
The Model & Basic Computations

The Model

Broadcast

Spanning Tree Construction

Traversal

Wake-up

Distributed Environment

Multiplicity

Autonomy

Interaction

1+2 =3

computing capabilities

memory

clock

typically by
exchange of messages

The Model

Collection of entities that communicate
by exchanging messages

entity, node, site ...

(processor, process,
object ….)

communication
link

Entity:

An entity can:

Access and change its
local memory

Access and reset its local clock

Send messages

Perform local computations

The Model

x

In memory: status(x)
value(x)

Message
= finite sequence
 of bits

Entity Behavior

 receiving a message
 clock ring

spontaneous impulse

E = finite set of events that could occur

(ex: status(x) ∈{waiting, sleeping, processing})

Possible events:

S = finite set of states an entity can be in

The behavior of an entity is reactive:
 triggered by events

B(x) = ACTION of an entity x
in response to an EVENT

State x Event

Action: sequence of activities, e.g.,
computing
sending message
change state

the action is atomic
the activities cannot be interrupted

The behavior of an entity is

Entity Behavior

COMPLETE
(∀ (state, event) ∃ an action)

Action

DETERMINISTIC
(non-ambiguous)

System Behavior

B = { B(x) : x ∈ E}

A system is SYMMETRIC (or homogeneous)
 if all the entities have the same behavior

B(x) = B(y), ∀ x,y ∈ E

Observation.

Every system can be made symmetric

Communication Network:

Communication

Point-to-point Model

No(x) = out-neighbors of entity x
Ni(x) = in-neighbors of entity x

N(x) = No(x) ∪ Ni(x)

Graph describing the
COMMUNICATION TOPOLOGY

G = (V, A) V: Entities
A: Arcs defined by N

x

y

z

w

An entity x can send a message only to its
out-neighbors No(x)

and receive from the in-neighbours Ni(x)

In absence of faults a message
reaches its destination in finite time

Axioms

Finite Transmission Delays

Each entity distinguishes
among his in/out neighbors 1

2
3

distinct labels

Local orientation

Restrictions of the model

Communication Restriction:

Message Ordering
In absence of failures, msgs transmitted
along the same link arrive in the same order.

queue

Restrictions of the model

Reliability Restrictions:
1. Guaranteed delivery:

Any message that is sent will be received uncorrupted
2. Partial Reliability:

There will be no failures during the computation
3. Total Reliability:

No failures have occurred nor will occur

Communication restriction:
Bidirectional Links

∀ x, Ni(x) = No(x)

Restrictions of the model

Topological restriction:

The graph G is strongly connected

Bounded Communication Delay:
There exists a constant Δ such that, in absence of failures,
the communication delay of any message on any link is
at most Δ

Unitary Communication Delay: In absence of failures,
the communication delay is always one unit of time

Synchronized clocks: All local clocks are incremented by
one unit symultaneously and interval are constant

Restrictions of the model

Time restriction:

Complexity measures - Performance

1. Amount of communication

2. Time

point of view
of SYSTEM

point of view
of USER

messages exchanged
bits exchanged

 Ideal time:
1 unit of time to transmit 1 message

Communication delays are in general unpredictable !!!

Example - Broadcast

Assumptions:

G is connected
No failures
Bidirectional links
Unique Initiator

(by Flooding)

The idea: If an entity knows something, it sends the
info to its neighbours

INITIATOR
spontaneously

send(I) to N(x)

SLEEPING
receiving(I)

send(I) to N(x)

One entity is INITIATOR, the others are SLEEPING

INITIATOR
spontaneously

send(I) to N(x)

SLEEPING
receiving(I)

send(I) to N(x) - {sender}

not correct !

The idea: If an entity knows something, it sends
it to its neighbours except the sender

S = {initiator, sleeping, done}

INITIATOR
spontaneously

send(I) to N(x)
become(DONE)

SLEEPING
receiving(I)

send(I) to N(x) – {sender}
become(DONE)

Algorithm for node x:

Algorithm for node x:

DONE

INITIATOR
spontaneously

send(I) to N(x)
become(DONE)

SLEEPING
receiving(I)

send(I) to N(x) – {sender}
become(DONE)

If DONE
do-nothing

If INITIATOR
 spontaneously

send(I) to N(x)
become(DONE)

If SLEEPING
 receiving(I)

send(I) to N(x) – {sender}
become(DONE)

Algorithm for node x:

Example

Complexity - Worst Case

Messages: ≤ 2 on each link

≤ 2m
O(m)

m = number of links

More precisely:

Let s be the initiator
|N(s)| + Σ (|N(x)|-1)

 x≠ s

 = 2m - (n-1)
Σ |N(x)| = 2m
x

= Σ |N(x)| - Σ 1
x x≠ s

Time: (ideal time)

Max{D(x,e)} = eccentricity
≤ n-1

O(n)

Complexity - Ideal Time

Correctness

It follows from the fact that
G is connected

Lower Bounds for FLOODING

We want to prove that a lower bound on
the number of messages is Ω(m)

By contradiction:
Let e = (x,y) be a link where no messages
are sent.

y
x

G

y
x

G'
I build

z
G' =(V∪ {z}, E-e ∪ {(x,z),(y,z)}

G=(V,E)

 Execute the same algorithm on G'

In specific topologies flooding can be avoided
and broadcast can be more efficient.

What is the complexity of flooding in a complete graph ?
How can it be done more efficiently ?

What is the complexity of flooding in a tree ?
Can it be done more efficiently ?

Example: The labeled hypercube

Each link between two nodes is labeled by the dimension of the bit
by which the nodes‘ name differ.

010 011

101

000 001

111110

100 1

3
2

1

2

3

3 2

1 1

3

1 1

2

1
2

3

3 2

1
3

2
2 3

10 110100 11

1110 11

2 2

22

 1

3
2 1

2

3

3 2
1 1

3

1 1

2

12

3

3 2
1

3

2
2 3

 1

3
2 1

2

3

3 2
1 1

3

1 1

2

12

3

3 2
1

3

2
2 3

4

4

4

4 4

4

4

4

4

4

44

A hypercube of dimension k has n = 2k nodes

Each node has k links

 m = n k/2 = O(n log n)

Simple Broadcast

1) The initiator sends the message to all its
 neighbours
2) A node receiving the message from link l,
 sends it only to links with label l’ < l

Complexity: n-1 (OPTIMAL)

Because every entity receives the info
only ONCE.

Correctness Every node is touched

Based on the lemma:
For each pair of nodes x and y there exists a path
of decreasing labels

 1

3
2 1

2

3

3 2
1 1

3

1 1

2

12

3

3 2
1

3

2
2 3

 1

3
2 1

2

3

3 2
1 1

3

1 1

2

12

3

3 2
1

3

2
2 3

4

4

4

4 4

4

4

4

4

4

44

0000 0001

0010

1000

0011

1011

01110110

0100 0101

1101

1001

1111

1010

1110

1100

In Special Topologies

General Flooding: 2m - (n-1)

Ad-hoc algorithm in hypercube: (n-1)

Ad-hoc algorithm in complete network: (n-1)

In the tree Flooding is optimal: (n-1)

1) Dense networks = more messages
 (ex. in complete networks m = n (n-1) …)
2) It is optimum in acyclic graphs

Idea: to solve broadcast.

1. Build a spanning tree of G

2. Execute flooding

Spanning Tree construction Problem

Observations:

Spanning Tree Construction

A spanning tree T of a graph G = (V,E) is an
acyclic subgraph of G such that T=(V,E')
and E' ⊂ E.

Assumptions:

bidirectional links
no failures
G connected
single initiator

Protocol SHOUT

Initially: ∀ x, Tree-neighbors(x) = { }

At the end:

∀ x, Tree-neighbors(x) = {links that belong to
 the spanning tree }

x

x

1.
init

Q?
Q?

Q?

Q? = do you want to be
my neighbour
in the spanning tree ?

2. Q? Q?
Q?

Q?

yes

If it is the first time:

no

If I have already answerd
yes to someone else:

INITIATOR
Spontaneusly

root:= true
Tree-neighbours := { }
send(Q) to N(x)
counter:=0
become ACTIVE

States S={INITIATOR, IDLE, ACTIVE, DONE}
Sinit = {INITIATOR, IDLE}
Sterm = {DONE}

IDLE
receiving(Q)

root:= false
parent := sender
Tree-neighbours := {sender}
send(yes) to sender
counter := 1
if counter = |N(x)| then

 become DONE
else

send(Q) to N(x) – {sender}
Become ACTIVE

ACTIVE

receiving(Q)
send(no) to sender

receiving(yes)
 Tree-neighbours:=

Tree-neighbours ∪ sender
counter := counter +1
if counter = |N(x)|

 become DONE

receiving(no)

counter := counter +1
if counter = |N(x)|

 become DONE

Termination and Correctness

Notice: SHOUT = FLOOD +REPLY

If x is in Tree-neighbours of y, y is in Tree-neighbours of x
If x send YES to y, then x is in Tree-neighbour of y
 and is connected to the initiator by a chain of YES
Every x (except the initiator) sends exactly one YES

The spanning graph defined by the Tree-neighbour
relation is connected and contains all the entities

Notice: local termination

Possible situations

Q yes

Q Q

no no

Impossible situations

no yes

yes yes

Complexity - worst case

Total n. of Q: Q Q

≤ 2 on each link

Exactly:
only one Q on the ST links

TOT: ≤ 2m

Q QQ yes

m -(n-1) (n-1)

2(m -(n-1)) + (n-1)
= 2m -n +1

Total n. of NO: no no

≤ 2 on each link

Exactly: 2(m - (n-1))

Total n. of YES:

yes

≤ 1 on each link of the ST
Exactly: (n-1)

TOT: ≤ 2m

as many as Q---Q

2m - n + 1 + 2(m - (n-1)) + n-1
= 2m -n +1+2m -2n +2 +n - 1
= 4m -2n + 2

Messages(SHOUT) = 2 M(FLOOD)

Ω(m) is a lower bound also in this case

Without “NO”

Spanning Tree Construction

INITIATOR
Spontaneusly

root:= true
Tree-neighbours := { }
send(Q) to N(x)
counter:=0
become ACTIVE

States S={INITIATOR, IDLE, ACTIVE, DONE}
Sinit = {INITIATOR, IDLE}
Sterm = {DONE}

IDLE
receiving(Q)

root:= false
parent := sender
Tree-neighbours := {sender}
send(yes) to sender
counter := 1
if counter = |N(x)| then

 become DONE
else

send(Q) to N(x) – {sender}
become ACTIVE

ACTIVE

receiving(Q) (to be interpreted as NO)

counter := counter +1
if counter = |N(x)|

 become DONE

receiving(yes)
 Tree-neighbours:=

Tree-neighbours ∪ {sender}
counter := counter +1
if counter = |N(x)|

 become DONE

With Notification

Spanning Tree Construction

INITIATOR
Spontaneusly

root:= true
Tree-neighbours := { }
send(Q) to N(x)
counter:= 0
ack-counter:= 0
become ACTIVE

States S={INITIATOR, IDLE, ACTIVE, DONE}
Sinit = {INITIATOR, IDLE}
Sterm = {DONE}

IDLE
receiving(Q)

root:= false
parent := sender
Tree-neighbours := {sender}
send(yes) to sender
counter := 1
ack-counter:= 0
if counter = |N(x)| then
 CHECK
else

send(Q) to N(x) – {sender}
become ACTIVE

receiving(Q)
counter := counter +1
if counter = |N(x)| and not root then
 CHECK

receiving(yes)
Tree-neighbours:=

Tree-neighbours ∪ {sender}
counter := counter +1
if counter = |N(x)| and not root then

CHECK

ACTIVE

receiving(Ack)

ack-counter:= ack-counter +1

if counter = |N(x)| /* indicate tree-neighbors is done
if root then

if ack-counter = |Tree-neighbours|

 send(Terminate) to Tree-neighbours

 become DONE

 else if ack-counter = |Tree-neighbours| - 1

 send(Ack) to parent

receiving(Terminate)

send(Terminate) to Children

 become DONE

ACTIVE (cont)

Children:= Tree-neighbours – {parent}

 if Children = emptyset then

send(Ack) to parent

CHECK
If I am a leaf

send(Ack) to parent

CHECK

What happens if there are
multiple initiators ?

Q Q

QQ

Q Q

Q

Q

Q Q

Qyes
yes

An election is needed to have a unique initiator.

NOTE: Election is impossible if the nodes
do not have distinct IDs

Or:
Another protocol has to be devised.

Traversal
 Depth First Search

Assumptions
Single initiator
Bidirectional links
No faults

S = {INITIATOR, SLEEPING, ACTIVE, DONE}

R

R

1) When first visited, remember who sent,
forward the token to one of the unvisited neighbours
wait for its reply

2) When neighbour receives,
if already visited, it will return the token saying it is a

back edge
otherwise, will forward it (sequentially)

 to all its unvisited neighbour before returning it

4) Upon reception of reply, forward the token to another
 unvisited neighbour

3) If there are no more unvisited neighbours, return the token (reply)
 to the node from which it first received the token

One version

Message Complexity:

Complexity

Time Complexity:
(ideal time)

2m = O(m)

2m = O(m)

Ω(m) is also a lower bound

x

y
token

either
return (if IDLE when received the token first)
or
back

Type of messages: token, back, return

Improving Time

visited
vi

si
te

d
vis

ite
d

Improving Time

ok
ok ok

Improving Time

Message Complexity

TOT: 4m

Messages: Token, Return, Visited, Ack (ok)

Each entity (except init): receives 1 Token, sends 1 Return:

Each entity(except initiator):
1 Visited to all neighbours except 1

2(n-1)

 |N(s)| + Σ (|N(x)|-1)
 x≠ s

= 2m - (n-1)

Let s be
the initiator

(same for Ack)

TOT: 4n -2

Time (ideal time)

Complexity

Token and Return are sent sequentially: 2(n-1)

Visited and Ack are done in parallel: 2n

VERSION 1: 2m 2m

VERSION 2: 4m 4n -2

Messages Ideal Time

Summarizing:

DF Traversal

Observations about Traversals

Application:
Access permission problems: Mutual Exclusion

Any Traversal does a Broadcast (not very efficient)
The reverse is not true.

Termination ...

Computations with Multiple initiator: WAKE-UP

Definition

General FLOOD algorithm: O(m)

2m -n + k*

n. of initiators

WHY ?

FLOOD solves the problem.

More precisely:

1 init = broadcast = 2m -n+1 All init = 2m

In special topologies ?

Computations with Multiple initiator: WAKE-UP

TREE

n + k* -2

COMPLETE GRAPH

Ω(n2)

HYPERCUBE

Ω(n log n)

Flood is optimal

