
MapReduce

Daniele Licari

November 20, 2010

based on Dr. Nicola Tonellotto's lesson

A typical one application model takes an input to processing an output. what
happen if a function should process a very large input to produce a very large
output? In this case the function could be a bottleneck.

Divide & Conquer model o�ers a common approach to solve these kind of prob-
lems. This model is based on breaking one large problem into several smaller
problems easier; the solutions to the sub-problems are then combined to give a
solution to the original problem. However there are a lot of problems in this
model, e.g:

• How do we split the input?

• How do we distribute the input splits to application? (the application can
be running on several resources, e.g. GRID, cluster, and the data could
be partitioned on the machines)

• How do we collect the output splits?

• How do we aggregate the output?

• How do we coordinate the work?

• What if input splits > num workers?

• What if workers need to share input/output splits?

• What if a worker dies?

• What if we have a new input?

How do we set the workers number? How do we between workers share data?
How is program coordinated? How is program synchronized? How do we imple-
ment all these stu�? How do we solve these problems? the answer is MapRe-
duce. MapReduce is a programming model and an associated implementation
for processing and generating large data sets.

1

The big ideas behind MapReduce are:

Scale out, not up. A large number of commodity low-end servers is preferred
over a small number of high-end servers. The costs of high-end servers do not
scale linearly with own e�ciency. E.g. The article "Scaling Up vs. Scaling
Out: Hidden Costs"1 provides a comparison a Server "HP ProLiant DL785
G5"(32 CPU, RAM 512 GB, Disk 4TB) with cost closer to $100,0002 with 83
low-end servers(each with 2.83 GHz quad-core CPU , RAM 8 GB, Disk 2x500
GB SATA) assuming a �xed spend of $100,000

Scaling Up Scaling Out

Cores 32 332
RAM 512 GB 664 GB
Disk 4 TB 41.5 TB

On the other hand, we have power consumption problems and rack space
isn't free.

Move processing to the data. When nodes need to larger data volumes(e.g.
hundreds of GB) the network is a bottleneck. MapReduce assumes an architec-
ture where processors and storage are co-located, so data access is fast since it
is local(data locality).

Process data sequentially, avoid random access. Datasets are too large
to �t in memory and must be held on disk. As a result, it is desirable to avoid
random data access, and instead organize computations so that data is processed
sequentially, so we have low seek time.

Seamless scalability. Algorithms that should be used must be scalable in
terms of data and resources.

Right level of abstraction, hide implementation details from appli-

cations development. MapReduce operates only at the higher level: the
programmer thinks in tems of function of key and value pair, and the data �ow
is implicit. (if you want to hurt yourself there are the MPI API)

MapReduce PROGRAMMING MODEL.

Before showing MapReduce Paradigm, we see a example of typical data problem
that we can resolve with MapReduce.

1http://www.codinghorror.com/blog/2009/06/scaling-up-vs-scaling-out-hidden-
costs.html

2on date of article.

2

E.g. Assuming we have a text �le uncompressed size of 1 TB, which must be
processed by a function that generates as output the number of occurrences of
each word in the input �le. The output will be de�ned by a set of key-value
pairs (binary-binary string string), each pair will contain, respectively, word and
an associated count of occurrence. The binary string to encode any kind of data
type.

MapReduce Paradigm is divided into rounds, each round has three phases:

1. Map: maps input key/value pairs to a set of intermediate key/value pairs.
Maps are the individual tasks that transform input records into interme-
diate records. The transformed intermediate records do not need to be of
the same type as the input records. A given input pair may map to zero
or many output pairs.

2. Shu�e and Sort (occur simultaneously): while map-outputs are being
fetched they are merged. The fetched map output pairs are merged con-
structing pairs of (key; list(values)) based on the same key. The newly
structured pairs of key/list are propagated to the user de�ned reduce func-
tion

3. Reduce: reduces a set of intermediate values which share a key to a smaller
set of values.

In a nutshell,

Map: ∀(k,v) produces a new key-value pair (k',v' in a other semantic domain
,intermediate results).

Shu�e and Sort: ∀(k',v') aggregate in a multiset U.

Reduce: to reduce U and returns a new multiset U' (new key/value pair in
other semantic domain, �nal result).

Applications typically implement the Mapper and Reducer interfaces to provide
the map and reduce methods. These form the core of the job.

method Map(key k, value v)→EMIT(key k',value v')
method Reduce(key k, value v)→Emit(key k',value [v′,v′2,v

′
3...])

All values with the same key are reduced together

In the example above, where we have a very large collection of input �les and we
want to know how many occurrences there are for each term in the documents.
In this case, what is key �eld? the document is a string then a typical key could
be a document identi�ers. Below a pseudo-code for the word count algorithm
in MapReduce.

1: class Mapper

2: method Map(docid a, doc d)

3: for all term t ε doc d do

4: Emit(term t, count 1)

3

The mapper emits an intermediate key-value pair for each word in a document.

1: class Reducer

2: method Reduce(term t, counts [c1,c2, ...])
3: sum ← 0

4: for all count c ε counts [c1,c2, ...] do

5: sum ← sum + c

6: Emit(term t, count sum)

The reducer sums up all counts for each word.

Formal de�nition3

De�nition 1. A mapper is a (possibly randomized) function that takes as
input one ordered (key; value) pair of binary strings. As output the mapper
produces a nite multiset of new (key; value) pairs. It is important that the
mapper operates on one (key; value) pair at a time.

De�nition 2. A reducer is a (possibly randomized) function that takes as input
a binary string k which is the key, and a sequence of values (v1, v2, ...) which
are also binary strings. As output, the reducer produces a multiset of pairs of
binary strings (k; vk;1); (k;vk;2); (k; vk;3); ... The key in the output tuples is
identical to the key in the input tuple.

A map reduce program consists of a sequence (µ1,ρ1,µ2,ρ2,..., µi,ρi) of mappers
and reducers.

The input is a multiset of (key; value) pairs denoted by U0.

To execute the program on input U0:

For r = 1, 2,...,R do:

1. Execute Map: Feed each pair (k; v) in Ur−1 to mapper µr, and run
it. The mapper will generate a sequence of tuples, (k1; v1); (k2; v2),...
Let U

′

r be the multiset of (key; value) pairs output by µr, that is, U
′

r=⋃
(k;v)εUr−1

µr(k; v).

2. Shu�e: For each k, let Vk;v be the multiset of values vi such that (k; vi)εU
′

r

. The underlying MapReduce implementation constructs the multisets
Vk;v from U

′

r.

3H. Karlo, S. Suriy, S. Vassilvitskiiz, �A Model of Computation for MapReduce�,
http://www.siam.org/proceedings/soda/2010/SODA10_076_karlo�h.pdf

4

3. Execute Reduce: For each k, feed k and some arbitrary permutation of
(k;v) to a separate instance of reducer ρr, and run it. The reducer will
generate a sequence of tuples (k1; v

′
1); (k2; v

′
2) ... Let Ur be the multiset

of (key; value) pairs output by ρr, that is, Ur=
⋃
kρr(k, Vk;v)

MapReduce Example

Consider the following example, we want to compute the k-th frequency moment
of a large data (multi)-set.

Let x be the input string of length n, and denote by xi the ith symbol in x. We
can represent the input x as a sequence of n pairs(i, xi) (key- value pairs).

1. Thus we can de�ned the �rst map as follows:µ1(i, xi) = (xi, i). Every
tuple (eg, (1, x1),(2, x2)...) is mapped to a pair with the symbol as the
key, and the position as the value.

2. After the aggregation by the key, we can proceed to collapse that list into a
single number and we can de�ned the �rst reducer as follow: ρ1(xi,[v,v2,v3,..,vm])=(xi,m

k).

3. Now we want to sum the number of remaining pairs, the second map as
follows: µ2(xi, v) = (∗, v).

4. Finally all of the pairs now have the same key, thus they will all be
mapped to the same reducer: e.g. for sum ρ1(*,[v,v2,v3,..,vm])=(∗,mk),
with mk=

∑
i vi.

References

[1] N. Tonellotto, �Map Reduce�, Intenal Slides, 2010.

[2] J. Lin, C. Dyer, �Data-Intensive Text Processing with MapReduce�, Ed.
Graeme Hirst. Morgan and Claypool Publishers. 2010.

[3] J. Dean, S. Ghemawat, �MapReduce: Simplied Data Processing on Large
Clusters�, Proceedings of the 6th conference on Symposium on Opearting
Systems, 2010.

[4] Apache Hadoop project, �Map/Reduce Tutorial�, Hadoop project website ,
november 2010.

[5] J Atwood, �Scaling Up vs. Scaling Out: Hidden Costs�, Coding Horror blog
website, Jun 2010.

[6] H, Karlo�, S. Suri, S. Vassilvitskii, �A model of Computation for. MapRe-
duce�. Symposium on Discrete Algorithms (SODA), 2010

5

