Algorithm Engineering - FINAL TERM
 12 December 2023

Name and Surname:
\#matricola:

Question \#1 [score 4] Given the set of strings $S=\{a b a b, a b c a, ~ a b m a, ~ b a a, ~ b b b\}, ~ b u i l d$ a Patricia trie and show the steps for the lexicographic search of the strings P1 = aaa, and $\mathrm{P} 2=\mathrm{abb}$.

Question \#2 [score 4+4]. Given the sequence of integers $S=(2,3,4,5,6,10,11)$, compress it via:

- (2,6)-dense code [showing the first 12 codewords of the integers from 0 to 11]
- Interpolative Coding [compressing the integers 5, 3, 10]

Question \#3 [rank 4]. Given the tree of root labeled "a", show its succinct encoding:
$T=\{a \rightarrow b($ right child $) ; b \rightarrow c(l e f t ~ c h i l d) ; b \rightarrow e($ right child $) ; c \rightarrow d$ (right child) $\}$
Question \#4 [score 4]. Decompress the 6th integer encoded via Elias-Fano in the two arrays:

L = 0111000101001111001100 and
H= 110110100101010110001000000
(hint: derive first the number of keys, and then the length of the low and high part)

Question \#5 [scores 4] Given the text T = bababac, apply the pipeline BWT+MTF+RLEO (with Wheeler's code) and finally apply Arithmetic coding on the first 3 numbers of the output of this pipeline.

Question \#6 [score 4+4] Two theoretical questions:

- Prove the upper-bound in bits of Arithmetic coding, as a function of the Entropy and the input text length.
- Show and prove the space bound in bits of the succinct data structure built to support a Rank operation in constant time over a binary array $\mathrm{B}[1, \mathrm{n}]$.

