Algorithm Engineering -- EXERCISES
 15 January 2024-1 hour

Name and Surname:
\#matricola:

Question \#1 [score 4+3+3] Given the set of strings

$$
S=\{B A A, B A B, B A C A A, B A C A B, B A C A D, B A C B, C A, C B\},
$$

index S via a two-level scheme with block size of 2 strings each and a Patricia trie in internal memory.

Then show how to perform:

- A lexicographic search for the string BB
- A prefix search for the string BAC.

Question \#2 [score 5]. Given the sequence of integers (2, 5, 7), compress it via Interpolative Coding.

Question \#3 [rank 5]. Given a sequence of strings (BACAB, ABB, BBC, DD, DF), sort them via multikey quicksort by assuming that the pivot is taken as the first string of each (sub-)sequence to be sorted.

Question \#4 [score 6]. Given the text $T=A B R A B R A$, apply the pipeline BWT+MTF+RLEO (with Wheeler's code) and finally apply Arithmetic coding on the first 3 numbers of the output of this pipeline.

Question \#5 [score 4] Assume you are given 5 strings (aa, ab, bb, bc, cc) and you wish to construct a minimal ordered perfect hash function (MOPHF).
Assume that rank(c) is the ordered position of ' c ' in the alphabet, counting letter a from 1.
We let the two random functions required by the design of MOPHF as $h 1\left(c^{\prime} c^{\prime \prime}\right)=2 * \operatorname{rank}\left(c^{\prime}\right)+\operatorname{rank}\left(c^{\prime \prime}\right) \bmod 11$ and $h 2\left(c^{\prime} c^{\prime \prime}\right)=3 * \operatorname{rank}\left(c^{\prime}\right) * \operatorname{rank}\left(c^{\prime \prime}\right)$ $\bmod 11$. Construct the final $h(t)$.

Algorithm Engineering -- THEORY

 15 January 2024-45 minutes

 15 January 2024-45 minutes}

Name and Surname:

 \#matricola:
Question \#1 [score 5+3]

- Prove that the expected length of an ordered sequence produced by the algorithm Snow Plow is 2 M .
- What is that expected length if the probability for an item to go in the "unsorted bucket" is $1 / 4$ instead of $1 / 2$?

Question \#2 [score 5+4+3].

- Show how to COUNT in a text T[1,n] all occurrences of a pattern P[1,p], by assuming that T has been indexed via a Suffix Array data structure, built off-line and residing in memory.
- Show and prove the time complexity of the above COUNT operation.
- What is the I/O-cost of performing the RETRIEVAL of the positions of all pattern occurrences in the case that the Suffix Array is stored on disk?

Question \#3 [rank 5+5]. Given two sorted lists of integers, say L1 and L2 of lengths n and m respectively:

- Describe the "doubling algorithm" to compute their intersection and state its time complexity.
- Prove the time complexity of the previous point.

