
and assuming |D| is known, we will produce another set of files associating the couple
(i, d;) its tf-idf score.

Mapper: input: ((word, doc name), (n, N, m))
output: ((word, doc name), tf-idf)
Reducer: do nothing
output: ((word, doc name), tf-idf)

Lab Lecture #3.1

Word frequency in document

This phase is designed in a job whose task is to count the number of words in each of the
documents in the input directory. The mapper will receive as input a key that is, by default,
the byte offset of the current line in the current file processed (LongWritable object) and a
value that is the line read from the file (Text object). It must output another (key, value) pair.
The problem is coding the (word, doc name) pair in a single object. While it is possible to
implement a custom class to do the job, we will use a “string trick”, emitting a simple string
composed by the word, the special character “@” and the doc name. In order to obtain the
document name from the Context object, use the following statement:

String fileName = ((FileSplit)context.getInputSplit()).getPath().getName();

Then, use the following statements to remove punctuation and other word anomalies:

Pattern p Pattern.compile("\\w+");
Matcher m = p.matcher(value.toString());

while (m.find()) {
String word = m.group().toLowerCase();
// remaining code

}

During the mapper execution, each word in the line should be lower-cased, and ignored if it
does not start with a letter or if it contains the character “_".

The reducer behaves as the standard, well-known WordCount reducer. In this case, keys are
represented by Text objects, and values by IntWritable objects. The output will be a set of
files (one per reducer): each line of each file will contain a word@document string, a tab
character and an integer coded as string. Please remember that Hadoop requires the same
classes for keys in the mapper output and the reducer input, as well as the same classes for
relative values, although key and value classes can be different.

Lab Lecture #3.2

Word count in document

The goal of this phase is to count the total number of words for each document, in a way to
compare each word with the total number of words. The mapper will receive as input a key
that is, by default, the byte offset of the current line in the current file processed
(LongWritable object) and a value that is the line read from the file (Text object). It must
output another (key, value) pair. The problem is again coding the (word, n) pair in a single
object. We will use the “string trick”, emitting a simple string composed by the word, the
special character “/” and a string representing the number of occurrences of the word in the
document. In order to split a string 1ine in an array of strings with a custom char you can use
the following statement:

String[] tokens = line.split("@");

The reducer will receive two Text objects as keys and values representing the (doc name,
(word, n) couple. It just needs to sum the total number of values in a document and pass this
value over to the next step, along with the previous number of keys and values, as necessary
data for the next step, writing in the files a line for each ((word, doc name), (n, N)) couple’s
couple ©.

Lab Lecture #3.3

Word frequency in collection

import java.io.IOException;
import java.util.HashMap;
import java.util.Map;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOQutputFormat;

public class WordFrequencyInCollection
{
public static class NewMapper extends Mapper<LongWritable, Text, Text, Text>
{
public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String[] wordAndCounters = value.toString().split("\t");
String[] wordAndDoc = wordAndCounters[@].split("@");
context.write(new Text(wordAndDoc[@]),
new Text(wordAndDoc[1] + "=" + wordAndCounters[1]));

3

public static class NewReducer extends Reducer<Text, Text, Text, Text>
{
public void reduce(Text key, Iterable<Text> values, Context context)
throws IOException, InterruptedException {
// total frequency of this word
Map<String, String> tempMap = new HashMap<String, String>(Q);
int numberOfDocumentsInCorpusWhereKeyAppears = 0;
for (Text val : values) {
String[] docAndCounter = val.toString().split("=");
tempMap . put(docAndCounter[@], docAndCounter[1]);
numberOfDocumentsInCorpusWhereKeyAppears++;
i
for (String docKey: tempMap.keySet())
context.write(new Text(key.toString() + "@" + docKey),
new Text(tempMap.get(docKey) + "/" +
numberOfDocumentsInCorpusWhereKeyAppears));

3

public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = new Job(conf, "word frequency in collection");
job.setJarByClass(WordFrequencyInCollection.class);

job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
job.setMapperClass(NewMapper.class);
job.setReducerClass(NewReducer.class);

FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(Cargs[1]));
System. exit(job.waitForCompletion(true) ? @ : 1);

Lab Lecture #3.4

Calculate tf-idf

import java.io.IOException;
import java.text.DecimalFormat;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOQutputFormat;

public class WordDocumentTfIdf

{

public static class NewMapper extends Mapper<LongWritable, Text, Text, Text>

{

}

private static final DecimalFormat DF = new DecimalFormat("### . ########")
private static final int numberOfDocumentsInCorpus = 782;

public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException

{
String[] wordAndCounters = value.toString().split("\t");
String[] numbers = wordAndCounters[1].split("/");

// Term frequency is the quotient of the number of terms

// in document and the total number of terms in doc

double tf = Double.valueOf(numbers[@]) / Double.valueOf(numbers[1]);

// Inverse document frequency is the quotient between

// the number of docs in corpus and number of docs the term appears

double idf = (double)numberOfDocumentsInCorpus / Double.valueOf(numbers[2]);
double tfIdf = tf * Math.loglo(idf);

context.write(new Text(wordAndCounters[@]), new Text(DF.format(tfIdf)));

public static void main(String[] args) throws Exception

{

Configuration conf = new Configuration();
Job job = new Job(conf, "word frequency in collection");
job.setJarByClass(WordDocumentTfIdf.class);

job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);

job.setMapperClass(NewMapper.class);
job.setReducerClass(Reducer.class);

FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(Cargs[1]));

System. exit(job.waitForCompletion(true) ? @ : 1);

