
THE MAGIC
OF

ALGORITHMS
Lectures on some algorithm (engineering) pearls

Paolo Ferragina

@2009-2020 Università di Pisa

ii

These notes should be an advise for programmers and software engineers: no matter how much
smart you are, the so called “5-minutes thinking” is not enough to get a reasonable solution for your
real problem, unless it is a toy one! Real problems have reached such a large size, machines got
so complicated, and algorithmic tools became so sophisticated that you cannot improvise to be an
algorithm designer: you should be trained to be one of them!

These lectures provide a witness for this issue by introducing challenging problems together with
elegant and efficient algorithmic techniques to solve them. In selecting their topics I was driven by
a twofold goal: from the one hand, provide the reader with an algorithm engineering toolbox that
will help him/her in attacking programming problems over massive datasets; and, from the other
hand, I wished to collect the stuff that I would have liked to see when I was a master/phd student!

The style and content of these lectures is the result of many hours of highlighting and, sometime
hard and fatiguing, discussions with many fellow researchers and students. Actually some of these
lectures composed the courses in Information Retrieval and/or Advanced Algorithms that I taught
at the University of Pisa and in various International PhD Schools, since year 2004. In particular,
a preliminary draft of these notes were prepared by the students of the “Algorithm Engineering”
course in the Master Degree of Computer Science and Networking in Sept-Dec 2009, done in col-
laboration between the University of Pisa and Scuola Superiore S. Anna. Some other notes were
prepared by the Phd students attending the course on “Advanced Algorithms for Massive DataSets”
that I taught at the BISS International School on Computer Science and Engineering, held in March
2010 (Bertinoro, Italy). I used these drafts as a seed for some of the following chapters.

Finally, many changes have been executed onto these notes in the following years, thanks to the
corrections and suggestions of the many students that attended the Algorithm Engineering course; a
special thank goes to Gemma Martini for significantly contributing to Chapter 15, and to Riccardo
Manetti who has re-drawn in tikz all figures thus making them much more professional and clear.

My ultimate hope is that reading these notes you’ll be pervaded by the same pleasure and excite-
ment that filled my mood when I met these algorithmic solutions for the first time. If this will be
the case, please read more about Algorithms to find inspiration for your work. It is still the time that
programming is an Art, but you need the good tools to make itself express at the highest beauty.

P.F.

Contents

1 Prologo 1-1

2 A warm-up! 2-1
2.1 A cubic-time algorithm . 2-2
2.2 A quadratic-time algorithm . 2-3
2.3 A linear-time algorithm . 2-4
2.4 Another linear-time algorithm . 2-6
2.5 Few interesting variants∞ . 2-8

3 Random Sampling 3-1
3.1 Disk model and known sequence length . 3-1
3.2 Streaming model and known sequence length 3-5
3.3 Streaming model and unknown sequence length 3-6

4 List Ranking 4-1
4.1 The pointer-jumping technique . 4-2
4.2 Parallel algorithm simulation in a 2-level memory 4-3
4.3 A Divide&Conquer approach . 4-6

5 Sorting Atomic Items 5-1
5.1 The merge-based sorting paradigm . 5-2
5.2 Lower bounds . 5-7
5.3 The distribution-based sorting paradigm . 5-10
5.4 Sorting with multi-disks∞ . 5-20

6 Set Intersection 6-1
6.1 Merge-based approach . 6-2
6.2 Mutual Partitioning . 6-4
6.3 Doubling search . 6-6
6.4 Two-level storage approach . 6-7

7 Sorting Strings 7-1
7.1 A lower bound . 7-2
7.2 RadixSort . 7-3
7.3 Multi-key Quicksort . 7-8
7.4 Some observations on the I/O-model∞ . 7-11

8 The Dictionary Problem 8-1
8.1 Direct-address tables . 8-2
8.2 Hash Tables . 8-3

iii

iv CONTENTS

8.3 Universal hashing . 8-6
8.4 Perfect hashing, minimal, ordered! . 8-12
8.5 A simple perfect hash table . 8-16
8.6 Cuckoo hashing . 8-18
8.7 Bloom filters . 8-23

9 Searching Strings by Prefix 9-1
9.1 Array of string pointers . 9-1
9.2 Interpolation search . 9-5
9.3 Locality-preserving front coding . 9-8
9.4 Compacted Trie . 9-10
9.5 Patricia Trie . 9-12
9.6 Managing Huge Dictionaries∞ . 9-15

10 Searching Strings by Substring 10-1
10.1 Notation and terminology . 10-1
10.2 The Suffix Array . 10-2
10.3 The Suffix Tree . 10-16
10.4 Some interesting problems . 10-23

11 Integer Coding 11-1
11.1 Elias codes: γ and δ . 11-3
11.2 Rice code . 11-4
11.3 PForDelta code . 11-5
11.4 Variable-byte code and (s, c)-dense codes . 11-6
11.5 Interpolative code . 11-8
11.6 Elias-Fano code . 11-10
11.7 Concluding remarks . 11-13

12 Statistical Coding 12-1
12.1 Huffman coding . 12-1
12.2 Arithmetic Coding . 12-10
12.3 Prediction by Partial Matching∞ . 12-22

13 Dictionary-based compressors 13-1
13.1 LZ77 . 13-1
13.2 LZ78 . 13-4
13.3 LZW . 13-6
13.4 On the optimality of compressors∞ . 13-7

14 The Burrows-Wheeler Transform 14-1
14.1 The Burrows-Wheeler Transform . 14-2
14.2 Two other simple transforms . 14-6
14.3 The bzip compressor . 14-11
14.4 On compression boosting∞ . 14-15
14.5 On compressed indexing∞ . 14-16

15 Compressed Data Structures 15-1
15.1 Compressed representation of arrays . 15-1
15.2 Succint representation of trees . 15-9
15.3 Succint representation of graphs . 15-16

1
Prologo

“This is a rocket science but you
don’t need to be a rocket
scientist to use it”
The Economist, September 2007

The main actor of this book is the Algorithm so, in order to dig into the beauty and challenges
that pertain with its ideation and design, we need to start from one of its many possible defini-
tions. The Oxford English Dictionary reports that an algorithm is, informally, “a process, or set of
rules, usually one expressed in algebraic notation, now used esp. in computing, machine transla-
tion and linguistics”. The modern meaning for Algorithm is quite similar to that of recipe, method,
procedure, routine except that the word Algorithm in Computer Science connotes something more
precisely described. In fact many authoritative researchers have tried to pin down the term over the
last 200 years [3] by proposing definitions which became more complicated and detailed nonethe-
less, hopefully in the minds of their proponents, more precise and elegant. As algorithm designers
and engineers we will follow the definition provided by Donald Knuth at the end of the 60s [7, pag
4]: an Algorithm is a finite, definite, effective procedure, with some output. Although these five
features may be intuitively clear and are widely accepted as requirements for a sequence-of-steps to
be an Algorithm, they are so dense of significance that we need to look into them with some more
detail, even because this investigation will surprisingly lead us to the scenario and challenges posed
nowadays by algorithm design and engineering, and to the motivation underling these lectures.

Finite: “An algorithm must always terminate after a finite number of steps ... a very finite
number, a reasonable number.” Clearly, the term “reasonable” is related to the efficiency
of the algorithm: Knuth [7, pag. 7] states that “In practice, we not only want algorithms,
we want good algorithms”. The “goodness” of an algorithm is related to the use that
the algorithm makes of some precious computational resources such as: time, space,
communication, I/Os, energy, or just simplicity and elegance which both impact onto
the coding, debugging and maintenance costs!

Definite: “Each step of an algorithm must be precisely defined; the actions to be carried out
must be rigorously and unambiguously specified for each case”. Knuth made an effort
in this direction by detailing what he called the “machine language” for his “mythical
MIX...the world’s first polyunsaturated computer”. Today we know of many other pro-
gramming languages such as C/C++, Java, Python, etc. etc. All of them specify a
set of instructions that the programmer may use to describe the procedure underlying
his/her algorithm in an unambiguous way: “unambiguity” here is granted by the formal
semantics that researchers have attached to each of these instructions. This eventually
means that anyone reading the algorithm’s description will interpret it in a precise way:
nothing will be left to personal mood!

c© Paolo Ferragina, 2009-2020 1-1

1-2 Paolo Ferragina

Effective: “... all of the operations to be performed in the algorithm must be sufficiently basic
that they can in principle be done exactly and in a finite length of time by a man using
paper and pencil”. Therefore the notion of “step” invoked in the previous item implies
that one has to dig into a complete and deep understanding of the problem to be solved,
and then into logical well-definite structuring of a step-by-step solution.

Procedure: “... the sequence of specific steps arranged in a logical order”.
Input: “... quantities which are given to it initially before the algorithm begins. These inputs

are taken from specified sets of objects”.
Output: “... quantities which have a specified relation to the inputs”.

In this booklet we will not use a formal approach to algorithm description, because we wish to
concentrate on the theoretically elegant and practically efficient ideas which underlie the algorithmic
solution of some interesting problems, without being lost in the maze of programming technicalities.
So in every lecture we will take an interesting problem coming out from a real/useful application
and then propose deeper and deeper solutions of increasing sophistication and improved efficiency,
taking care that this will not necessarily correspond to increasing the complexity of algorithm’s
description. Actually, problems were selected to admit surprisingly elegant solutions that can be
described in few lines of code! So we will opt for the current practice of algorithm design and
describe our algorithms either colloquially or by using pseudo-code that mimics the most famous
C and Java languages. In any case we will not renounce to be as much rigorous as it needs an
algorithm description to match the five features above.

Elegance will not be the only feature of our algorithm design, of course, we will also aim for
efficiency which commonly relates to the time/space complexity of the algorithm. Traditionally time
complexity has been evaluated as a function of the input size n by counting the (maximum) number
of steps, say T (n), an algorithm takes to complete its computation over an input of n items. Since
the maximum is taken over all inputs of that size, the time complexity is named worst case because
it concerns with the input that induces the worst behavior in time for the algorithm. Of course, the
larger is n the larger is T (n), which is therefore non decreasing and positive. In a similar way we
can define the (worst-case) space complexity of an algorithm, as the maximum number of memory
cells it uses for its computation over an input of size n. This approach to the design and analysis
of algorithms assumes a very simple model of computation, known as model of Von Neumann (aka
Random Access Machine, RAM model). This model consists of a CPU and a memory of infinite size
and constant-time access to each one of its cells. Here we argue that every step takes a fixed amount
of time on a PC, which is the same for any operation: being it arithmetic, logical, or just a memory
access (read/write). Here one postulates that it is enough to count the number of steps executed
by the algorithm in order to have an “accurate” estimate of its execution time on a real PC. Two
algorithms can then be compared according to the asymptotic behavior of their time-complexity
functions as n −→ +∞, the faster is growing the time complexity over inputs of larger and larger
size, the worse is its corresponding algorithm. The robustness of this approach has been debated
for a long time but, eventually, the RAM model dominated the algorithmic scene for decades (and
is still dominating it!) because of its simplicity, which impacts on algorithm design and evaluation,
and its ability to estimate the algorithm performance “quite accurately” on (old) PCs. Therefore it
is not surprising that most introductory books on Algorithms take the RAM model as a reference.

But in the last ten years things have changed significantly, thus highlighting the need for a shift
in algorithm design and analysis! Two main changes occurred: the architecture of modern PCs
became more and more sophisticated (not just one CPU and one monolithic memory!), and input
data have exploded in size (“n −→ +∞” does not live only in the theory world!) because they
are abundantly generated by many sources: such as DNA sequencing, bank transactions, mobile
communications, Web navigation and searches, auctions, etc. etc.. The first change turned the RAM
model into an unsatisfactory abstraction of modern PCs; whereas the second change made the design

Prologo 1-3

CPU
registers

L1 L2

Cache

Size: few Mbs
Access Time: nanosecs (ns)
Block size: few bytes

RAM

Size: few Gbs
Access Time: tens of nanosecs
Block size: tens of bytes

Disk1

DiskD

Size: few Tbs
Access Time: milliseconds
Block size: Kbytes

The cloud

Size: Pbs
Access Time: secs
Block size: Packets

FIGURE 1.1: An example of memory hierarchy of a modern PC.

of asymptotically good algorithms ubiquitous and fruitful not only for dome-headed mathematicians
but also for a much larger audience because of their impact on business [2], society [1] and science
in general [4]. The net consequence was a revamped scientific interest in algorithmics and the
spreading of the word “Algorithm” to even colloquial speeches!

In order to make algorithms effective in this new scenario, researchers needed new models of
computation able to abstract in a better way the features of modern computers and applications
and, in turn, to derive more accurate estimates of algorithm performance from their complexity
analysis. Nowadays a modern PC consists of one or more CPUs (multi-core? GPUs, TPUs?) and
a very complex hierarchy of memory levels, all with their own technological specialties (Figure
1.1): L1 and L2 caches, internal memory, one or more mechanical or SSDisks, and possibly other
(hierarchical-)memories of multiple hosts distributed over a (possibly geographic) network, the so
called “Cloud”. Each of these memory levels has its own cost, capacity, latency, bandwidth and
access method. The closer a memory level is to the CPU, the smaller, the faster and the more
expensive it is. Currently nanoseconds suffice to access the caches, whereas milliseconds are yet
needed to fetch data from disks (aka I/O). This is the so called I/O-bottleneck which amounts to the
astonishing factor of 105 − 106, nicely illustrated by Tomas H. Cormen with his quote:

“The difference in speed between modern CPU and (mechanical) disk technologies is analogous to
the difference in speed in sharpening a pencil using a sharpener on one’s desk or by taking an

airplane to the other side of the world and using a sharpener on someone else’s desk”.

Engineering research is trying nowadays to improve the input/output subsystem to reduce the
impact of the I/O-bottleneck onto the efficiency of applications managing large datasets; but, on the
other hand, we are aware that the improvements achievable by means of a good algorithm design
abundantly surpass the best expected technology advancements. Let us see the why with a simple
example!1

Assume to take three algorithms having increasing I/O-complexity: C1(n) = n, C2(n) = n2 and
C3(n) = 2n. Here Ci(n) denotes the number of disk accesses executed by the ith algorithm to process
n input data (stored e.g. in n/B disk pages). Notice that the first two algorithms execute a polynomial
number of I/Os (in the input size), whereas the last one executes an exponential number of I/Os.
Moreover we note that the above complexities have a very simple (and thus unnatural) mathematical
form because we want to simplify the calculations without impairing our final conclusions. Let us
now ask for how many data each of these algorithms is able to process in a fixed time-interval of size
t, given that each I/O takes c time. The answer is obtained by solving the equation Ci(n)×c = t with
respect to n: so we get t/c data are processed by the first algorithm in t time,

√
t/c data are processed

1This is paraphrased from [8], now we talk about I/Os instead of steps.

1-4 Paolo Ferragina

by the second algorithm, and only log2(t/c) data are processed by the third algorithm. These values
are already impressive by themselves, and provide a robust understanding of why polynomial-time
algorithms are called efficient, whereas exponential-time algorithms are called inefficient: a large
change in the length t of the time-interval induces just a tiny change in the amount of data that
exponential-time algorithms can process. Of course, this distinction admits many exceptions when
the problem instances have limited size or have distributions which favor efficient executions (think
e.g. to the simplex algorithm). But, on the other hand, these examples are quite rare, and the
much more stringent bounds on execution time satisfied by polynomial-time algorithms make them
considered provably efficient and the preferred way to solve problems. Algorithmically speaking,
most exponential-time algorithms are merely implementations of the approach based on exhaustive
search, whereas polynomial-time algorithms are generally made possible only through the gain of
some deeper insight into the structure of a problem. So polynomial-time algorithms are the right
choice from many points of view.

Let us now assume to run the above algorithms with a better I/O-subsystem, say one that is k
times faster, and ask: How many data can be managed by this new PC? To address this question we
solve the previous equations with the time-interval set to the length k× t, thus implicitly assuming to
run the algorithms over the old PC but providing itself with k times more time. We get that the first
algorithm perfectly scales by a factor k, the second algorithm scales by a factor

√
k, whereas the

last algorithm scales only of an additional term log2 k. Noticeably the improvement induced by a k-
times more powerful PC for an exponential-time algorithm is totally negligible even in the presence
of impressive (and thus unnatural) technology advancements! Super-linear algorithms, like the
second one, are positively affected by technology advancements but their performance improvement
decreases as the degree of the polynomial-time complexity grows: more precisely, if C(n) = nα then
a k-times more powerful PC induces a speed-up of a factor α

√
k. Overall, it is not hazardous to state

that the impact of a good algorithm is far beyond any optimistic forecasting for the performance of
future (mechanical or SSD) disks.2

Given this appetizer about the “Power of Algorithms”, let us now turn back to the problem of
analyzing the performance of algorithms in modern PCs by considering the following simple ex-
ample: Compute the sum of the integers stored in an array A[1, n]. The simplest idea is to scan A
and accumulate in a temporary variable the sum of the scanned integers. This algorithm executes n
sums, accesses each integer in A once, and thus takes n steps. Let us now generalize this approach
by considering a family of algorithms, denoted by As,b, which differentiate themselves according
to the pattern of accesses to A’s elements, as driven by the parameters s and b. In particular As,b

looks at array A as logically divided into blocks of b elements each, say A j = A[j ∗ b + 1, (j + 1) ∗ b]
for j = 0, 1, 2, . . . , n/b − 1.3 Then it sums all items in one block before moving to the next block
that is s blocks apart on the right. Array A is considered cyclic so that, when the next block lies
out of A, the algorithm wraps around it starting again from its beginning. Clearly not all values of
s allow to take into account all of A’s blocks (and thus sum all of A’s integers). Nevertheless we
know that if s is co-prime with n/b then [s × i mod (n/b)] generates a permutation of the integers
{0, 1, . . . , n/b − 1}, and thus As,b touches all blocks in A and hence sums all of its integers. But the
specialty of this parametrization is that by varying s and b we can sum according to different patterns
of memory accesses: from the sequential scan indicated above (setting s = b = 1), to a block-wise
access (set a large b) and/or a random-wise access (set a large s). Of course, all algorithms As,b

are equivalent from a computational point of view, since they read exactly n integers and thus take
n steps; but from a practical point of view, they have different time performance which becomes

2See [11] for an extended treatment of this subject.
3For the sake of presentation we assume that n and b are powers of two, so b divides n.

Prologo 1-5

more and more significant as the array size n grows. The reason is that, for a growing n, data will
be spread over more and more memory levels, each one with its own capacity, latency, bandwidth
and access method. So the “equivalence in efficiency” derived by adopting the RAM model, and
counting the number-of-steps executed byAs,b, is not an accurate estimate of the real time required
by that algorithms to sum A’s elements.

We need a different model that grasps the essence of real computers and is simple enough to
not jeopardize algorithm design and analysis. In a previous example we already argued that the
number of I/Os is a good estimator for the time complexity of an algorithm, given the large gap
existing between disk- and internal-memory accesses. This is indeed what is captured by the so
called 2-level memory model (aka. disk-model, or external-memory model [11]) which abstracts
the computer as composed by only two memory levels: the internal memory of size M, and the
(unbounded) disk memory which operates by reading/writing data via blocks of size B (called disk
pages). Sometimes the model consists of D disks, each of unbounded size, so that each I/O reads or
writes a total of D × B items coming from D pages, each one residing on a different disk. For the
sake of clarity we remark that the two-level view must not suggest to the reader that this model is
restricted to abstracts disk-based computations; in fact, we are actually free to choose any two levels
of the memory hierarchy, with their M and B parameters properly set. The algorithm performance
is evaluated in this model by counting: (a) the number of accesses to disk pages (hereafter I/Os),
(b) the internal running time (CPU time), and (c) the number of disk pages used by the algorithm
as its working space. This suggests two golden rules for the design of “good” algorithms operating
on large datasets: they must exploit spatial locality and temporal locality. The former imposes a
data organization onto the disk(s) that makes each accessed disk-page as much useful as possible;
the latter imposes to execute as much useful work as possible onto data fetched in internal memory,
before they are written back to disk.

In the light of this new model, let us re-analyze the time complexity of algorithmsAs,b by taking
into account I/Os, given that the CPU time is still n and the space occupancy is n/B pages. We start
from the simplest settings for s and b in order to gain some intuitions about the general formulas.
The case s = 1 is obvious, algorithms A1,b scan A rightward by taking n/B I/Os, independently
of the value of b. As s and b change the situation complicates, but by not much. Fix s = 2 and
pick some b < B that, for simplicity, is assumed to divide the block-size B. Every block of size
B consists of B/b smaller (logical) blocks of size b, and the algorithm A2,b examines only half of
them because of the jump s = 2. This actually means that each B-sized page is half utilized in
the summing process, thus inducing a total of 2n/B I/Os. It is then not difficult to generalize this
formula by writing a cost of min{s, B/b} × (n/B) I/Os, which correctly gives n/b for the case of
large jumps over array A. This formula provides a better approximation of the real time complexity
of the algorithm, although it does not capture all features of the disk. In fact, it considers all I/Os
as equal, independently of their distribution. This is clearly unprecise because on real disks the
sequential I/Os are faster than the random I/Os.4 Referring to the previous example, the algorithms
As,B have still I/O-complexity n/B, independently of s, although their behavior is rather different
if executed on a (mechanical) disk because of the disk seeks induced by larger and larger s. As a
result, we can conclude that even the 2-level memory model is an approximation of the behavior of
algorithms on real computers, although it results sufficiently good that it has been widely adopted
in the literature to evaluate their performance on massive datasets. So that, in order to be as much
precise as possible, we will evaluate in these notes our algorithms by specifying not only the number

4Conversely, this difference will be almost negligible in an (electronic) memory, such as the DRAM or the modern
Solid-State disks, where the distribution of the memory accesses does not significantly impact onto the throughput of the
memory/SSD.

1-6 Paolo Ferragina

of executed I/Os but also characterizing their distribution (random vs contiguous) over the disk.

At this point one could object that given the impressive technological advancements of the last
years, the internal-memory size M is so large that most of the working set of an algorithm (roughly
speaking, the set of pages it will reference in the near future) can be fit into it, thus reducing sig-
nificantly the case of an I/O-fault. We will argue that an even small portion of data resident to disk
makes the algorithm slower than expected, and so, data organization cannot be neglected even in
these extremely favorable situations.

Let us see why, by means of a “back of the envelope” calculation! Assume that the input size
n = (1 + ε)M is larger than the internal-memory size of a factor ε > 0. The question is how
much ε impacts onto the average cost of an algorithm step, given that it may access a datum located
either in internal memory or on disk. To simplify our analysis, without renouncing to a meaningful
conclusion, we assume that p(ε) is the probability of an I/O-fault. As an example, if p(ε) = 1 then
the algorithm always accesses its data on disk (i.e. one of the εM items); if p(ε) = ε

1+ε
then the

algorithm has a fully-random behavior in accessing its input data (since, from above, we can rewrite
ε

1+ε
= εM

(1+ε)M = εM
n); finally, if p(ε) = 0 then the algorithm has a working set smaller than the

internal memory size, and thus it does not execute any I/Os. Overall p(ε) measures the un-locality
of the memory references of the analyzed algorithm.

To complete the notation, let us indicate with c the time needed for one I/O wrt one internal-
memory access— we have c ≈ 105 − 106, see above— and we set a to be the fraction of steps that
induce a memory access in the running algorithm (this is typically 30% − 40%, according to [6]).
Now we are ready to estimate the average cost of the step for an algorithm working in this scenario:

1 × P(computation step) + tm × P(memory-access step),

where tm is the average cost of a memory access. To compute tm we have to distinguish two cases:
an in-memory access (occurring with probability 1 − p(ε)) or a disk access (occurring with proba-
bility p(ε)). So we have tm = 1 × (1 − p(ε)) + c × p(ε). Observing that P(memory-access step) +

P(computation step) = 1, and plugging the fraction a of memory accesses intoP(memory-access step),
we derive the final formula:

(1 − a) × 1 + a × [1 × (1 − p(ε)) + c × p(ε)] = 1 + a × (c − 1) × p(ε) ≥ 3 × 104 × p(ε).

This formula clearly shows that, even for algorithms exploiting locality of references (i.e. a small
p(ε)), the slowdown may be significant and actually it turns out to be four order of magnitudes
larger than what might be expected (i.e. p(ε)). Just as an example, take an algorithm that exploits
locality of references in its memory accesses, say 1 out of 1000 memory accesses is on disk (i.e.
p(ε) = 0.001). Then, its performance on a massive dataset that is stored on disk would be slowed
down by a factor > 30 with respect to a computation executed completely in internal memory.

It goes without saying that this is just the tip of the iceberg, because the larger is the amount
of data to be processed by an algorithm, the higher is the number of memory levels involved in
the storage of these data and, hence, the more variegate are the types of “memory faults” (say
cache-faults, memory-faults, etc.) to cope with for achieving efficiency. The overall message is that
neglecting questions pertaining to the cost of memory references in a hierarchical-memory system
may prevent the use of an algorithm on large input data.

Motivated by these premises, these notes will provide few examples of challenging problems
which admit elegant algorithmic solutions whose efficiency is crucial to manage the large datasets
that occur in many real-world applications. Algorithm design will be accompanied by several com-
ments on the difficulties that underlie the engineering of those algorithms: how to turn a “theoreti-
cally efficient” algorithm into a “practically efficient” code. Too many times, as a theoretician, I got

Prologo 1-7

the observation that “your algorithm is far from being amenable to an efficient implementation!”.
By following the recent surge of investigations in Algorithm Engineering [10] (to be not confused
with the “practice of Algorithms”), we will also dig into the deep computational features of some
algorithms by resorting few other successful models of computations— mainly the streaming model
[9] and the cache-oblivious model [5]. These models will allow us to capture and highlight some
interesting issues of the underlying computation: such as disk passes (streaming model), and uni-
versal scalability (cache-oblivious model). We will try our best to describe all these issues in their
simplest terms but, nonetheless to say, we will be unsuccessful in turning this “rocket science for
non-boffins” into a “science for dummies” [2]. In fact lots of many more things have to fall into place
for algorithms to work: top-IT companies (like Google, Yahoo, Microsoft, IBM, Oracle, Facebook,
Twitter, etc.) are perfectly aware of the difficulty to find people with the right skills for developing
and refining “good” algorithms. This booklet will scratch just the surface of Algorithm Design and
Engineering, with the main goal of spurring inspiration into your daily job as software designer or
engineer.

References

[1] Person of the Year. Time Magazine, 168(27–28), December 2006.

[2] Business by numbers. The Economist, September 2007.

[3] Wikipedia’s entry: “Algorithm characterizations”, 2009. At

http://en.wikipedia.org/wiki/Algorithm characterizations

[4] Declan Butler. 2020 computing: Everything, everywhere, volume 440, chapter 3, pages

402–405. Nature Publishing Group, March 2006.

[5] Rolf Fagerberg. Cache-oblivious model. In Ming-Yang Kao, editor, Encyclopedia of
Algorithms. Springer, 2008.

[6] John L. Hennessy and David A. Patterson. Computer Architecture, Fourth Edition: A
Quantitative Approach. Morgan Kaufmann, September 2006.

[7] Donald Knuth. The Art of Computer Programming: Fundamental Algorithms, volume 1.

Addison-Wesley, 1973.

[8] Fabrizio Luccio. La struttura degli algoritmi. Boringhieri, 1982.

[9] S. Muthukrishnan. Data streams: Algorithms and applications. Foundations and
Trends in Theoretical Computer Science, 1(2), 2005.

[10] Peter Sanders. Algorithm engineering - an attempt at a definition. In Susanne Al-

bers, Helmut Alt, and Stefan Näher, editors, Efficient Algorithms, Essays Dedicated to
Kurt Mehlhorn on the Occasion of His 60th Birthday, volume 5760 of Lecture Notes in
Computer Science, pages 321–340. Springer, 2009.

[11] Jeffrey S. Vitter. External memory algorithms and data structures. ACM Computing
Surveys, 33(2):209–271, 2001.

2
A warm-up!

“Everything should be made as
simple as possible, but not
simpler.”
Albert Einstein

2.1 A cubic-time algorithm . 2-2
2.2 A quadratic-time algorithm . 2-3
2.3 A linear-time algorithm . 2-4
2.4 Another linear-time algorithm . 2-6
2.5 Few interesting variants∞ . 2-8

Let us consider the following problem, surprisingly simple in its statement but not that much for
what concerns the design of its optimal solution.

Problem. We are given the performance of a stock at NYSE expressed as a sequence of day-
by-day differences of its quotations. We wish to determine the best buy-&-sell strategy for
that stock, namely the pair of days 〈b, s〉 that would have maximized our revenues if we would
have bought the stock at (the beginning of) day b and sold it at (the end of) day s.

The specialty of this problem is that it has a simple formulation, which finds many other useful
variations and applications. We will comment on them at the end of this lecture, now we content
ourselves by mentioning that we are interested in this problem because it admits a sequence of
algorithmic solutions of increasing sophistication and elegance, which imply a significant reduction
in their time complexity. The ultimate result will be a linear-time algorithm, i.e. linear in the
number n of stock quotations. This algorithm is optimal in terms of the number of executed steps,
because all day-by-day differences must be looked at in order to determine if they must be included
or not in the optimal solution, actually, one single difference could provide a one-day period worth
of investment! Surprisingly, the optimal algorithm will exhibit the simplest pattern of memory
accesses— it will execute a single scan of the available stock quotations— and thus it will offer
a streaming behavior, particularly useful in a scenario in which the granularity of the buy-&-sell
actions is not restricted to full-days and we must possibly compute the optimal time-window on-the-
fly as quotations oscillate. More than this, as we commented in the previous lecture, this algorithmic
scheme is optimal in terms of I/Os and uniformly over all levels of the memory hierarchy. In fact,
because of its streaming behavior, it will execute n/B I/Os independently of the disk-page size B,
which may be thus unknown to the underlying algorithm. This is the typical feature of the so called
cache-oblivious algorithms [4], which we will therefore introduce at the right point of this lecture.

This lecture will be the prototype of what you will find in the next pages: a simple problem
to state, with few elegant solutions and challenging techniques to teach and learn, together with
several intriguing extensions that can be posed as exercises to the students or as puzzles to tempt
your mathematical skills!

Let us now dig into the technicalities, and consider the following example. Take the case of 11
days of exchange for a given stock, and assume that D[1, 11] = [+4,−6,+3,+1,+3,−2,+3,−4,+1,

c© Paolo Ferragina, 2009-2020 2-1

2-2 Paolo Ferragina

−9,+6] denotes the day-by-day differences of quotations of that stock. It is not difficult to convince
yourself that the gain of buying the stock at day x and selling it at day y is equal to the sum of the
values in the sub-array D[x, y], namely the sum of all its fluctuations. As an example, take x = 1
and y = 2, the gain is +4 − 6 = −2, and indeed we would loose 2 dollars in buying the morning of
the first day and selling the stock at the end of the second day. Notice that the starting value of the
stock is not crucial for determining the best time-interval of our investment, what is important are
its variations. In other words, the problem stated above boils down to determine the sub-array of
D[1, n] which maximizes the sum of its elements. In the literature this problem is indeed known as
the maximum sub-array sum problem.

Problem Abstraction. Given an array D[1, n] of positive and negative numbers, we want to
find the sub-array D[b, s] which maximizes the sum of its elements.

It is clear that if all numbers are positive, then the optimal sub-array is the entire D: this is the
case of an always increasing stock price, and indeed there is no reason to sell it before the last day!
Conversely, if all numbers are negative, then we can pick the one-element window containing the
largest (negative) value: if you are imposed to buy this poor stock, then do it in the day it looses the
smallest value and sell it soon! In all other cases, it is not at all clear where the optimum sub-array is
located. In the example, the optimum spans D[3, 7] = [+3,+1,+3,−2,+3] and has gain +8 dollars.
This shows that the optimum neither includes the best exploit of the stock (i.e. +6) nor it consists of
positive values only. The structure of the optimum sub-array is not simple but, surprisingly enough,
not very complicated as we will show in Section 2.3.

2.1 A cubic-time algorithm

We start by considering an inefficient solution which translates in pseudo-code the formulation of the
problem given above. This algorithm is detailed in Figure 2.1, where the pair of variables <bo, so>

identifies the current sub-array of maximum sum, whose value is stored in MaxSum. Initially MaxSum
is set to the dummy value −∞, so that it is immediately changed whenever the algorithm executes
Step 8 for the first time. The core of the algorithm examines all possible sub-arrays D[b, s] (Steps
2-3) computing for each of them the sum of their elements (Steps 4-7). If a sum larger than the
current maximal value is found (Steps 8-9), then TmpSum and its corresponding sub-array are stored
in MaxSum and <bo, so>, respectively.

Algorithm 2.1 The cubic-time algorithm
1: MaxS um = −∞
2: for (b = 1; b ≤ n; b++) do
3: for (s = b; s ≤ n; s++) do
4: TmpS um = 0
5: for (i = b; i ≤ s; i++) do
6: TmpS um+ = D[i];
7: end for
8: if (MaxS um < TmpS um) then
9: MaxS um = TmpS um; bo = b; so = s;

10: end if
11: end for
12: end for
13: return 〈MaxS um, bo, so〉;

A warm-up! 2-3

The correctness of the algorithm is immediate, since it checks all possible sub-arrays of D[1, n]
and selects the one whose sum of its elements is the largest (Step 8). The time complexity is cubic,
i.e. Θ(n3), and can be evaluated as follows. Clearly the time complexity is upper bounded by O(n3)
because we can form no more than n2

2 pairs <b,s> out of n elements,1 and n is an upper-bound to
the cost of computing the sum of each sub-array. Let us now show that the time cost is also Ω(n3),
so concluding that the time complexity is strictly cubic. To show this lower bound, we observe
that D[1, n] contains (n − L + 1) sub-arrays of length L, and thus the cost of computing the sum
for all of their elements is (n − L + 1) × L. Summing over all values of L, we would get the exact
time complexity. But here we are interested in a lower bound, so we can evaluate that cost just
for the subset of sub-arrays whose length L is in the range [n/4, n/2]. For each such L, we have
that n − L + 1 > n/2 and L ≥ n/4, so the cost above is (n − L + 1) × L > n2/8. Since we have
n
2 − n

4 + 1 > n/4 of those Ls, the total cost for analysing that subset of sub-arrays is lower bounded
by n3/32 = Ω(n3).

It is natural now to ask ourselves how much fast in practice is the designed algorithm. We im-
plemented it in Java and tested on a commodity PC. As n grows, its time performance reflects in
practice its cubic time complexity, evaluated in the RAM model. More precisely, it takes about 20
seconds to solve the problem for n = 103 elements, and about 30 hours for n = 105 elements. Too
much indeed if we wish to scale to very large sequences (of quotations), as we are aiming for in
these lectures.

2.2 A quadratic-time algorithm

The key inefficiency of the cubic-time algorithm resides in the execution of Steps 4-7 of the pseudo-
code in Figure 2.1. These steps re-compute from scratch the sum of the sub-array D[b, s] each time
its extremes change in Steps 2-3. But if we look carefully at the for-cycle of Step 3 we notice that
the size s is incremented by one unit at a time from the value b (one element sub-array) to the value
n (the longest possible sub-array that starts at b). Therefore, from one execution to the next one of
Step 3, the sub-array to be summed changes from D[b, s] to D[b, s + 1]. It is thus immediate to
conclude that the new sum for D[b, s + 1] does not need to be recomputed from scratch, but can be
computed incrementally by just adding the value of the new element D[s + 1] to the current value
of TmpSum (which inductively stores the sum of D[b, s]). This is exactly what the pseudo-code of
Figure 2.2 implements: its two main changes with respect to the cubic algorithm of Figure 2.1 are
in Step 3, that nulls TmpSum every time b is changed (because the sub-array starts again from length
1, namely D[b, b]), and in Step 5, that implements the incremental update of the current sum as
commented above. Such small changes are worth of a saving of Θ(n) additions per execution of
Step 2, thus turning the new algorithm to have quadratic-time complexity, namely Θ(n2).

More precisely, let us concentrate on counting the number of additions executed by the algorithm
of Figure 2.2; this is the prominent operation of this algorithm so that its evaluation will give us an
estimate of its total number of steps. This number is2

n∑

b=1

(1 +

n∑

s=b

1) =

n∑

b=1

(1 + (n − b + 1)) = n × (n + 2) −
n∑

b=1

b = n2 + 2n − n(n − 1)
2

= O(n2).

This improvement is effective also in practice. Take the same experimental scenario of the pre-
vious section, this new algorithm requires less than 1 second to solve the problem for n = 103

1For each pair < b, s >, with b ≤ s, D[b, s] is a possible sub-array, but D[s, b] is not.
2We use below the famous formula, discovered by the young Gauss, to compute the sum of the first n integers.

2-4 Paolo Ferragina

Algorithm 2.2 The quadratic-time algorithm
1: MaxS um = −∞;
2: for (b = 1; b ≤ n; b++) do
3: TmpS um = 0;
4: for (s = b; s ≤ n; s++) do
5: TmpS um += D[s];
6: if (MaxS um < TmpS um) then
7: MaxS um = TmpS um; bo = b; so = s;
8: end if
9: end for

10: end for
11: return 〈MaxS um, bo, so〉;

elements, and about 28 minutes to manage 106 elements. This means that the new algorithm is able
to manage more elements in “reasonable” time. Clearly, these timings and these numbers could
change if we use a different programming language (Java, in the present example), operating sys-
tem (Windows, in our example), and processor (the old Pentium IV, in our example). Nevertheless
we believe that they are interesting anyway because they provide a concrete picture of what it does
mean a theoretical improvement like the one we showed in the above paragraphs on a real situation.
It goes without saying that the life of a coder is typically not so easy because theoretically-good
algorithms many times hide so many details that their engineering is difficult and big-O notation
often turn out to be not much “realistic”. Do not worry, we will have time in these lectures to look
at these issues in more detail.

2.3 A linear-time algorithm

The final step of this lecture is to show that the maximum sub-array sum problem admits an elegant
algorithm that processes the elements of D[1, n] is a streaming fashion and takes the optimal O(n)
time. We could not aim for more!

To design this algorithm we need to dig into the structural properties of the optimal sub-array.
For the purpose of clarity, we refer the reader to Figure 2.1 below, where the optimal sub-array is
assumed to be located at two positions bo ≤ so in the range [1, n].

sum ≥ 0sum ≤ 0

optimal sub-array

x b0 − 1 b0 y s0

FIGURE 2.1: An illustrative example of Properties 1 and 2.

Let us now take a sub-array that starts before bo and ends at position bo − 1, say D[x, bo − 1]. The
sum of the elements in this sub-array cannot be positive because, otherwise, we could merge it with
the (adjacent) optimal sub-array and thus get the longer sub-array D[x, so] having sum larger than
the one obtained with the (claimed) optimal D[bo, so]. So we can state the following:

A warm-up! 2-5

Property 1. The sum of the elements in a sub-array D[x, bo − 1], with x < bo, cannot be (strictly)
positive.

Via a similar argument, we can consider a sub-array that is a prefix of the optimal D[bo, so], say
D[bo, y] with y ≤ so. This sub-array cannot have negative sum because, otherwise, we could drop
it from the optimal solution and get a shorter array, namely D[y + 1, so] having sum larger than the
one obtained by the (claimed) optimal D[bo, so]. So we can state the following other property:

Property 2. The sum of the elements in a sub-array D[bo, y], with y ≤ so, cannot be (strictly)
negative.

We remark that any one of the sub-arrays considered in the above two properties might have sum
equal to zero. This would not affect the optimality of D[bo, so], it could only introduce other optimal
solutions being either longer or shorter than D[bo, so].

Let us illustrate these two properties on the array D[1, 11] = [+4,−6,+3,+1,+3,−2,+3,−4,
+1,−9,+6]. Here the optimum sub-array is D[3, 7] = [+3,+1,+3,−2,+3]. We note that D[x, 2] is
always negative (Prop. 1), in fact for x = 1 the sum is +4 − 6 = −2 and for x = 2 the sum is −6. On
the other hand the sum of all elements in D[3, y] is positive for all prefixes of the optimum sub-array
(Prop. 2), namely y ≤ 7. We also point out that the sum of D[3, y] is positive even for some y > 7,
take for example D[3, 8] for which the sum is 4 and D[3, 9] for which the sum is 5. Of course, this
does not contradict Prop. 2.

Algorithm 2.3 The linear-time algorithm
1: MaxS um = −∞
2: TmpS um = 0; b = 1;
3: for (s = 1; s ≤ n; s++) do
4: TmpS um += D[s];
5: if (MaxS um < TmpS um) then
6: MaxS um = TmpS um; bo = b; so = s;
7: end if
8: if (TmpS um < 0) then
9: TmpS um = 0; b = s + 1;

10: end if
11: end for
12: return 〈MaxS um, bo, so〉;

The two properties above lead to the simple Algorithm 2.3. It consists of one unique for-cycle
(Step 3) which keeps in TmpSum the sum of a sub-array ending in the currently examined position
s and starting at some position b ≤ s. At any step of the for-cycle, the candidate sub-array is
extended one position to the right (i.e. s++), and its sum TmpSum is increased by the value of the
current element D[s] (Step 4). Since the current sub-array is a candidate to be the optimal one, its
sum is compared with the current optimal value (Step 5). Then, according to Prop. 1, if the sub-array
sum is negative, the current sub-array is discarded and the process “restarts” with a new sub-array
beginning at the next position s + 1 (Steps 8-9). Otherwise, the current sub-array is extended to the
right, by incrementing s. The tricky issue here is to show that the optimal sub-array is checked in
Step 5, and thus stored in < bo, so >. This is not intuitive at all because the algorithm is checking
n sub-arrays out of the Θ(n2) possible ones, and we want to show that this (minimal) subset of
candidates actually contains the optimal solution. This subset is minimal because these sub-arrays
form a partition of D[1, n] so that every element belongs to one, and only one checked sub-array.

2-6 Paolo Ferragina

Moreover, since every element must be analyzed, we cannot discard any sub-array of this partition
without checking its sum!

Before digging into the formal proof of correctness, let us follow the execution of the algorithm
over the array D[1, 11] = [+4,−6,+3,+1,+3,−2,+3,−4,+1,−9,+6]. Remember that the optimum
sub-array is D[3, 7] = [+3,+1,+3,−2,+3]. We note that D[x, 2] is negative for x = 1, 2, so the
algorithm surely zeroes the variable TmpSum when s = 2 in Steps 8-9. At that time, b is set to 3 and
TmpSum is set to 0. The subsequent scanning of the elements s = 3, . . . , 7 will add their values to
TmpSum which is always positive (see above). When s = 7, the examined sub-array coincides with
the optimal one, we thus have TmpSum = 8, so Step 5 stores the optimum location in < bo, so >. It is
interesting to notice that, in this example, the algorithm does not re-start the value of TmpSum at the
next position s = 8 because it is still positive (namely, TmpSum = 4); this means that the algorithm
will examine sub-arrays longer than the optimal one, but all having a smaller sum, of course. The
next re-starting will occur at position s = 10 where TmpSum = −4.

It is easy to realize that the time complexity of the algorithm is O(n) because every element is
examined just once. More tricky is to show that the algorithm is correct, which actually means that
Steps 4 and 5 eventually compute and check the optimal sub-array sum. To show this, it suffices
to prove the following two facts: (i) when s = bo − 1, Step 8 resets b to bo; (ii) for all subsequent
positions s = bo, . . . , so, Step 8 never resets b so that it will eventually compute in TmpSum the sum
of all elements in D[bo, so], whenever s = so. It is not difficult to see that Fact (i) derives from
Property 1, and Fact (ii) from Property 2.

This algorithm is very fast in the same experimental scenario mentioned in the previous sections,
it takes less than 1 second to process millions of quotations. A truly scalable algorithm, indeed,
with many nice features that make it appealing also in a hierarchical-memory setting. In fact, this
algorithm scans the array D from left to right and examines each of its elements just once. If D
is stored on disk, these elements are fetched in internal memory one page at a time. Hence the
algorithm executes n/B I/Os, which is optimal. It is interesting also to note that the design of
the algorithm does not depend on B (which indeed does not appear in the pseudo-code), but we can
evaluate its I/O-complexity in terms of B. Hence the algorithm takes n/B optimal I/Os independently
of the the page size B, and thus subtly on the hierarchical-memory levels interested by the algorithm
execution. Decoupling the use of the parameter B between algorithm design and algorithm analysis
is the key issue of the so called cache-oblivious algorithms, which are a hot topic of algorithmic
investigation nowadays. This feature is achieved here in a basic (trivial) way by just adopting a
scan-based approach. The literature [4] offers more sophisticated results regarding the design of
cache-oblivious algorithms and data structures.

2.4 Another linear-time algorithm

There exists another optimal solution to the maximum sub-array sum problem which hinges on a
different algorithm design. For simplicity of exposition, let us denote by S umD[y′, y′′] the sum of
the elements in the sub-array D[y′, y′′]. Take now a selling time s and consider all sub-arrays that
end at s: namely we are interested in sub-arrays having the form D[x, s], with x ≤ s. The value
S umD[x, s] can be expressed as the difference between S umD[1, s] and S umD[1, x − 1]. Both of
these sums are indeed prefix-sums over the array D and can be computed in linear time. As a result,
we can rephrase our maximization problem as follows:

max
s

max
b≤s

SumD[b, s] = max
s

max
b≤s

(SumD[1, s] − SumD[1, b − 1]).

We notice that if b = 1 the second term refers to the empty sub-array D[1, 0]; so we can assume
that S umD[1, 0] = 0. This is the case in which D[1, s] is the sub-array of maximum sum among all
the sub-arrays ending at s (so no prefix sub-array D[1, b − 1] is dropped from it).

A warm-up! 2-7

The next step is to pre-compute all prefix sums P[i] = S umD[1, i] in O(n) time and O(n) space
via a scan of the array D: Just notice that P[i] = P[i − 1] + D[i], where we set P[0] = 0 in order
to manage the special case above. Hence we can rewrite the maximization problem in terms of
the array P, rather than S umD: maxb≤s(P[s] − P[b − 1]). The cute observation now is that we can
decompose the max-computation into a max-min calculation over the two variables b and s

max
s

max
b≤s

(P[s] − P[b − 1]) = max
s

(P[s] −min
b≤s

P[b − 1]).

The key idea is that we can move P[s] outside the inner max-calculation because it does not
depend on the variable b, and then change a max into a min because of the negative sign. The final
step is then to pre-compute the minimum minb≤s P[b − 1] for all positions s, and store it in an array
M[0, n− 1]. We notice that, also in this case, the computation of M[i] can be performed via a single
scan of P in O(n) time and space: set M[0] = 0 and then derive M[i] as min{M[i − 1], P[i]}. Given
M, we can rewrite the formula above as maxs(P[s] − M[s − 1]) which can be clearly computed in
O(n) time given the two arrays P and M. Overall this new approach takes O(n) time and O(n) extra
space.

As an illustrative example, consider again the array D[1, 11] = [+4,−6,+3,+1,+3,−2,+3,−4,+1,
−9,+6]. We have that P[0, 11] = [0,+4,−2,+1,+2,+5,+3,+6,+2,+3,−6, 0] and M[0, 10] =

[0, 0,−2,−2,−2,−2,−2,−2,−2,−2,−6]. If we compute the difference P[s] − M[s − 1] for all
s = 1, . . . , n, we obtain the sequence of values [+4,−2,+3,+4,+7,+5, +8,+4,+5,−4,+6], whose
maximum (sum) is +8 that occurs (correctly) at the (final) position s = 7. It is interesting to note
that the left-extreme bo of the optimal sub-array could be derived by finding the position bo − 1
where P[bo − 1] is minimum: in the example, P[2] = −2 and thus bo = 3.

Algorithm 2.4 Another linear-time algorithm
1: MaxS um = −∞; btmp = 1;
2: TmpS um = 0; MinTmpS um = 0;
3: for (s = 1; s ≤ n; s++) do
4: TmpS um += D[s];
5: if (MaxS um < TmpS um − MinTmpS um) then
6: MaxS um = TmpS um − MinTmpS um; so = s; bo = btmp;
7: end if
8: if (TmpS um < MinTmpS um) then
9: MinTmpS um = TmpS um; btmp = s + 1;

10: end if
11: end for
12: return 〈MaxS um, bo, so〉;

We conclude this section by noticing that the proposed algorithm executes three passes over the
array D, rather than the single pass of Algorithm 2.3. It is not difficult to turn this algorithm to
make one-pass too. It suffices to deploy the associativity of the min/max functions, and use two
variables that inductively keep the values of P[s] and M[s − 1] as the array D is scanned from left
to right. Algorithm 2.4 implements this idea by using the variable TmpSum to store P[s] and the
variable MinTmpSum to store M[s − 1]. This way the formula maxs(P[s] − M[s − 1]) is evaluated
incrementally for s = 1, . . . , n, thus avoiding the two passes for pre-calculating the arrays P and
M and the extra-space needed to store them. One pass over D is then enough, and so we have re-
established the nice algorithmic properties of Algorithm 2.3 but with a completely different design!

2-8 Paolo Ferragina

2.5 Few interesting variants∞

As we promised at the beginning of this lecture, we discuss now few interesting variants of the
maximum sub-array sum problem. For further algorithmic details and formulations we refer the
interested reader to [1, 2]. Note that this is a challenging section, because it proposes an algorithm
whose design and analysis are sophisticated!

Sometimes in the bio-informatics literature the term “sub-array” is substituted by “segment”, and
the problem takes the name of “maximum-sum segment problem”. In the bio-context the goal is to
identify segments which occur inside DNA sequences (i.e. strings of four letters A, T, G, C) and
are rich of G or C nucleotides. Biologists believe that these segments are biologically significant
since they predominantly contain genes. The mapping from DNA sequences to arrays of numbers,
and thus to our problem abstraction, can be obtained in several ways depending on the objective
function that models the GC-richness of a segment. Two interesting mappings are the following
ones:

• Assign a penalty −p to the nucleotides A and T of the sequence, and a reward 1− p to the
nucleotides C and G. Given this assignment, the sum of a segment of length l containing
x occurrences of C+G is equal to x − p × l. Biologists think that this function is a
good measure for the CG-richness of that segment. Interestingly enough, all algorithms
described in the previous sections can be used to identify the CG-rich segments of a
DNA sequence in linear time, according to this objective function. Often, however,
biologists prefer to define a cutoff range on the length of the segments for which the
maximum sum must be searched, in order to avoid the reporting of extremely short or
extremely long segments. In this new scenario the algorithms of the previous sections
cannot be applied, but yet linear-time optimal solutions are known for them (see e.g.
[2]).

• Assign a value 0 to the nucleotides A and T of the sequence, and a value 1 to the nu-
cleotides C and G. Given this assignment, the density of C+G nucleotides in a segment
of length l containing x occurrences of C and G is x/l. Clearly 0 ≤ x/l ≤ 1 and every
single occurrence of a nucleotide C or G provides a segment with maximum density
1. Biologists consider this as an interesting measure of CG-richness for a segment,
provided that a cutoff range on the length of the searched segments is imposed. This
problem is more difficult than the one stated in the previous item, nevertheless it posses
optimal (quasi-)linear time solutions which are much sophisticated and for which we
refer the interested reader to the pertinent bibliography (e.g. [1, 3, 5]).

These examples are useful to highlight a dangerous trap that often occurs when abstracting a real
problem: apparently small changes in the problem formulation lead to big jumps in the complexity
of designing efficient algorithms for them. Think for example to the density function above, we
needed to introduce a cutoff lower-bound to the segment length in order to avoid the trivial solu-
tion consisting of single nucleotides C or G! With this “small” change, the problem results more
challenging and its solutions sophisticated.

Other subtle traps are more difficult to be discovered. Assume that we decide to circumvent the
single-nucleotide outcome by searching for the the longest segment whose density is larger than
a fixed value d. This is, in some sense, a complementary formulation of the problem stated in the
second item above, because maximization is here on the segment length and a (lower) cut-off is
imposed on the density value. Surprisingly it is possible to reduce this density-based problem to a
sum-based problem, in the spirit of the one stated in the first item above, and solved in the previous
sections. Algorithmic reductions are often employed by researchers to re-use known solutions and
thus do not re-discover again and again the “hot water”. To prove this reduction it is enough to
notice that:

A warm-up! 2-9

SumD[x, y]
y − x + 1

=

y∑

k=x

D[k]
y − x + 1

≥ t ⇐⇒
y∑

k=x

(D[k] − t) ≥ 0.

Therefore, subtracting to all elements in D the density-threshold t, we can turn the problem stated
in the second item above into the one that asks for the longest segment that has sum larger or
equal than 0. Be careful that if you change the request from the longest segment to the shortest
one whose density is larger than a threshold t, then the problem becomes trivial again: Just take the
single occurrence of a nucleotide C or G. Similarly, if we fix an upper bound S to the segment’s
sum (instead of a lower bound), then we can change the sign to all D’s elements and thus turn the
problem again into a problem with a lower bound t = −S . So let us stick on the following general
formulation:

Problem. Given an array D[1, n] of positive and negative numbers, we want to find the longest
segment in D whose sum of its elements is larger or equal than a fixed threshold t.

We notice that this formulation is in some sense a complement of the one given in the first item
above. Here we maximize the segment length and pose a lower-bound to the sum of its elements;
there, we maximized the sum of the segment provided that its length was within a given range. It
is nice to observe that the structure of the algorithmic solution for both problems is similar, so we
detail only the former one and refer the reader to the literature for the latter.

The algorithm proceeds inductively by assuming that, at step i = 1, 2, . . . , n, it has computed
the longest sub-array having sum larger than t and occurring within D[1, i − 1]. Let us denote the
solution available at the beginning of step i with D[li−1, ri−1]. Initially we have i = 1 and thus the
inductive solution is the empty one, hence having length equal to 0. To move from step i to step
i + 1, we need to compute D[li, ri] by possibly taking advantage of the currently known solution.

It is clear that the new segment is either inside D[1, i − 1] (namely ri < i) or it ends at position
D[i] (namely ri = i). The former case admits as solution the one of the previous iteration, namely
D[li−1, ri−1], and so nothing has to be done: just set ri = ri−1 and li = li−1. The latter case is more
involved and requires the use of some special data structures and a tricky analysis to show that the
total complexity of the solution proposed is O(n) in space and time, thus turning to be optimal!

We start by making a simple, yet effective, observation:

FACT 2.1

If ri = i then the segment D[li, ri] must be strictly longer than the segment D[li−1, ri−1]. This
means in particular that li occurs to the left of position Li = i − (ri−1 − li−1).

The proof of this fact follows immediately by the observation that, if ri = i, then the current step
i has found a segment that improves the previously known one. Here “improved” means “longer”
because the other constraint imposed by the problem formulation is boolean since it refers to a
lower-bound on the segment’s sum. This is the reason why we can discard all positions within the
range [Li, i], in fact they originate intervals of length shorter or equal than the previous solution
D[li−1, ri−1].

Reformulated Problem. Given an array D[1, n] of positive and negative numbers, we want
to find at every step the smallest index li ∈ [1, Li) such that SumD[li, i] ≥ t.

We point out that there could be many such indexes li, here we wish to find the smallest one
because we aim at determining the longest segment.

At this point it is useful to recall that SumD[li, i] can be re-written in terms of prefix-sums of
array D, namely SumD[1, i] − SumD[1, li − 1] = P[i] − P[li − 1] where the array P was introduced

2-10 Paolo Ferragina

in Section 2.4. So we need to find the smallest index li ∈ [1, Li) such that P[i] − P[li − 1] ≥ t. The
array P can be pre-computed in linear time and space.

It is worth to observe that the computation of li could be done by scanning P[1, Li − 1] and
searching for the leftmost index x such that P[i] − P[x] ≥ t. We could then set li = x + 1 and have
been done. Unfortunately, this is inefficient because it leads to scan over and over again the same
positions of P as i increases, thus leading to a quadratic-time algorithm! Since we aim for a linear-
time algorithm, we need to spend constant time “on average” per step i. We used the quotes because
there is no stochastic argument here to compute the average, we wish only to capture syntactically
the idea that, since we want to spend O(n) time in total, our algorithm has to take constant time
amortized per steps. In order to achieve this performance we first need to show that we can avoid
the scanning of the whole prefix P[1, Li − 1] by identifying a subset of candidate positions for x.
Call Ci, j the candidate positions for iteration i, where j = 0, 1, They are defined as follows:
Ci,0 = Li (it is a dummy value), and Ci, j is defined inductively as the leftmost minimum of the sub-
array P[1,Ci, j−1 − 1] (i.e. the sub-array to the left of the current minimum and/or to the left of Li).
We denote by c(i) the number of these candidate positions for the step i, where clearly c(i) ≤ Li

(equality holds when P[1, Li] is decreasing).
For an illustrative example look at Figure 2.2, where c(i) = 3 and the candidate positions are

connected via leftward arrows.

4 7 3 8 3 1 6 2 3 2P

Ci,3 Ci,2 Ci,1 Ci,0

Li

FIGURE 2.2: An illustrative example for the candidate positions Ci, j, given an array P of prefix
sums. The picture is generic and reports only Li for simplicity.

Looking at Figure 2.2 we derive three key properties whose proof is left to the reader because it
immediately comes from the definition of Ci, j:

Property a. The sequence of candidate positions Ci, j occurs within [1, Li) and moves leftward,
namely Ci, j < Ci, j−1 < . . . < Ci,1 < Ci,0 = Li.

Property b. At each iteration i, the sequence of candidate values P[Ci, j] is increasing with j =

1, 2, . . . , c(i). More precisely, we have P[Ci, j] > P[Ci, j−1] > . . . > P[Ci,1] where the indices move
leftward according to Property (a).

Property c. The value P[Ci, j] is smaller than any other value on its left in P, because it is the
leftmost minimum of the prefix P[1,Ci, j−1 − 1].

It is crucial now to show that the index we are searching for, namely li, can be derived by looking
only at these candidate positions. In particular we can prove the following:

A warm-up! 2-11

FACT 2.2

At each iteration i, the largest index j∗ such that SumD[Ci, j∗ + 1, i] ≥ t (if any) provides us with
the longest segment we are searching for.

By Fact 2.1 we are interested in segments having the form D[li, i] with li < Li, and by properties
of prefix-sums, we know that SumD[Ci, j + 1, i] can be re-written as P[i] − P[Ci, j]. Given this and
Property (c), we can conclude that all segments D[z, i], with z < Ci, j, have a sum smaller than
SumD[Ci, j + 1, i]. Consequently, if we find that SumD[Ci, j + 1, i] < t for some j, then we can discard
all positions z to the left of Ci, j + 1 in the search for li. Therefore the index j∗ characterized in
Fact 2.2 is the one giving correctly li = Ci, j∗ + 1.

There are two main problems in deploying the candidate positions for the efficient computation of
li: (1) How do we compute the Ci, js as i increases, (2) How do we search for the index j∗. To address
issue (1) we notice that the computation of Ci, j depends only on the position of the previous Ci, j−1
and not on the indices i or j. So we can define an auxiliary array LMin[1, n] such that LMin[i] is the
leftmost position of the minimum within P[1, i − 1]. It is not difficult to see that Ci,1 = LMin[Li],
and that according to the definition of C it is Ci,2 = LMin[LMin[Li]] = LMin2[Li]. In general, it is
Ci,k = LMink[Li]. This allows an incremental computation:

LMin[x] =

0 if x = 0
x − 1 if P[x − 1] < P[LMin[x − 1]]
LMin[x − 1] otherwise

The formula above has an easy explanation. We know inductively LMin[x − 1] as the leftmost
minimum in the array P[1, x − 2]: initially we set LMin[0] to the dummy value 0. To compute
LMin[x] we need to determine the leftmost minimum in P[1, x − 1]: this is located either in x − 1
(with value P[x − 1]) or it is the one determined for P[1, x − 2] of position LMin[x − 1] (with value
P[LMin[x − 1]]). Therefore, by comparing these two values we can compute LMin[x] in constant
time. Hence the computation of all candidate positions LMin[1, n] takes O(n) time.

We are left with the problem of determining j∗ efficiently. We will not be able to compute j∗ in
constant time at each iteration i but we will show that, if at step i we execute si > 1 steps, then we are
advancing in the construction of the longest solution. Specifically, we are extending the length of
that solution by Θ(si) units. Given that the longest segment cannot be longer than n, the sum of these
extra-costs cannot be larger than O(n), and thus we are done! This is called amortized argument
because we are, in some sense, charging the cost of the expensive iterations to the cheapest ones.
The computation of j∗ at iteration i requires the check of the positions LMink[Li] for k = 1, 2, . . .
until the condition in Fact 2.2 is satisfied; in fact, we know that all the other j > j∗ do not satisfy
Fact 2.2. This search takes j∗ steps and finds a new segment whose length is increased by at least
j∗ units, given Property (a) above. This means that either an iteration i takes constant time, because
the check fails immediately at LMin[Li] (so the current solution is not better than the one computed
at the previous iteration i − 1), or the iteration takes O(j∗) time but the new segment D[Li, ri] has
been extended by j∗ units. Since a segment cannot be longer than the entire sequence D[1, n], we
can conclude that the total extra-time cannot be larger than O(n).

We leave to the diligent reader to work out the details of the pseudo-code of this algorithm, the
techniques underlying its elegant design and analysis should be clear enough to approach it without
any difficulties.

References

[1] Kun-Mao Chao. Maximum-density segment. In Ming-Yang Kao, editor, Encyclopedia
of Algorithms. Springer, 2008.

2-12 Paolo Ferragina

[2] Kun-Mao Chao. Maximum-scoring segment with length restrictions. In Ming-Yang

Kao, editor, Encyclopedia of Algorithms. Springer, 2008.

[3] Chih-Huai Cheng, Hsiao-Fei Liu, and Kun-Mao Chao. Optimal algorithms for the

average-constrained maximum-sum segment problem. Information Processing Letters,
109(3):171–174, 2009.

[4] Rolf Fagerberg. Cache-oblivious model. In Ming-Yang Kao, editor, Encyclopedia of
Algorithms. Springer, 2008.

[5] Takeshi Fukuda, Yasuhiko Morimoto, Shinichi Morishita, and Takeshi Tokuyama. Min-

ing optimized association rules for numeric attributes. Journal of Computer System
Sciences, 58(1):1–12, 1999.

3
Random Sampling

“So much of life, it seems to me,
is determined by pure
randomness.”
Sidney Poitier

3.1 Disk model and known sequence length 3-1
3.2 Streaming model and known sequence length 3-5
3.3 Streaming model and unknown sequence length . 3-6

This lecture attacks a simple-to-state problem which is the backbone of many randomized algo-
rithms, and admits solutions which are algorithmically challenging to design and analyze.

Problem. Given a sequence of items S = (i1, i2, . . . , in) and a positive integer m ≤ n, the goal
is to select a subset of m items from S uniformly at random.

Uniformity here means that any item in S has to be sampled with probability 1/n. Items can be
numbers, strings or general objects either stored in a file located on disk or streaming through a
channel. In the former scenario, the input size n is known and items occupy n/B pages, in the
latter scenario, the input size may be even unknown yet the uniformity of the sampling process
must be guaranteed. In this lecture we will address both scenarios aiming at efficiency in terms of
I/Os, extra-space required for the computation (in addition to the input), and amount of randomness
deployed (expressed as number of randomly generated integers). Hereafter, we will make use of a
built-in procedure Rand(a,b) that randomly selects a number within the range [a, b]. The number,
being either real or integer, will be clear from the context. The design of a good Rand-function
is a challenging task, however we will not go into its details because we wish to concentrate in
this lecture on the sampling process rather than on the generation of random numbers; though, the
interested reader can refer to the wide literature about (pseudo-)random number generators.

Finally we notice that it is desirable to have the positions of the sampled items in sorted order
because this speeds up their extraction from S both in the disk setting (less seek time) and in the
stream-based setting (less passes over the data). Moreover it reduces the working space because it
allows to extract the items efficiently via a scan, rather than using an auxiliary array of pointers to
items. We do not want to detail further the sorting issue here, which gets complicated whenever
m > M and thus these positions cannot fit into internal memory. In this case we need a disk-based
sorter, which is indeed an advanced topic of a subsequent lecture. If instead m ≤ M we could deploy
the fact that positions are integers in a fixed range and thus use radix sort or any other faster routine
available in the literature.

3.1 Disk model and known sequence length

We start by assuming that the input size n is known and that S [1, n] is stored in a file on disk which
cannot be modified because it may be the input of a more complicated problem that includes the

c© Paolo Ferragina, 2009-2020 3-1

3-2 Paolo Ferragina

current one as a sub-task. The first algorithm we propose is very simple, and allows us to arise some
issues that will be attacked in the subsequent solutions.

Algorithm 3.1 Drawing from all un-sampled positions
1: Initialize the auxiliary array S ′[1, n] = S [1, n];
2: for s = 0, 1, . . . ,m − 1 do
3: p = Rand(1, n − s);
4: select the item (pointed by) S ′[p];
5: swap S ′[p] with S ′[n − s].
6: end for

At each step s the algorithm maintains the following invariant: the subarray S ′[n − s + 1, n]
contains the items that have been already sampled, the rest of the items of S are contained in
S ′[1, n− s]. Initially (i.e. s = 0) this invariant holds because S ′[n− s + 1, n] = S ′[n + 1, n] is empty.
At a generic step s, the algorithm selects randomly one item from S ′[1, n − s], and replaces it with
the last item of that sequence (namely, S ′[n − s]). This preserves the invariant for s + 1. At the end
(i.e. s = m), the sampled items are contained in S ′[n − m + 1, n]. We point out that S ′ cannot be
a pure copy of S but it must be implemented as an array of pointers to S ’s items. The reason is
that these items may have variable length (e.g. strings) so their retrieval in constant time could not
be obtained via arithmetic operations, as well as the replacement step might be impossible due to
difference in length between the item at S ′[p] and the item at S ′[n − s]. Pointers avoid these issues
but occupy Θ(n log n) bits of space, which might be a non negligible space when n gets large and
might turn out even larger than S if the average length of S ’s objects is shorter than log n.1 Another
drawback of this approach is given by its pattern of memory accesses, which acts over O(n) cells in
purely random way, taking Θ(m) I/Os. This may be slow when m ≈ n, so in this case we would like
to obtain O(n/B) I/Os which is the cost of scanning the whole S .

Let us attack these issues by proposing a series of algorithms that incrementally improve the
I/Os and the space resources of the previous solution, up to the final result that will achieve O(m)
extra space, O(m) average time and O(min{m, n/B}) I/Os. We start by observing that the swap of
the items in Step 5 of Algorithm 3.1 guarantees that every step generates one distinct item, but
forces to duplicate S and need Ω(m) I/Os whichever is the value of m. The following Algorithm
3.2 improves the I/O- and space-complexities by avoiding the item-swapping via the use of an
auxiliary data structure that keeps track of the selected positions in sorted order and needs only
O(m) space.

Algorithm 3.2 Dictionary of sampled positions
1: Initialize the dictionaryD = ∅;
2: while (|D| < m) do
3: p = Rand(1, n);
4: if p < D insert it;
5: end while

1This may occur only if S contains duplicate items, otherwise a classic combinatorial argument applies.

Random Sampling 3-3

Algorithm 3.2 stops when D contains m (distinct) integers which constitute the positions of
the items to be sampled. According to our observation made at the beginning of the lecture, D
may be sorted before S is accessed on disk to reduce the seek time. In any case, the efficiency of
the algorithm mainly depends on the implementation of the dictionary D, which allows to detect
the presence of duplicate items. The literature offers many data structures that efficiently support
membership and insert operations, based either on hashing or on trees. Here we consider only an
hash-based solution which consists of implementingD via a hash table of size Θ(m) with collisions
managed via chaining and a universal hash function for table access [1]. This way each membership
query and insertion operation over D takes O(1) time on average (the load factor of this table is
O(1)), and total space O(m). Time complexity could be forced to be worst case by using more
sophisticated data structures, such as dynamic perfect hashing, but the final time bounds would
always be in expectation because of the underlying re-sampling process.

However this algorithm may generate duplicate positions, which must be discarded and re-
sampled. Controlling the cost of the re-sampling process is the main drawback of this approach,
but this induces a constant-factor slowdown on average, thus making this solution much appealing
in practice. In fact, the probability of having extracted an item already present in D is |D|/n ≤
m/n < 1/2 because, without loss of generality, we can assume that m < n/2 otherwise we can solve
the complement of the current problem and thus randomly select the positions of the items that are
not sampled from S . So we need an average of O(1) re-samplings in order to obtain a new item for
D, and thus advancing in our selection process. Overall we have proved the following:

FACT 3.1 Algorithm 3.2 based on hashing with chaining requires O(m) average time and
takes O(m) additional space to select uniformly at random m positions in [1, n]. The average de-
pends both on the use of hashing and the cost of re-sampling. An additional sorting-cost is needed
if we wish to extract the sampled items of S in a streaming-like fashion. In this case the overall
sampling process takes O(min{m, n/B}) I/Os.

If we substitute hashing with a (balanced) search tree and assume to work in the RAM model
(hence we assume m < M), then we can avoid the sorting step by performing an in-visit of the
search tree in O(m) time. However, Algorithm 3.2 would still require O(m log m) time because
each insertion/membership operation would take O(log m) time. We could do better by deploying
an integer-based dictionary data structure, such as a van Emde-Boas tree, and thus take O(log log n)
time for each dictionary operation. The two bounds would be incomparable, depending on the
relative magnitudes of m and n. Many other trade-offs are possible by changing the underlying
dictionary data structure, so we leave to the reader this exercise.

The next step is to avoid a dictionary data structure and use sorting as a basic block of our
solution. This could be particularly useful in practice because comparison-based sorters, such as
qsort, are built-in in many programming languages. The following analysis will have also another
side-effect which consists of providing a more clean evaluation of the average time performance of
Algorithm 3.2, rather than just saying re-sample each item at most O(1) times on average.

The cost of Algorithm 3.3 depends on the number of times the sorting step is repeated and thus
do exist duplicates in the sampled items. We argue that a small number of re-samplings is needed.
So let us compute the probability that Algorithm 3.3 executes just one iteration: this means that
the m sampled items are all distinct. This analysis is well known in the literature and goes under the
name of birthday problem: how many people do we need in a room in order to have a probability
larger than 1/2 that at least two of them have the same birthday. In our context we have that people
= items and birthday = position in S . By mimicking the analysis done for the birthday problem, we

3-4 Paolo Ferragina

Algorithm 3.3 Sorting
1: D = ∅;
2: while (|D| < m) do
3: X = randomly draw m positions from [1, n];
4: Sort X and eliminate the duplicates;
5: SetD as the resulting X;
6: end while

can estimate the probability that a duplicate among m randomly-drawn items does not occur as:

m!
(

n
m

)

nm =
n(n − 1)(n − 2) · · · (n − m + 1)

nm = 1 × (1 − 1
n

) × (1 − 2
n

) × · · · (1 − m − 1
n

)

Given that ex ≥ 1 + x, we can upper bound the above formula as:

e0 × e−1/n × e−2/n × · · · e−(m−1)/n = e−(1+2+···+(m−1))/n = e−m(m−1)/2n

So the probability that a duplicate does not occur is at most e−m(m−1)/2n and, in the case of the
birthday paradox in which n = 365, this is slightly smaller than one-half already for m = 23.
In general we have that m =

√
n elements suffices to make the probability of a duplicate at least

1 − 1√
e ≈ 0.4, thus making our algorithm need re-sampling. On the positive side, we notice that if

m � √n then ex can be well approximated with 1 + x, so e−m(m−1)/2n is not only an upper-bound but
also a reasonable estimate of the collision probability and it could be used to estimate the number
of re-samplings needed to complete Algorithm 3.3.

FACT 3.2 Algorithm 3.3 requires a constant number of sorting steps on average, and
O(m) additional space, to select uniformly at random m items from the sequence S [1, n]. This
is O(m log m) average time and min {m, n/B} worst-case I/Os if m ≤ M is small enough to keep
the sampled positions in internal memory. Otherwise an external-memory sorter is needed. The
average depends on the re-sampling, integers are returned in sorted order for streaming-like access
to the sequence S .

Sorting could be speeded up by deploying the specialty of our problem, namely, that items to be
sorted are m random integers in a fixed range [1, n]. Hence we could use either radix-sort or, even
better for its simplicity, bucket sort. In the latter case, we can use an array of m slots each identifying
a range of n/m positions in [1, n]. If item i j is randomly selected, then it is inserted in slot di j m/ne.
Since the m items are randomly sampled, each slot will contain O(1) items on average, so that we
can sort them in constant time per bucket by using insertion sort or the built-in qsort.

FACT 3.3 Algorithm 3.3 based on bucket-sort requires O(m) average time and O(m) addi-
tional space, whenever m ≤ M. The average depends on the re-sampling. Integers are returned in
sorted order for streaming-like access to the sequence S .

We conclude this section by noticing that all the proposed algorithms, except Algorithm 3.1,
generate the set of sampled positions using O(m) space. If m ≤ M the random generation can occur
within main memory without incurring in any I/Os. Sometimes this is useful because the random-
ized algorithm that invokes the random-sampling subroutine does not need the corresponding items,
but rather their positions.

Random Sampling 3-5

3.2 Streaming model and known sequence length

We next turn to the case in which S is flowing through a channel and the input size n is known
and big (e.g. Internet traffic or query logs). We will turn to the more general case in which n
is unknown at the end of the lecture, in the next section. This stream-based model imposes that
no preprocessing is possible (as instead done above where items’ positions were re-sampled and/or
sorted), every item of S is considered once and the algorithm must immediately and irrevocably take
a decision whether or not that item must be included or not in the set of sampled items. Possibly
future items may kick out that one from the sampled set, but no item can be re-considered again in
the future. Even in this case the algorithms are simple in their design but their probabilistic analysis
is a little bit more involved than before. The algorithms of the previous section offer an average
time complexity because they are faced with the re-sampling problem: possibly some samples have
to be eliminated because duplicated. In order to avoid re-sampling, we need to ensure that each
item is not considered more than once. So the algorithms that follow implement this idea in the
simplest possible way, namely, they scan the input sequence S and consider each item once for all.
This approach brings with itself two main difficulties which are related with the guarantee of both
conditions: uniform sample from the range [1, n] and sample of size m.

We start by designing an algorithm that draws just one item from S (hence m = 1), and then
we generalize it to the case of a subset of m > 1 items. This algorithm proceeds by selecting the
item S [j] with probability P(j) which is properly defined in order to guarantee both two properties
above.2 In particular we setP(1) = 1/n, P(2) = 1/(n−1), P(3) = 1/(n−2) etc. etc., so the algorithm
selects the item j with probability P(j) = 1

n− j+1 , and if this occurs it stops. Eventually item S [n]
is selected because its drawing probability is P(n) = 1. So the proposed algorithm guarantees the
condition on the sample size m = 1, but more subtle is to prove that the probability of sampling
S [j] is 1/n, independently of j, given that we defined P(j) = 1/(n − j + 1). The reason derives
from a simple probabilistic argument because n − j + 1 is the number of remaining elements in the
sequence and all of them have to be drawn uniformly at random. By induction, the first j − 1 items
of the sequence have uniform probability 1/n to be sampled; so it is 1 − j−1

n the probability of not
selecting anyone of them. As a result,

P(Sample i j) = P(Not sampling i1 · · · i j−1) × P(Picking i j) = (1 − j − 1
n

) × 1
n − j + 1

= 1/n

Algorithm 3.4 Scanning and selecting
1: s = 0;
2: for (j = 1; (j ≤ n) && (s < m); j++) do
3: p = Rand(0, 1);
4: if (p < m−s

n− j+1) then
5: select S [j];
6: s++;
7: end if
8: end for

2In order to draw an item with probability p, it suffices to draw a random real r ∈ [0, 1] and then compare it against p. If
r ≤ p then the item is selected, otherwise it is not.

3-6 Paolo Ferragina

Algorithm 3.4 works for an arbitrarily large sample m ≥ 1. The difference with the previous
algorithm lies in the probability of sampling S [j] which is now set to P(j) = m−s

n− j+1 where s is
the number of items already selected before S [j]. Notice that if we already got all samples, it is
s = m and thus P(j) = 0, which correctly means that Algorithm 3.4 does not generate more
than m samples. On the other hand, it is easy to convince ourselves that Algorithm 3.4 cannot
generate less than m items, say y, given that the last m − y items of S would have probability 1 to
be selected and thus they would be surely included in the final sample (according to Step 4). As far
as the uniformity of the sample is concerned, we show that P(j) equals the probability that S [j] is
included in a random sample of size m given that s samples lie within S [1, j − 1]. We can rephrase
this as the probability that S [j] is included in a random sample of size m− s taken from S [j, n], and
thus from n − j + 1 items. This probability is obtained by counting how many such combinations
include S [j], i.e.

(
n− j

m−s−1

)
, and dividing by the number of all combinations that include or not S [j],

i.e.
(

n− j+1
m−s

)
. Substituting to

(
b
a

)
= b!

a! (b−a)! we get the formula for P(j).

FACT 3.4 Algorithm 3.4 takes O(n/B) I/Os, O(n) time, generates n random numbers, and
takes O(m) additional space to sample uniformly m items from the sequence S [1, n] in a streaming-
like way.

We conclude this section by pointing out a sophisticated solution proposed by Jeff Vitter [2] that
reduces the amount of randomly-generated numbers from n to m, and thus speeds up the solution
to O(m) time and I/Os. This solution could be also fit into the framework of the previous section
(random access to input data), and in that case its specialty would be the avoidance of re-sampling.
Its key idea is not to generate random indicators, which specify whether or not an item S [j] has to
be selected, but rather generate random jumps that count the number of items to skip over before
selecting the next item of S . Vitter introduces a random variable G(v,V) where v is the number
of items remaining to be selected, and V is the total number of items left to be examined in S .
According to our previous notation, we have that v = m− s and V = n− j+1. The item S [G(v,V)+1]
is the next one selected to form the uniform sample from the remaining ones. It goes without saying
that this approach avoids the generation of duplicate samples, but yet it incurs in an average bound
because of the cost of generating the jumps G according to the following distribution:

P(G = g) =

(
V − g − 1

v − 1

)
/

(
V
v

)

In fact the key problem here is that we cannot tabulate (and store) the values of all binomial co-
efficients in advance, because this would need space exponential in V = Θ(n). Surprisingly Vit-
ter solved this problem in O(1) average time, by adapting in an elegant way the von Neumann’s
rejection-acceptance method to the discrete case induced by G’s jumps. We refer the reader to [2]
for further details.

3.3 Streaming model and unknown sequence length

It goes without saying that the knowledge of n was crucial to compute P(j) in Algorithm 3.4. If
n is unknown we need to proceed differently, and indeed the rest of this lecture is dedicated to detail
two possible approaches.

The first one is pretty much simple and deploys a min-heap H of size m plus a real-number
random generator, say Rand(0,1). The key idea underlying this algorithm is to associate a random
key to each item of S and then use the heapH to select the items corresponding to the top-m keys.
The pseudo-code below implements this idea, we notice thatH is a min-heap so it takes O(1) time

Random Sampling 3-7

to detect the minimum key among the current top-m ones. This is the key compared with r j in order
to establish whether or not S [j] must enter the top-m set.

Algorithm 3.5 Heap and random keys
1: Initialize the heapH with m dummy pairs 〈−∞, ∅〉;
2: for each item S [j] do
3: r j = Rand(0, 1);
4: y = the minimum key inH ;
5: if (r j > y) then
6: extract the minimum key;
7: insert 〈r j, S [j]〉 inH ;
8: end if
9: end for

10: returnH

Since the heap has size m, the final sample will consists of m items. Each item takes O(log m)
time to be inserted in the heap. So we have proved the following:

FACT 3.5 Algorithm 3.5 takes O(n/B) I/Os, O(n log m) time, generates n random numbers,
and uses O(m) additional space to sample uniformly at random m items from the sequence S [1, n]
in a streaming-like way and without the knowledge of n.

We conclude the lecture by introducing the elegant reservoir sampling algorithm, designed by
Knuth in 1997, which improves Algorithm 3.5 both in time and space complexity. The idea is
similar to the one adopted for Algorithm 3.4 and consists of properly defining the probability
with which an item is selected. The key issue here is that we cannot take an irrevocable decision
on S [j] because we do not know how long the sequence S is, so we need some freedom to change
what we have decided so far as the scanning of S goes on.

Algorithm 3.6 Reservoir sampling
1: Initialize array R[1,m] = S [1,m];
2: for each next item S [j] do
3: h = Rand(1, j);
4: if h ≤ m then
5: set R[h] = S [j];
6: end if
7: end for
8: return array R;

The pseudo-code of Algorithm 3.6 uses a “reservoir” array R[1,m] to keep the candidate sam-
ples. Initially R is set to contain the first m items of the input sequence. At any subsequent step j,
the algorithm makes a choice whether S [j] has to be included or not in the current sample. This
choice occurs with probability P(j) = m/ j, in which case some previously selected item has to be
kicked out from R. This item is chosen at random, hence with probability 1/m. This double-choice

3-8 Paolo Ferragina

is implemented in Algorithm 3.6 by choosing an integer h in the range [1, j], and making the
substitution only if h ≤ m. This event has probability m/ j: exactly what we wished to set for P(j).

For the correctness, it is clear that Algorithm 3.6 selects m items, it is less clear that these items
are drawn uniformly at random from S , which actually means with probability m/n. Let’s see why
by assuming inductively that this property holds for a sequence of length n − 1. The base case in
which n = m is obvious, every item has to be selected with probability m/n = 1, and indeed this is
what Step 1 does by selecting all S [1,m] items. To prove the inductive step (from n − 1 to n items),
we notice that the uniform-sampling property holds for S [n] since by definition that item is inserted
in R with probability P(n) = m/n (Step 4). Computing the probability of being sampled for the
other items in S [1, n − 1] is more difficult to see. An item belongs to the reservoir R at the n-th step
of Algorithm 3.6 iff it was in the reservoir at the (n− 1)-th step and it is not kicked out at the n-th
step. This latter may occur either if S [n] is not picked (and thus R is untouched) or if S [n] is picked
and S [j] is not kicked out from R (being these two events independent of each other). In formulas,

P(item S [j] ∈ R after n items) = P(S [j] ∈ R after n − 1 items) × [P(S [n] is not picked)
+ P(S [n] is picked) × P(S [j] is not removed from R)]

Now, each of these items has probability m/(n − 1) of being in the reservoir R, by the inductive
hypothesis, before that S [n] is processed. Item S [j] remains in the reservoir if either S [n] is not
picked (which occurs with probability 1 − m

n) or if it is not kicked out by the picked S [n] (which
occurs with probability m−1

m). Summing up these terms we get

P(item S [j] ∈ R after n items) =
m

n − 1
× [(1 − m

n
) + (

m
n
× m − 1

m
)] =

m
n − 1

× n − 1
n

=
m
n

To understand this formula assume that we have a reservoir of 1000 items, so the first 1000 items
of S are inserted in R by Step 1. Then the item 1001 is inserted in the reservoir with probability
1000/1001, the item 1002 with probability 1000/1002, and so on. Each time an item is inserted in
the reservoir, a random element is kicked out from it, hence with probability 1/1000. After n steps
the reservoir R contains 1000 items, each sampled from S with probability 1000/n.

FACT 3.6 Algorithm 3.6 takes O(n/B) I/Os, O(n) time, n random numbers, and exactly m
additional space, to sample uniformly at random m items from the sequence S [1, n] in a streaming-
like way and without the knowledge of n. Hence it is time, space and I/O-optimal in this model of
computation.

References

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein. Intro-
duction to Algorithms. Chapter 11: “Hashing”, The MIT press, third edition, 2009.

[2] Jeffrey Scott Vitter. Faster methods for random sampling. ACM Computing Surveys,
27(7):703–718, 1984.

4
List Ranking

“Pointers are dangerous in
disks!”

4.1 The pointer-jumping technique . 4-2
4.2 Parallel algorithm simulation in a 2-level memory 4-3
4.3 A Divide&Conquer approach . 4-6

A randomized solution • Deterministic coin-tossing∞

This lecture attacks a simple problem over lists, the basic data structure underlying the design of
many algorithms which manage interconnected items. We start with an easy to state, but inefficient
solution derived from the optimal one known for the RAM model; and then discuss more and more
sophisticated solutions that are elegant, efficient/optimal but still simple enough to be coded with
few lines. The treatment of this problem will allow also us to highlight a subtle relation between
parallel computation and external-memory computation, which can be deployed to derive efficient
disk-aware algorithms from efficient parallel algorithms.

Problem. Given a (mono-directional) list L of n items, the goal is to compute the distance of
each of those items from the tail of L.

Items are represented via their ids, which are integers from 1 to n. The list is encoded by means of
an array Succ[1, n] which stores in entry Succ[i] the id j if item i points to item j. If t is the id of the
tail of the list L, then we have Succ[t] = t, and thus the link outgoing from t forms a self-loop. The
following picture exemplifies these ideas by showing a graphical representation of a list (left), its
encoding via the array Succ (right), and the output required by the list-ranking problem, hereafter
encoded in the array Rank[1, n].

This problem can be solved easily in the RAM model by exploiting the constant-time access to
its internal memory. We can foresee three solutions. The first one scans the list from its head and
computes the number n of its items, then re-scans the list by assigning to its head the rank n−1 and to
every subsequent element in the list a value decremented by one at every step. The second solution

L 316452

id Succ Rank
1 3 1
2 5 5
3 3 0
4 6 3
5 4 4
6 1 2

FIGURE 4.1: An example of input and output for the List Ranking problem.

c© Paolo Ferragina, 2009-2020 4-1

4-2 Paolo Ferragina

computes the array of predecessors as Pred[Succ[i]] = i; and then scans the list backward, starting
from its tail t, setting Rank[t] = 0, and then incrementing the Rank’s value of each item as the
percolated distance from t. The third way to solve the problem is recursively, without needing (an
explicit) additional working space, by defining the function ListRank(i) which works as follows:
Rank[i] = 0 if Succ[i] = i (and hence i = t), else it sets Rank[i] = ListRank(Succ[i]) + 1; at the
end the function returns the value Rank[i]. The time complexity of both algorithms is O(n), and
obviously it is optimal since all list’s items must be visited to set their n Rank’s values.

If we execute this algorithm over a list stored on disk (via its array Succ), then it could elicit
Θ(n) I/Os because of the arbitrary distribution of links which might induce an irregular pattern of
disk accesses to the entries of arrays Rank and Succ. This I/O-cost is significantly far from the
lower-bound Ω(n/B) which can be derived by the same argument we used above for the RAM
model. Although this lower-bound seems very low, we will come in this lecture very close to it by
introducing a bunch of sophisticated techniques that are general enough to find applications in many
other, apparently dissimilar, contexts.

The moral of this lecture is that, in order to achieve I/O-efficiency on linked data structures,
you need to avoid the percolation of pointers as much as possible; and possibly dig into the wide
parallel-algorithms literature (see e.g. [2]) because efficient parallelism can be turned surprisingly
into I/O-efficiency.

4.1 The pointer-jumping technique

There exists a well-known technique to solve the list-ranking problem in the parallel setting, based
on the so called pointer jumping technique. The algorithmic idea is pretty much simple, it takes n
processors, each dealing with one item of L. Processor i initializes Rank[i] = 0 if i = t, otherwise
it sets Rank[i] = 1. Then executes the following two instructions: Rank[i] += Rank[Succ[i]],
Succ[i] = Succ[Succ[i]]. This update actually maintains the following invariant: Rank[i] measures
the distance (number of items) between i and the current Succ[i] in the original list. We skip the
formal proof that can be derived by induction, and refer the reader to the illustrative example in
Figure 4.2.

In that Figure the red-dashed arrows indicate the new links computed by one pointer-jumping
step, and the table on the right of each list specifies the values of array Rank[1, n] as they are
recomputed after this step. The values in bold are the final/correct values. We notice that distances
do not grow linearly (i.e. 1, 2, 3, . . .) but they grow as a power of two (i.e. 1, 2, 4, . . .), up to the
step in which the next jump leads to reach t, the tail of the list. This means that the total number of
times the parallel algorithm executes the two steps above is O(log n), thus resulting an exponential
improvement with respect to the time required by the sequential algorithm. Given that n processors
are involved, pointer-jumping executes a total of O(n log n) operations, which is inefficient if we
compare it to the number O(n) operations executed by the optimal RAM algorithm.

LEMMA 4.1 The parallel algorithm, using n processors and the pointer-jumping technique,
takes O(log n) time and O(n log n) operations to solve the list-ranking problem.

Optimizations are possible to further improve the previous result and come close the optimal
number of operations; for example, by turning off processors, as their corresponding items reach
the end of the list, could be an idea but we will not dig into these details (see e.g. [2]) because they
pertain to a course on parallel algorithms. Here we are interested in simulating the pointer-jumping
technique in our setting which consists of one single processor and a 2-level memory, and show
that deriving an I/O-efficient algorithm is very simple whenever an efficient parallel algorithm is
available. The simplicity hinges onto an algorithmic scheme which deploys two basic primitives—

List Ranking 4-3

L 316452

Rank 1 1 0 1 1 1

L 316452

Rank 1 2 0 2 2 2

L 316452

Rank 1 4 0 3 4 2

FIGURE 4.2: An example of pointer jumping applied to the list L of Figure 4.1. The dotted
arrows indicate one pointer-jumping step applied onto the solid arrows, which represent the current
configuration of the list.

Scan and Sort a set of triples— nowadays available in almost every distributed platforms, such as
Apache Hadoop.

4.2 Parallel algorithm simulation in a 2-level memory

The key difficulty in using the pointer-jumping technique within the 2-level memory framework is
the arbitrary layout of the list on disk, and the consequent arbitrary pattern of memory accesses to
update Succ-pointers and Rank-values, which might induce many I/Os. To circumvent this problem
we will describe how the two key steps of the pointer-jumping approach can be simulated via a
constant number of Sort and Scan primitives over n triples of integers. Sorting is a basic primitive
which is very much complicated to be implemented I/O-efficiently, and indeed will be the subject
of the entire Chapter 5. For the sake of presentation, we will indicate its I/O-complexity as Õ(n/B)
which means that we have hidden a logarithmic factor depending on the main parameters of the
model, namely M, n, B. This factor is negligible in practice, since we can safely upper bound it
with 4 or less, and so we prefer now to hide it in order to avoid jeopardizing the reading of this
chapter. On the other hand, Scan is easy and takes O(n/B) I/Os to process a contiguous disk portion
occupied by the n triples.

We can identify a common algorithmic structure in the two steps of the pointer-jumping tech-
nique: each of them consists of an operation (either copy or sum) between two entries of an array
(either Succ or Rank). For the sake of presentation we will refer to a generic array A, and model
the parallel operation to be simulated on disk as follows:

4-4 Paolo Ferragina

Assume that a parallel step has the following form: A[ai] op A[bi], where op is the operation
executed in parallel over the two array entries A[ai] and A[bi] by all processors i = 1, 2, . . . , n
which actually read A[bi] and use this value to update the content of A[ai].

The operation op is a sum and an assignment for the update of the Rank-array (here A = Rank), it
is a copy for the update of the Succ-array (here A = Succ). As far as the array indices are concerned
they are, for both steps, ai = i and bi = Succ[i]. The key issue is to show that A[ai] op A[bi] can
be implemented, simultaneously over all i = 1, 2, 3, . . . , n, by using a constant number of Sort and
Scan primitives, thus taking a total of Õ(n/B) I/Os. The simulation consists of 5 steps:

1. Scan the disk and create a sequence of triples having the form 〈ai, bi, 0〉. Every triple
brings information about the source address of the array-entry involved in op (bi), its
destination address (ai), and the value that we are moving (the third component, initial-
ized to 0).

2. Sort the triples according to their second component (i.e. bi). This way, we are ”align-
ing” the triple 〈ai, bi, 0〉 with the memory cell A[bi].

3. Scan the triples and the array A to create the new triples 〈ai, bi, A[bi]〉. Notice that not
all memory cells of A are referred as second component of any triple, nevertheless their
coordinated order allows to copy A[bi] into the triple for bi via a coordinated scan.

4. Sort the triples according to their first component (i.e. ai). This way, we are aligning
the triple 〈ai, bi, A[bi]〉 with the memory cell A[ai].

5. Scan the triples and the array A and, for every triple 〈ai, bi, A[bi]〉, update the content of
the memory cell A[ai] according to the semantics of op and the value A[bi].

I/O-complexity is easy to derive since the previous algorithm is executing 2 Sort and 3 Scan
involving n triples. Therefore we can state the following:

THEOREM 4.1 The parallel execution of n operations A[ai] op A[bi] can be simulated in a
2-level memory model by using a constant number of Sort and Scan primitives, thus taking a total
of Õ(n/B) I/Os.

In the case of the parallel pointer-jumping algorithm, this parallel assignment is executed for
O(log n) steps, so we have:

THEOREM 4.2 The parallel pointer-jumping algorithm can be simulated in a 2-level memory
model taking Õ((n/B) log n) I/Os.

This bound turns to be o(n), and thus better than the direct execution of the sequential algorithm
on disk, whenever B = ω(log n). This condition is trivially satisfied in practice because B ≈ 104

bytes and log n ≤ 80 for any real dataset size (being 280 the number of atoms in the Universe1).
Figure 4.3 reports a running example of this simulation over the list at the top of the Figure 4.3.

Table on the left indicates the content of the arrays Rank and Succ encoding the list; table on the
right indicates the content of these two arrays after one step of pointer-jumping. The five columns
of triples correspond to the application of the five Scan/Sort phases. This simulation is related
to the update of the array Rank, array Succ can be recomputed similarly. Actually, the update

1See e.g. http://en.wikipedia.org/wiki/Large numbers

List Ranking 4-5

L 316452

Item 1 2 3 4 5 6
Rank 1 2 0 2 2 2
Succ 3 4 3 1 6 3

Item 1 2 3 4 5 6
Rank 1 4 0 3 4 2
Succ 3 1 3 3 3 3

〈1, 3, 0〉

Sort

〈4, 1, 0〉

Scan

〈4, 1, 1〉

Sort

〈1, 3, 0〉

Scan

Rank[1]+ = 0 = 1
〈2, 4, 0〉 〈1, 3, 0〉 〈1, 3, 0〉 〈2, 4, 2〉 Rank[2]+ = 2 = 4
〈3, 3, 0〉 〈3, 3, 0〉 〈3, 3, 0〉 〈3, 3, 0〉 Rank[3]+ = 0 = 0
〈4, 1, 0〉 〈6, 3, 0〉 〈6, 3, 0〉 〈4, 1, 1〉 Rank[4]+ = 1 = 3
〈5, 6, 0〉 〈2, 4, 0〉 〈2, 4, 2〉 〈5, 6, 2〉 Rank[5]+ = 2 = 4
〈6, 3, 0〉 〈5, 6, 0〉 〈5, 6, 2〉 〈6, 3, 0〉 Rank[6]+ = 0 = 2

FIGURE 4.3: An example of simulation of the basic parallel step via Scan and Sort primitives,
relative to the computation of the array Rank, with the configuration specified in the picture and
tables above.

can be done simultaneously by using a quadruple instead of a triple which brings both the values
of Rank[Succ[i]] and the value of Succ[Succ[i]], thus deploying the fact that both values use the
same source and destination address (namely, i and Succ[i]).

The first column of triples is created as 〈i, Succ[i], 0〉, since ai = i and bi = Succ[i]. The third
column of triples is sorted by the second component, namely Succ[i], and so its third component is
obtained by Scanning the array Rank and creating 〈i, Succ[i], Rank[Succ[i]]〉. The fourth column
of triples is ordered by their first component, namely i, so that the final Scan-step can read in
parallel the array Rank and the third component of those triples, and thus compute correctly Rank[i]
as Rank[i] + Rank[Succ[i]] = 1 + Rank[Succ[i]].

The simulation scheme introduced in this section can be actually generalized to every parallel
algorithm thus leading to the following important, and useful, result (see [1]):

THEOREM 4.3 Every parallel algorithm using n processors and taking T steps can be sim-
ulated in a 2-level memory by a disk-aware sequential algorithm taking Õ((n/B) T) I/Os and O(n)
space.

This simulation is advantageous whenever T = o(B), which implies a sub-linear number of I/Os
o(n). This occurs in all cases in which the parallel algorithm takes a low poly-logarithmic time-
complexity. This is exactly the situation of parallel algorithms developed over the so called P-RAM
model of computation which assumes that all processors work independently of each other and they
can access in constant time an unbounded shared memory. This is an ideal model which was very
famous in the ’80s-’90s and led to the design of many powerful parallel techniques, which have
been then applied to distributed as well as disk-aware algorithms. Its main limit was to do not
account for conflicts among the many processors accessing the shared memory, and a simplified
communication among them. Nevertheless this simplified model allowed researchers to concentrate
onto the algorithmic aspects of parallel computation and thus design precious parallel schemes as
the ones described below.

4-6 Paolo Ferragina

4.3 A Divide&Conquer approach

The goal of this section is to show that the list-ranking problem can be solved more efficiently
than pointer-jumping on a list. The algorithmic solution we describe in this section relies on an
interesting application of the Divide&Conquer paradigm, here specialized to work on a (mono-
directional) list of items.

Before going into the technicalities related to this application, let us briefly recall the main ideas
underlying the design of an algorithm, say Adc, based on the Divide&Conquer technique which
solves a problem P, formulated on n input data. Adc consists of three main phases:

Divide. Adc creates a set of k subproblems, say P1,P2, . . . ,Pk, having sizes n1, n2, . . . , nk,
respectively. They are identical to the original problem P but are formulated on smaller
inputs, namely ni < n.

Conquer. Adc is invoked recursively on the subproblems Pi, thus getting the solution si.
Recombine. Adc recombines the solutions si to obtain the solution s for the original problem

P. s is returned as output of the algorithm.

It is clear that the Divide&Conquer technique originates a recursive algorithmAdc, which needs
a base case to terminate. Typically, the base case consists of stopping Adc whenever the input
consists of few items, e.g. n ≤ 1. In these small-input cases the solution can be computed easily and
directly, possibly by enumeration.

The time complexity T (n) of Adc can be described as a recurrence relation, in which the base
condition is T (n) = O(1) for n ≤ 1, and for the other cases it is:

T (n) = D(n) + R(n) +
∑

i=1,...,k

T (ni)

where D(n) is the cost of the Divide step, R(n) is the cost of the Recombination step, and the last
term accounts for the cost of all recursive calls. These observations are enough for these notes; we
refer the reader to Chapter 4 in [3] for a deeper and clean discussion about the Divide&Conquer
technique and the Master Theorem that provides a mathematical solution to recurrence relations,
such as the one above.

We are ready now to specialize the Divide&Conquer technique over the List-Ranking problem.
The algorithm we propose is pretty simple and starts by assigning to each item i the value Rank[i] =

0 for i = t, otherwise Rank[i] = 1. Then it executes three main steps:

Divide. We identify a set of items I = {i1, i2, . . . , ih} drawn from the input list L. Set I must
be an independent set, which means that the successor of each item in I does not belong
to I. This condition clearly guarantees that |I| ≤ n/2, because at most one item out of
two consecutive items may be selected. The algorithm will guarantee also that |I| ≥ n/c,
where c > 2, in order to make the approach effective.

Conquer. Form the list L∗ = L − I, by pointer-jumping only on the predecessors of the
removed items I: namely, for every Succ[x] ∈ I we set Rank[x] + = Rank[Succ[x]]
and Succ[x] = Succ[Succ[x]]. This way, at any recursive call, Rank[x] accounts for the
number of items of the original input list that lie between x (included) and the current
Succ[x]. Then solve recursively the list-ranking problem over L∗. Notice that n/2 ≤
|L∗| ≤ (1− 1/c)n, so that the recursion acts on a list which is a fractional part of L. This
is crucial for the efficiency of the recursive calls.

Recombine. At this point we can assume that the recursive call has computed correctly the
list-ranking of all items in L∗. So, in this phase, we derive the rank of each item x ∈ I
as Rank[x] = Rank[x] + Rank[Succ[x]], by adopting an update rule which reminds the

List Ranking 4-7

L 316452

Rank 1 1 0 1 1 1

L∗ 3642

Rank 1 0 1 12 2

FIGURE 4.4: An example of reduction of a list due to the removal of the items in an Independent
Set, here specified by the bold nodes. The new list on the bottom is the one resulting from the
removal, the Rank-array is recomputed accordingly to reflect the missing items. Notice that the
Rank-values are 1, 0 for the tail, because we assume that L is the initial list.

one used in pointer jumping. The correctness of Rank-computation is given by two facts:
(i) the independent-set property about I ensures that Succ[x] < I, thus Succ[x] ∈ L∗
and so its Rank is available; (ii) by induction, Rank[Succ[x]] accounts for the distance
of Succ[x] from the tail of L and Rank[x] accounts for the number of items between x
(included) and Succ[x] in the original input list (as observed in Conquer’s step). In fact,
the removal of x (because of its selection in I, may occur at any recursive step so that x
may be far from the current Succ[x] when considered the original list; this means that
it might be the case of Rank[x] � 1, which the previous summation-step will take into
account. As an example, Figure 4.4 depicts the starting situation in which all ranks are
1 except the tail’s one, so the update is just Rank[x] = 1 + Rank[Succ[x]]. In a general
recursive step, Rank[x] ≥ 1 and so we have to take care of this when updating its value.
As a result all items in L have their Rank-value correctly computed and, thus, induction
is preserved and the algorithm may return to its invoking caller.

Figure 4.4 illustrates how an independent set (denoted by bold nodes) is removed from the list
L and how the Succ-links are properly updated. Notice that we are indeed pointer-jumping only
on the predecessors of the removed items (namely, the predecessors of the items in I), and that the
other items leave untouched their Succ-pointers. It is clear that, if the next recursive step selects
I = {6}, the final list will be constituted by three items L = (2, 4, 3) whose final ranks are (5, 3, 0),
respectively. The Recombination-step will re-insert 6 in L = (2, 4, 3), just after 4, and compute
Rank[6] = Rank[6] + Rank[3] = 2 + 0 = 2 because Succ[6] = 3 in the current list. Conversely,
if one would have not taken into account the fact that item 6 may be far from its current Succ[6] =

3, when referred to the original list, and summed 1 it would have made a wrong calculation for
Rank[6].

This algorithm makes clear that its I/O-efficiency depends onto the Divide-step. In fact, Conquer-
step is recursive and thus can be estimated as T ((1 − 1

c)n) I/Os; Recombine-step executes all re-
insertions simultaneously, given that the removed items are not contiguous (by definition of inde-
pendent set), and can be implemented by Theorem 4.1 in Õ(n/B) I/Os.

THEOREM 4.4 The list-ranking problem formulated over a list L of length n, can be solved
via a Divide&Conquer approach taking T (n) = I(n) + Õ(n/B) + T ((1 − 1

c)n) I/Os, where I(n) is the
I/O-cost of selecting an independent set from L of size at least n/c (and, of course, at most n/2).

4-8 Paolo Ferragina

Deriving a large independent set is trivial if a scan of the listL is allowed, just pick one every two
items. But in our disk-context the list scanning is I/O-inefficient and this is exactly what we want to
avoid: otherwise we would have solved the list-ranking problem!

In what follows we will therefore concentrate on the problem of identifying a large independent
set within the list L. The solution must deploy only local information within the list, in order to
avoid the execution of many I/Os. We will propose two solutions: one is simple and randomized,
the other one is deterministic and more involved. It is surprising that the latter technique (called
deterministic coin tossing) has found applications in many other contexts, such as data compression,
text similarity, string-equality testing. It is a very general and powerful technique that, definitely,
deserves some attention in these notes.

4.3.1 A randomized solution

The algorithmic idea, as anticipated above, is simple: toss a fair coin for each item in L, and then
select those items i such that coin(i) = H but coin(Succ[i]) = T.2

The probability that the item i is selected is 1
4 , because this happens for one configuration (HT) out

of the four possible configurations. So the average number of items selected for I is n/4. By using
sophisticated probabilistic tools, such as Chernoff bounds, it is possible to prove that the number of
selected items is strongly concentrated around n/4. This means that the algorithm can repeat the
coin tossing until |I| ≥ n/c, for some c > 4. The strong concentration guarantees that this repetition
is executed a (small) constant number of times.

We finally notice that the check on the values of coin, for selecting I’s items, can be simulated
by Theorem 4.1 via few Sort and Scan primitives, thus taking I(n) = Õ(n/B) I/Os on average.
So, by substituting this value in Theorem 4.4, we get the following recurrence relation for the I/O-
complexity of the proposed algorithm: T (n) = Õ(n/B) + T (3n

4). It can be shown by means of the
Master Theorem (see Chapter 4 in [3]) that this recurrence relation has solution Õ(n/B).

THEOREM 4.5 The list-ranking problem, formulated over a list L of length n, can be solved
with a randomized algorithm in Õ(n/B) I/Os on average.

4.3.2 Deterministic coin-tossing∞

The key property of the randomized process was the locality of I’s construction which allowed to
pick an item i by just looking at the results of the coins tossed for i itself and for its successor
Succ[i]. In this section we try to simulate deterministically this process by introducing the so called
deterministic coin-tossing strategy that, instead of assigning two coin values to each item (i.e. H
and T), it starts by assigning n coin values (hereafter indicated with the integers 0, 1, . . . , n − 1) and
eventually reduces them to three coin values (namely 0, 1, 2). The final selection process for I will
then pick the items whose coin value is minimum among their adjacent items in L. Therefore, here,
three possible values and three possible items to be compared, still a constant execution of Sort
and Scan primitives.
The pseudo-code of the algorithm follows.

Initialization. Assign to each item i the value coin(i) = i − 1. This way all items take a
different coin value, which is smaller than n. We represent these values in b = dlog ne

2The algorithm works also in the case that we exchange the role of head (H) and tail (T); but it does not work if we
choose the configurations HH or TT. Why?

List Ranking 4-9

bits, and we denote by bitb(i) the binary representation of coin(i) using b bits.
Get 6-coin values. Repeat the following steps until coin(i) < 6, for all i:

• Compute the position π(i) where bitb(i) and bitb(Succ[i]) differ (e.g. taken from
the right), and denote by z(i) the bit-value of bitb(i) at that position, for all items i
that are not the tail of the list.

• Compute the new coin-value for i as coin(i) = 2π(i) + z(i) and set the new binary-
length representation as b = dlog be + 1. If i is the last item in the list, hence it has
no successor, we define coin(i) as the minimum value that is different from all the
other assigned coins.

Get just 3-coin values. For each value v ∈ {3, 4, 5}, take elements i such that coin(i) = v, do
coin(i) = {0, 1, 2} {coin(Succ[i]), coin(Pred[i])}.

Select I. Pick those items i such that coin(i) is a local minimum, namely it is smaller than
coin(Pred[i]) and coin(Succ[i]).

Let us first discuss the correctness of the algorithm. At the beginning all coin values are distinct,
and in the range {0, 1, . . . , n− 1}. By distinctness, the computation of π(i) is sound and 2π(i) + z(i) ≤
2(b−1)+1 = 2b−1 since coin(i) was represented with b bits and hence π(i) ≤ b−1 (counting from
0). Therefore, the new value coin(i) can be represented with dlog be+ 1 bits, and thus the update of
b is correct too.

A key observation is that the new value of coin(i) is still different of the coin value of its adjacent
items in L, namely coin(Succ[i]) and coin(Pred[i]). We prove it by contradiction. Let us assume
that coin(i) = coin(Succ[i]) (the other case is similar), then 2π(i)+z(i) = 2π(Succ[i])+z(Succ[i]).
Since z denotes a bit value, the two coin-values are equal iff it is both π(i) = π(Succ[i]) and z(i) =

z(Succ[i]). But if this condition holds then the two bit sequences bitb(i) and bitb(Succ[i]) cannot
differ at bit-position π(i).

Easily it follows the correctness of the step which allows to go from 6-coin values to 3-coin
values, as well as it is immediate the proof that the selected items form an independent set because
of the minimality of coin(i) and distinctness of adjacent coin values.

As far as the I/O-complexity is concerned, we start by introducing the function log∗ n defined as
min{ j | log(j) n ≤ 1}, where log(j) n is the repeated application of the logarithm function for j times to
n. As an example3 take n = 16 and compute log(0) 16 = 16, log(1) 16 = 4, log(2) 16 = 2, log(3) 16 = 1;
thus log∗ 16 = 3. It is not difficult to convince yourselves that log∗ n grows very much slowly, and
indeed its value is 5 for n = 265536.

In order to estimate the I/O-complexity, we need to bound the number of iterations needed by the
algorithm to reduce the coin-values to {0, 1, . . . , 5}. This number is log∗ n, because at each step the
reduction in the number of possible coin-values is logarithmic (b = dlog be+ 1). All single steps can
be implemented by Theorem 4.1 via few Sort and Scan primitives, thus taking Õ(n/B) I/Os. So
the construction of the independent set takes I(n) = Õ((n/B) log∗ n) = Õ(n/B) I/Os, by definition of
Õ(). The size of I can be lower bounded as |I| ≥ n/4 because the distance between two consecutive
selected items (local minima) is maximum when the coin-values form a bitonic sequence of the
form . . . , 0, 1, 2, 1, 0,

By substituting this value in Theorem 4.4 we get the same recurrence relation of the randomized
algorithm, with the exception that now the I/O-bound is worst case and deterministic: T (n) =

3Recall that logarithms are in base 2 in these lectures.

4-10 Paolo Ferragina

Õ(n/B) + T (3n
4).

THEOREM 4.6 The list-ranking problem, formulated over a list L of length n, can be solved
with a deterministic algorithm in Õ(n/B) worst-case I/Os.

A comment is in order to conclude this chapter. The logarithmic term hidden in the Õ()-notation
has the form (log∗ n)(logM/B n), which can be safely assumed to be smaller than 15 because, in
practice, logM/B n ≤ 3 and log∗ n ≤ 5 for n up to 1 petabyte.

References

[1] Yi-Jen Chiang, Michael T. Goodrich, Edward F. Grove, Roberto Tamassia, Darren

Erik Vengroff, Jeffrey Scott Vitter. External-Memory Graph Algorithms. ACM-SIAM
Symposium on Algorithms (SODA), 139-149, 1995.

[2] Joseph JaJa. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.

[3] Tomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein. Introduction to
Algorithms. The MIT Press, third edition, 2009.

[4] Jeffrey Scott Vitter. Faster methods for random sampling. ACM Computing Surveys,
27(7):703–718, 1984.

5
Sorting Atomic Items

5.1 The merge-based sorting paradigm 5-2
Stopping recursion • Snow Plow • From binary to
multi-way Mergesort

5.2 Lower bounds . 5-7
A lower-bound for Sorting • A lower-bound for
Permuting

5.3 The distribution-based sorting paradigm 5-10
From two- to three-way partitioning • Pivot selection •

Bounding the extra-working space • From binary to
multi-way Quicksort • The Dual Pivot Quicksort

5.4 Sorting with multi-disks∞ . 5-20

This lecture will focus on the very-well known problem of sorting a set of atomic items, the case
of variable-length items (aka strings) will be addressed in the following chapter. Atomic means
that they occupy a constant-fixed number of memory cells, typically they are integers or reals rep-
resented with a fixed number of bytes, say 4 (32 bits) or 8 (64 bits) bytes each.

The sorting problem. Given a sequence of n atomic items S [1, n] and a total ordering ≤
between each pair of them, sort S in increasing order.

We will consider two complemental sorting paradigms: the merge-based paradigm, which underlies
the design of Mergesort, and the distribution-based paradigm which underlies the design of Quick-
sort. We will adapt them to work in the 2-level memory model, analyze their I/O-complexities and
propose some useful tools that can allow to speed up their execution in practice, such as the Snow
Plow technique and Data compression. We will also demonstrate that these disk-based adaptations
are I/O-optimal by proving a sophisticated lower-bound on the number of I/Os any external-memory
sorter must execute to produce an ordered sequence. In this context we will relate the Sorting prob-
lem with the so called Permuting problem, typically neglected when dealing with sorting in the
RAM model.

The permuting problem. Given a sequence of n atomic items S [1, n] and a permutation
π[1, n] of the integers {1, 2, . . . , n}, permute S according to π thus obtaining the new sequence
S [π[1]], S [π[2]], . . . , S [π[n]].

Clearly Sorting includes Permuting as a sub-task: to order the sequence S we need to determine
its sorted permutation and then implement it (possibly these two phases are intricately intermingled).
So Sorting should be more difficult than Permuting. And indeed in the RAM model we know
that sorting n atomic items takes Θ(n log n) time (via Mergesort or Heapsort) whereas permuting
them takes Θ(n) time. The latter time bound can be obtained by just moving one item at a time
according to what indicates the array π. Surprisingly we will show that this complexity gap does

c© Paolo Ferragina, 2009-2020 5-1

5-2 Paolo Ferragina

not exist in the disk model, because these two problems exhibit the same I/O-complexity under
some reasonable conditions on the input and model parameters n,M, B. This elegant and deep
result was obtained by Aggarwal and Vitter in 1998 [1], and it is surely the result that spurred the
huge amount of algorithmic literature on the I/O-subject. Philosophically speaking, AV’s result
formally proves the intuition that moving items in the disk is the real bottleneck, rather than finding
the sorted permutation. And indeed researchers and software engineers typically speak about the
I/O-bottleneck to characterize this issue in their (slow) algorithms.

We will conclude this lecture by briefly mentioning at two solutions for the problem of sorting
items on D-disks: the disk-striping technique, which is at the base of RAID systems and turns any
efficient/optimal 1-disk algorithm into an efficient D-disk algorithm (typically loosing its optimality,
if any), and the Greed-sort algorithm, which is specifically tailored for the sorting problem on D-
disks and achieves I/O-optimality.

5.1 The merge-based sorting paradigm

We recall the main features of the external-memory model introduced in Chapter 1: it consists of an
internal memory of size M and allows blocked-access to disk by reading/writing B items at once.

Algorithm 5.1 The binary merge-sort: MergeSort(S , i, j)
1: if (i < j) then
2: m = (i + j)/2;
3: MergeSort(S , i,m − 1);
4: MergeSort(S ,m, j);
5: Merge(S , i,m, j);
6: end if

Mergesort is based on the Divide&Conquer paradigm. Step 1 checks if the array to be sorted
consists of at least two items, otherwise it is already ordered and nothing has to be done. If items
are at least two, it splits the input array S into two halves, and then recurses on each part. As
recursion ends, the two halves S [i,m − 1] and S [m, j] are ordered so that Step 5 fuses them in
S [i, j] by invoking procedure Merge. This merging step needs an auxiliary array of size n, so that
MergeSort is not an in-place sorting algorithm (unlike Heapsort and Quicksort) but needs O(n) extra
working space. Given that at each recursive call we halve the size of the input array to be sorted, the
total number of recursive calls is O(log n). The Merge-procedure can be implemented in O(j− i+1)
time by using two pointers, say x and y, that start at the beginning of the two halves S [i,m − 1] and
S [m, j]. Then S [x] is compared with S [y], the smaller is written out in the fused sequence, and its
pointer is advanced. Given that each comparison advances one pointer, the total number of steps
is bounded above by the total number of pointer’s advancements, which is upper bounded by the
length of S [i, j]. So the time complexity of MergeSort(S , 1, n) can be modeled via the recurrence
relation T (n) = 2T (n/2) + O(n) = O(n log n), as well known from any basic algorithm course.1

Let us assume now that n > M, so that S must be stored on disk and I/Os become the most
important resource to be analyzed. In practice every I/O takes 5ms on average, so one could think
that every item comparison takes one I/O and thus one could estimate the running time of Mergesort

1In all our lectures when the base of the logarithm is not indicated, it means 2.

Sorting Atomic Items 5-3

on a massive S as: 5ms × Θ(n log n). If n is of the order of few Gigabytes, say n ≈ 230 which is
actually not much massive for the current memory-size of commodity PCs, the previous time esti-
mate would be of about 5× 230 × 30 > 108ms, namely more than 1 day of computation. However, if
we run Mergesort on a commodity PC it completes in few hours. This is not surprising because the
previous evaluation totally neglected the existence of the internal memory, of size M, and the se-
quential pattern of memory-accesses induced by Mergesort. Let us therefore analyze the Mergesort
algorithm in a more precise way within the disk model.

First of all we notice that O(z/B) I/Os is the cost of merging two ordered sequences of z items
in total. This holds if M ≥ 3B, because the Merge-procedure in Algorithm 5.1 keeps in internal
memory the 2 pages that contain the two pointers scanning S [i, j], where z = j − i + 1, and one
page to write the sorted output sequence (which is flushed to disk every time it gets full). Every
time a pointer advances into another disk page, an I/O-fault occurs, the page is fetched in internal
memory, and the fusion continues. Given that S is stored contiguously on disk, S [i, j] occupies
O(z/B) pages and this is the I/O-bound for merging two sub-sequences of total size z. Similarly, the
I/O-cost for writing the merged sequence is O(z/B) because it occurs sequentially from the smallest
to the largest item of S [i, j] by using an auxiliary array. As a result the recurrent relation for the
I/O-complexity of Mergesort can be written as T (n) = 2T (n/2) + O(n/B) = O(n

B log n) I/Os.
But this formula does not explain completely the good behavior of Mergesort in practice, be-

cause it does not account for the memory hierarchy yet. In fact as Mergesort recursively splits the
sequence S , smaller and smaller sub-sequences are generated that have to be sorted. So when a
subsequence of length z fits in internal memory, namely z = O(M), then it is entirely cached by the
underlying operating system using O(z/B) I/Os and thus the subsequent sorting steps do not incur
in any I/Os. The net result of this simple observation is that the I/O-cost of sorting a sub-sequence
of z = O(M) items is no longer Θ(z

B log z), as accounted for in the previous recurrence relation, but
it is O(z/B) I/Os which accounts only the cost of loading the subsequence in internal memory. This
saving applies to all S ’s subsequences of size Θ(M) on which Mergesort is recursively run, which
are Θ(n/M) in total. So the overall saving is Θ(n

B log M), which leads us to re-formulate the Merge-
sort’s complexity as Θ(n

B log n
M) I/Os. This bound is particularly interesting because relates the

I/O-complexity of Mergesort not only to the disk-page size B but also to the internal-memory size
M, and thus to the caching available at the sorter. Moreover this bounds suggests three immediate
optimizations to the classic pseudocode of Algorithm 5.1 that we discuss below.

5.1.1 Stopping recursion

The first optimization consists of introducing a threshold on the subsequence size, say j − i < cM,
which triggers the stop of the recursion, the fetching of that subsequence entirely in internal-
memory, and the application of an internal-memory sorter on this sub-sequence (see Figure 5.1).
The value of the parameter c depends on the space-occupancy of the sorter, which must be guar-
anteed to work entirely in internal memory. As an example, c is 1 for in-place sorters such as
Insertionsort and Heapsort, it is much close to 1 for Quicksort (because of its recursion), and it is
less than 0.5 for Mergesort (because of the extra-array used by Merge). As a result, we should
write cM instead of M into the I/O-bound above, because recursion is stopped at cM items: thus
obtaining Θ(n

B log n
cM). This substitution is useless when dealing with asymptotic analysis, given

that c is a constant, but it is important when considering the real performance of algorithms. In this
setting it is desirable to make c as closer as possible to 1, in order to reduce the logarithmic factor in
the I/O-complexity thus preferring in-place sorters such as Heapsort or Quicksort. We remark that
Insertionsort could also be a good choice (and indeed it is) whenever M is small, as it occurs when
considering the sorting of items over the 2-levels: L1 and L2 caches, and the internal memory. In
this case M would be few Megabytes.

5-4 Paolo Ferragina

5.1.2 Snow Plow

Looking at the I/O-complexity of mergesort, i.e. Θ(n
B log n

M), is clear that the larger is M the smaller
is the number of merge-passes over the data. These passes are clearly the bottleneck to the efficient
execution of the algorithm especially in the presence of disks with low bandwidth. In order to
circumvent this problem we can either buy a larger memory, or try to deploy as much as possible
the one we have available. As algorithm engineers we opt for the second possibility and thus propose
two techniques that can be combined together in order to enlarge (virtually) M.

The first technique is based on data compression and builds upon the observation that the runs are
increasingly sorted. So, instead of representing items via a fixed-length coding (e.g. 4 or 8 bytes),
we can use integer compression techniques that squeeze those items in fewer bits thus allowing
us to pack more of them in internal memory. A following lecture will describe in detail several
approaches to this problem (see Chapter 11), here we content ourselves mentioning the names of
some of these approaches: γ-code, δ-code, Rice/Golomb-coding, etc. etc.. In addition, since the
smaller is an integer the fewer bits are used for its encoding, we can enforce the presence of small
integers in the sorted runs by encoding not just their absolute value but the difference between one
integer and the previous one in the sorted run (the so called delta-coding). This difference is surely
non negative (equals zero if the run contains equal items), and smaller than the item to be encoded.
This is the typical approach to the encoding of integer sequences used in modern search engines,
that we will discuss in a following lecture (see Chapter 11).

2M - mergesort

M - qsort M - qsort

log2
n
M

log2 M

log2 n

FIGURE 5.1: When a run fits in the internal memory of size M, we apply qsort over its items. In
gray we depict the recursive calls that are executed in internal memory, and thus do not elicit I/Os.
Above there are the calls based on classic Mergesort, only the call on 2M items is shown.

The second technique is based on an elegant idea, called the Snow Plow and due to D. Knuth
[3], that allows to virtually increase the memory size of a factor 2 on average. This technique scans
the input sequence S and generates sorted runs whose length has variable size longer than M and
2M on average. Its use needs to change the sorting scheme because it first creates these sorted runs,
of variable length, and then applies repeatedly over the sorted runs the Merge-procedure. Although
runs will have different lengths, the Mergewill operate as usual requiring an optimal number of I/Os
for their merging. Hence O(n/B) I/Os will suffice to halve the number of runs, and thus a total of
O(n

B log n
2M) I/Os will be used on average to produce the totally ordered sequence. This corresponds

to a saving of 1 pass over the data, which is non negligible if the sequence S is very long.
For ease of description, let us assume that items are transferred one at a time from disk to memory,

instead that block-wise. Eventually, since the algorithm scans the input items it will be apparent
that the number of I/Os required by this process is linear in their number (and thus optimal). The

Sorting Atomic Items 5-5

input run

output run

U U

M M M M

H H H

FIGURE 5.2: An illustration of four steps of a phase in Snow Plow. The leftmost picture shows the
starting step in which U is heapified, then a picture shows the output of the minimum element in
H , hence the two possible cases for the insertion of the new item, and finally the stopping condition
in whichH is empty andU fills entirely the internal memory.

algorithm proceeds in phases, each phase generates a sorted run (see Figure 5.2 for an illustrative
example). A phase starts with the internal-memory filled of M (unsorted) items, stored in a heap data
structure called H . Since the array-based implementation of heaps requires no additional space, in
addition to the indexed items, we can fit in H as many items as we have memory cells available.
The phase scans the input sequence S (which is unsorted) and at each step, it writes to the output
the minimum item withinH , say min, and loads in memory the next item from S , say next. Since
we want to generate a sorted output, we cannot store next in H if next < min, because it will be
the new heap-minimum and thus it will be written out at the next step thus destroying the property
of ordered run. So in that case next must be stored in an auxiliary array, called U, which stays
unsorted. Of course the total size of H and U is M over the whole execution of a phase. A phase
stops whenever H is empty and thus U consists of M unsorted items, and the next phase can thus
start (storing those items in a new heap H and emptying U). Two observations are in order: (i)
during the phase execution, the minimum of H is non decreasing and so it is non-decreasing also
the output run, (ii) the items inH at the beginning of the phase will be eventually written to output
which thus is longer than M. Observation (i) implies the correctness, observation (ii) implies that
this approach is not less efficient than the classic Mergesort.

Algorithm 5.2 A phase of the Snow-Plow technique
Require: U is an unsorted array of M items

1: H = build a min-heap overU’s items;
2: SetU = ∅;
3: while (H , ∅) do
4: min = Extract minimum fromH ;
5: Write min to the output run;
6: next = Read the next item from the input sequence;
7: if (next < min) then
8: write next inU;
9: else

10: insert next inH ;
11: end if
12: end while

Actually it is more efficient than that on average. Suppose that a phase reads τ items in total
from S . By the while-guard in Step 3 and our comments above, we can derive that a phase ends
when H is empty and |U| = M. We know that the read items go in part in H and in part in U.

5-6 Paolo Ferragina

But since items are added to U and never removed during a phase, M of the τ items end-up in U.
Consequently (τ − M) items are inserted inH and eventually written to the output (sorted) run. So
the length of the sorted run at the end of the phase is M + (τ − M) = τ, where the first addendum
accounts for the items in H at the beginning of a phase, whereas the second addendum accounts
for the items read from S and inserted inH during the phase. The key issue now is to compute the
average of τ. This is easy if we assume a random distribution of the input items. In this case we
have probability 1/2 that next is smaller than min, and thus we have equal probability that a read
item is inserted either in H or in U. Overall it follows that τ/2 items go to H and τ/2 items go to
U. But we already know that the items inserted in U are M, so we can set M = τ/2 and thus we
get τ = 2M.

FACT 5.1 Snow-Plow builds O(n/M) sorted runs, each longer than M and actually of length
2M on average. Using Snow-Plow for the formation of sorted runs in a Merge-based sorting
scheme, this achieves an I/O-complexity of O(n

B log2
n

2M) on average.

5.1.3 From binary to multi-way Mergesort

Previous optimizations deployed the internal-memory size M to reduce the number of recursion
levels by increasing the size of the initial (sorted) runs. But then the merging was binary in that
it fused two input runs at a time. This binary-merge impacted onto the base 2 of the logarithm of
the I/O-complexity of Mergesort. Here we wish to increase that base to a much larger value, and
in order to get this goal we need to deploy the memory M also in the merging phase by enlarging
the number of runs that are fused at a time. In fact the merge of 2 runs uses only 3 blocks of the
internal memory: 2 blocks are used to cache the current disk pages that contain the compared items,
namely S [x] and S [y] from the notation above, and 1 block is used to cache the output items which
are flushed when the block is full (so to allow a block-wise writing to disk of the merged run). But
the internal memory contains a much larger number of blocks, i.e. M/B� 3, which remain unused
over the whole merging process. The third optimization we propose, therefore consists of deploying
all those blocks by designing a k-way merging scheme that fuses k runs at a time, with k � 2. Let
us set k = (M/B) − 1, so that k blocks are available to read block-wise k input runs, and 1 block
is reserved for a block-wise writing of the merged run to disk. This scheme poses a challenging
merging problem because at each step we have to select the minimum among k candidates items
and this cannot be obviously done brute-forcedly by iterating among them. We need a smarter
solution that again hinges onto the use of a min-heap data structure, which contains k pairs (one
per input run) each consisting of two components: one denoting an item and the other denoting the
origin run. Initially the items are the minimum items of the k runs, and so the pairs have the form
〈Ri[1], i〉, where Ri denotes the ith input run and i = 1, 2, . . . , k. At each step, we extract the pair
containing the current smallest item inH (given by the first component of its pairs), write that item
to output and insert in the heap the next item in its origin run. As an example, if the minimum pair
is 〈Rm[x],m〉 then we write in output Rm[x] and insert in H the new pair 〈Rm[x + 1],m〉, provided
that the mth run is not exhausted, in which case no pair replaces the extracted one. In the case that
the disk page containing Rm[x + 1] is not cached in internal memory, an I/O-fault occurs and that
page is fetched, thus guaranteeing that the next B reads from run Rm will not elicit any further I/O.
It should be clear that this merging process takes O(log2 k) time per item, and again O(z/B) I/Os to
merge k runs of total length z.

As a result the merging-scheme recalls a k-way tree with O(n/M) leaves (runs) which can have
been formed using any of the optimizations above (possibly via Snow Plow). Hence the total number
of merging levels is now O(logM/B

n
M) for a total volume of I/Os equal to O(n

B logM/B
n
M). We observe

that sometime we will also write the formula as O(n
B logM/B

n
B), as it typically occurs in the literature,

Sorting Atomic Items 5-7

because logM/B M can be written as logM/B(B× (M/B)) = (logM/B B)+1 = Θ(logM/B B). This makes
no difference asymptotically given that logM/B

n
M = Θ(logM/B

n
B).

THEOREM 5.1 Multi-way Mergesort takes O(n
B logM/B

n
M) I/Os and O(n log n) comparisons/-

time to sort n atomic items in a two-level memory model in which the internal memory has size M
and the disk page has size B. The use of Snow-Plow or integer compressors would virtually increase
the value of M with a twofold advantage in the final I/O-complexity, because M occurs twice in the
I/O-bound.

In practice the number of merging levels will be very small: assuming a block size B = 4KB
and a memory size M = 4GB, we get M/B = 232/212 = 220 so that the number of passes is 1/20th
smaller than the ones needed by binary Mergesort. Probably more interesting is to observe that one
pass is able to sort n = M items, but two passes are able to sort M2/B items, since we can merge
M/B-runs each of size M. It goes without saying that in practice the internal-memory space which
can be dedicated to sorting is smaller than the physical memory available (typically MBs versus
GBs). Nevertheless it is evident that M2/B is of the order of Terabytes already for M = 128MB and
B = 4KB.

5.2 Lower bounds

At the beginning of this lecture we commented on the relation existing between the Sorting and the
Permuting problems, concluding that the former one is more difficult than the latter in the RAM
model. The gap in time complexity is given by a logarithmic factor. The question we address in this
section is whether this gap does exist also when measuring I/Os. Surprisingly enough we will show
that Sorting is equivalent to Permuting in terms of I/O-volume. This result is amazing because it
can be read as saying that the I/O-cost for sorting is not in the computation of the sorted permutation
but rather the movement of the data on the disk to realize it. This is the so called I/O-bottleneck that
has in this result the mathematical proof and quantification.

Before digging into the proof of this lower bound, let us briefly show how a sorter can be used to
permute a sequence of items S [1, n] in accordance to a given permutation π[1, n]. This will allow
us to derive an upper bound to the number of I/Os which suffice to solve the Permuting problem
on any 〈S , π〉. Recall that this means to generate the sequence S [π[1]], S [π[2]], . . . , S [π[n]]. In
the RAM model we can jump among S ’s items according to permutation π and create the new
sequence S [π[i]], for i = 1, 2, . . . , n, thus taking O(n) optimal time. On disk we have actually two
different algorithms which induce two incomparable I/O-bounds. The first algorithm consists of
mimicking what is done in RAM, paying one I/O per moved item and thus taking O(n) I/Os. The
second algorithm consists of generating a proper set of tuples and then sort them. Precisely, the
algorithm creates the sequence P of pairs 〈i, π[i]〉 where the first component indicates the position
i where the item S [π[i]] must be stored. Then it sorts these pairs according to the π-component,
and via a parallel scan of S and P substitutes π[i] with the item S [π[i]], thus creating the new pairs
〈i, S [π[i]]〉. Finally another sort is executed according to the first component of these pairs, thus
obtaining a sequence of items correctly permuted. The algorithm uses two scans of the data and two
sorts, so it needs O(n

B logM/B
n
M) I/Os.

THEOREM 5.2 Permuting n items takes O(min{n, n
B logM/B

n
M }) I/Os in a two-level memory

model in which the internal memory has size M and the disk page has size B.

In what follows we will show that this algorithm, in its simplicity, is I/O-optimal. The two upper-
bounds for Sorting and Permuting equal each other whenever n = Ω(n

B logM/B
n
M). This occurs when

5-8 Paolo Ferragina

B > logM/B
n
M that holds always in practice because that logarithm term is about 2 or 3 for values

of n up to many Terabytes. So programmers should not be afraid to find sophisticated strategies for
moving their data in the presence of a permutation, just sort them, you cannot do better!

time complexity (RAM model) I/O complexity (two-level memory model)
Permuting O(n) O(min{n, n

B logM/B
n
M })

Sorting O(n log2 n) O(n
B log M

B

n
M)

TABLE 5.1 Time and I/O complexities of the Permuting and Sorting problems in a two-level memory

model in which M is the internal-memory size, B is the disk-page size, and D = 1 is the number of

available disks. The case of multi-disks presents the multiplicative term n/D in place of n.

5.2.1 A lower-bound for Sorting

There are some subtle issues here that we wish to do not investigate too much, so we hereafter give
only the intuition which underlies the lower-bounds for both Sorting and Permuting.2 We start by
resorting the comparison-tree technique for proving comparison-based lower bounds in the RAM
model. An algorithm corresponds to a family of such trees, one per input size (so infinite in number).
Every node is a comparison between two items. The comparison has two possible results, so the fan-
out of each internal node is two and the tree is binary. Each leaf of the tree corresponds to a solution
of the underlying problem to be solved: so in the case of sorting, we have one leaf per permutation
of the input. Every root-to-leaf path in the comparison-tree corresponds to a computation, so the
longest path corresponds to the worst-case number of comparisons executed by the algorithm. In
order to derive a lower bound, it is therefore enough to compute the depth of the shallowest binary
tree having that number of leaves. The shallowest binary tree with ` leaves is the (quasi-)perfectly
balanced tree, for which the height h is such that 2h ≥ `. Hence h ≥ log2 `. In the case of sorting
` = n! so the classic lower bound h = Ω(n log2 n) is easily derived by applying logarithms at both
sides of the equation and using the Stirling’s approximation for the factorial.

In the two-level memory model the use of comparison-trees is more sophisticated. Here we wish
to account for I/Os, and exploit the fact that the information available in the internal memory can be
used for free. As a result every node corresponds to one I/O, the number of leaves equals still to n!,
but the fan-out of each internal node equals to the number of comparison-results that this single I/O
can generate among the items it reads from disk (i.e. B) and the items available in internal memory
(i.e. M − B). These B items can be distributed in at most

(
M
B

)
ways among the other M − B items

present in internal memory, so one I/O can generate no more than
(

M
B

)
different results for those

comparisons. But this is an incomplete answer because we are not considering the permutations
among those items! However, some of these permutations have been already counted by some
previous I/O, and thus we have not to recount them. These permutations are the ones concerning
with items that have already passed through internal memory, and thus have been fetched by some
previous I/O. So we have to count only the permutations among the new items, namely the ones
that have never been considered by a previous I/O. We have n/B input pages, and thus n/B I/Os

2There are two assumptions that are typically introduced in those arguments. One concerns with item indivisibility, so
items cannot be broken up into pieces (hence hashing is not allowed!), and the other concerns with the possibility to only
move items and not create/destroy/copy them, which actually implies that exactly one copy of each item does exist during
their sorting or permuting.

Sorting Atomic Items 5-9

accessing new items. So these I/Os generate
(

M
B

)
(B!) results by comparing those new B items with

the M − B ones in internal memory.
Let us now consider a computation with t I/Os, and thus a path in the comparison-tree with t

nodes. n/B of those nodes must access the input items, which must be surely read to generate the
final permutation. The other t − n

B nodes read pages containing already processed items. Any root-
to-leaf path has this form, so we can look at the comparison tree as having the new-I/Os at the top
and the other nodes at its bottom. Hence if the tree has depth t, its number of leaves is at least(

M
B

)t × (B!)n/B. By imposing that this number is ≥ n!, and applying logarithms to both members, we
derive that t = Ω(n

B logM/B
n
M). It is not difficult to extend this argument to the case of D disks thus

obtaining the following.

THEOREM 5.3 In a two-level memory model with internal memory of size M, disk-page size
B and D disks, a comparison-based sorting algorithm must execute Ω(n

DB logM/B
n

DB) I/Os.

It is interesting to observe that the number of available disks D does not appear in the denominator
of the base of the logarithm, although it appears in the denominator of all other terms. If this would
be the case, instead, D would somewhat penalize the sorting algorithms because it would reduce
the logarithm’s base. In the light of Theorem 5.1, multi-way Mergesort is I/O and time optimal on
one disk, so D linearly boosts its performance thus having more disks is linearly advantageous (at
least from a theoretical point of view). But Mergesort is no longer optimal on multi-disks because
the simultaneous merging of k > 2 runs, should take O(n/DB) I/Os in order to be optimal. This
means that the algorithm should be able to fetch D pages per I/O, hence one per disk. This cannot
be guaranteed, at every step, by the current merging-scheme because whichever is the distribution
of the k runs among the D disks, and even if we know which are the next DB items to be loaded
in the heap H , it could be the case that more than B of these items reside on the same disk thus
requiring more than one I/O from that disk, hence preventing the parallelism in the read operation.

In the following Section 5.4 we will address this issue by proposing the disk striping technique,
that comes close to the I/O-optimal bound via a simple data layout on disks, and the Greedsort
algorithm that achieves full optimality by devising an elegant and sophisticated merging scheme.

5.2.2 A lower-bound for Permuting

Let us assume that at any time the memory of our model, hence the internal memory of size M
and the unbounded disk, contains a permutation of the input items possibly interspersed by empty
cells. No more than n blocks will be non empty during the execution of the algorithm, because n
steps (and thus I/Os) is an obvious upper bound to the I/O-complexity of Permuting (obtained by
mimicking on disk the Permuting algorithm for the RAM model). We denote by Pt the number of
permutations generated by an algorithm with t I/Os, where t ≤ n and P0 = 1 since at the beginning
we have the input order as initial permutation. In what follows we estimate Pt and then set Pt ≥ n!
in order to derive the minimum number of steps t needed to realize any possible permutation given
in input. Permuting is different from Sorting because the permutation to be realized is provided in
input, and thus we do not need any computation. So in this case we distinguish three types of I/Os,
which contribute differently to the number of generated permutations:

Write I/O: This may increase Pt by a factor O(n) because we have at most n+1 possible ways
to write the output page among the at most n not-empty pages available on disk. Any
written page is “touched”, and they are no more than n at any instant of the permuting
process.

Read I/O on an untouched page: If the page was an input page never read before, the read
operation imposes to account for the permutations among the read items, hence B! in

5-10 Paolo Ferragina

number, and to account also for the permutations that these B items can realize by dis-
tributing them among the M − B items present in internal memory (similarly as done for
Sorting). So this read I/O can increase Pt by a factor O(

(
M
B

)
(B!)). The number of input

(hence “untouched”) pages is n/B. After a read I/O, they become “touched”.
Read I/O on a touched page: If the page was already read or written, we already accounted

in Pt for the permutations among its items, so this read I/O can increase Pt only by a
factor O(

(
M
B

)
) due to the shuffling of the B read items with the M − B ones present in

internal memory. The number of touched pages is at most n.

If tr is the number of reads and tw is the number of writes executed by a Permuting algorithm,
where t = tr + tw, then we can bound Pt as follows (here “big-O” have been dropped to ease the
reading of the formulas):

Pt ≤ (
n
B

(
M
B

)
(B!))n/B × (n

(
M
B

)
)tr−n/B × ntw ≤ (n

(
M
B

)
)t(B!)

n
B

In order to generate every possible permutation of the n input items, we need that Pt ≥ n!. We
can thus derive a lower bound on t by imposing that n! ≤ (n

(
M
B

)
)t (B!)

n
B and resolving with respect

to t:

t = Ω(
n log n

B

B log M
B + log n

)

We distinguish two cases. If B log M
B ≤ log n, then the above equation becomes t = Ω(n log n

B
log n) =

Ω(n); otherwise it is t = Ω(n log n
B

B log M
B

) = Ω(n
B log M

B

n
M). As for sorting, it is not difficult to extend this

proof to the case of D disks.

THEOREM 5.4 In a two-level memory model with internal memory of size M, disk-page size
B and D disks, permuting n items needs Ω(min{ n

D ,
n

DB logM/B
n

DB }) I/Os.

Theorems 5.2–5.4 prove that the I/O-bounds provided in Table 5.1 for the Sorting and Permuting
problems are optimal. Comparing these bounds we notice that they are asymptotically different
whenever B log M

B < log n. Given the current values for B and M, respectively few KBs and few
GBs, this inequality holds if n = Ω(2B) and hence when n is much more than Yottabytes (= 280).
This is indeed an unreasonable situation to deal with one CPU and few disks. Probably in this con-
text it would be more reasonable to use a cloud of PCs, and thus analyze the proposed algorithms via
a distributed model of computation which takes into account many CPUs and more-than-2 memory
levels. It is therefore not surprising that researchers typically assume Sorting = Permuting in
the I/O-setting.

5.3 The distribution-based sorting paradigm

Like Mergesort, Quicksort is based on the divide&conquer paradigm, so it proceeds by dividing
the array to be sorted into two pieces which are then sorted recursively. But unlike Mergesort,
Quicksort does not explicitly allocate extra-working space, its combine-step is absent and its divide-
step is sophisticated and impacts onto the overall efficiency of this sorting algorithm. Algorithm 5.3
reports the pseudocode of Quicksort, this will be used to comment on its complexity and argue for
some optimizations or tricky issues which arise when implementing it over hierarchical memories.

Sorting Atomic Items 5-11

Algorithm 5.3 The binary quick-sort: QuickSort(S , i, j)
1: if (i < j) then
2: r = pick the position of a “good pivot”;
3: swap S [r] with S [i];
4: p = Partition(S , i, j);
5: QuickSort(S , i, p − 1);
6: QuickSort(S , p + 1, j);
7: end if

The key idea is to partition the input array S [i, j] in two pieces such that one contains items which
are smaller (or equal) than the items contained in the latter piece. This partition is order preserving
because no subsequent steps are necessary to recombine the ordered pieces after the two recursive
calls. Partitioning is typically obtained by selecting one input item as a pivot, and by distributing
all the other input items into two sub-arrays according to whether they are smaller/greater than the
pivot. Items equal to the pivot can be stored anywhere. In the pseudocode the pivot is forced to
occur in the first position S [i] of the array to be sorted (steps 2–3): this is obtained by swapping the
real pivot S [r] with S [i] before that procedure Partition(S , i, j) is invoked. We notice that step 2
does not detail the selection of the pivot, because this will be the topic of a subsequent section.

There are two issues for achieving efficiency in the execution of Quicksort: one concerns with
the implementation of Partition(S , i, j), and the other one with the ratio between the size of the two
formed pieces because the more balanced they are, the more Quicksort comes closer to Mergesort
and thus to the optimal time complexity of O(n log n). In the case of a totally unbalanced partition,
in which one piece is possibly empty (i.e. p = i or p = j), the time complexity of Quicksort is
O(n2), thus recalling in its cost the Insertion sort. Let us comment these two issues in detail in the
following subsections.

5.3.1 From two- to three-way partitioning

The goal of Partition(S , i, j) is to divide the input array into two pieces, one contains items which
are smaller than the pivot, and the other contains items which are larger than the pivot. Items equal to
the pivot can be arbitrarily distributed among the two pieces. The input array is therefore permuted
so that the smaller items are located before the pivot, which in turn precedes the larger items. At
the end of Partition(S , i, j), the pivot is located at S [p], the smaller items are stored in S [i, p − 1],
the larger items are stored in S [p + 1, j]. This partition can be implemented in many ways, taking
O(n) optimal time, but each of them offers a different cache usage and thus different performance in
practice. We present below a tricky algorithm which actually implements a three-way distribution
and takes into account the presence of items equal to the pivot. They are detected and stored aside
in a “special” sub-array which is located between the two smaller/larger pieces.

It is clear that the central sub-array, which contains items equal to the pivot, can be discarded from
the subsequent recursive calls, similarly as we discard the pivot. This reduces the number of items
to be sorted recursively, but needs a change in the (classic) pseudo-code of Algorithm 5.3, because
Partition must now return the pair of indices which delimit the central sub-array instead of just the
position p of the pivot. The following Algorithm 5.4 details an implementation for the three-way
partitioning of S [i, j] which uses three pointers that move rightward over this array and maintain
the following invariant: P is the pivot driving the three-way distribution, S [c] is the item currently
compared against P, and S [i, c − 1] is the part of the input array already scanned and three-way
partitioned in its elements. In particular S [i, c − 1] consists of three parts: S [i, l − 1] contains items
smaller than P, S [l, r − 1] contains items equal to P, and S [r, c − 1] contains items larger than P. It
may be the case that anyone of these sub-arrays is empty.

5-12 Paolo Ferragina

Algorithm 5.4 The three-way partitioning: Partition(S , i, j)
1: P = S [i]; l = i; r = i + 1;
2: for (c = r; c ≤ j; c++) do
3: if (S [c] == P) then
4: swap S [c] with S [r];
5: r++;
6: else if (S [c] < P) then
7: swap S [c] with S [l];
8: swap S [c] with S [r];
9: r++; l++;

10: end if
11: end for
12: return 〈l, r − 1〉;

Step 1 initializes P to the first item of the array to be partitioned (which is the pivot), l and r
are set to guarantee that the smaller/greater pieces are empty, whereas the piece containing items
equal to the pivot consists of the only item P. Next the algorithm scans S [i + 1, j] trying to maintain
the invariant above. This is easy if S [c] > P, because it suffices to extend the part of the larger
items by advancing r. In the other two cases (i.e. S [c] ≤ P) we have to insert S [c] in its correct
position among the items of S [i, r − 1], in order to preserve the invariant on the three-way partition
of S [i, c]. The cute idea is that this can be implemented in O(1) time by means of at most two swaps,
as described graphically in Figure 5.3.

Case S [c] = P

i j

l r c

< = >

>

=

Case S [c] < P

i j

l r c

< = >

= >

<

FIGURE 5.3: The two cases and the corresponding swapping. On the arrow we specify the value of
the moved item with respect to the pivot.

The three-way partitioning algorithm takes O(n) time and offers two positive properties: (i)
stream-like access to the array S which allows the pre-fetching of the items to be read; (ii) the
items equal to the pivot can then be eliminated from the following recursive calls. A last note con-
cerns with the pair of indices 〈l, r−1〉 returned by Partition(S , i, j): they delimit the part of S which
consists of elements equal to P, and thus they can be dropped from the subsequent recursive calls,
being them in the final correct positions.

5.3.2 Pivot selection

Sorting Atomic Items 5-13

The selection of the pivot is crucial to get balanced partitions, reduce the number of recursive calls,
and achieve optimal O(n log n) time complexity. The pseudo-code of Algorithm 5.3 does not detail
the way the pivot is selected because this may occur in many different ways, each offering pros/cons.
As an example, if we choose the pivot as the first item of the input array (namely r = i), the selection
is fast but it is easy to instantiate the input array in order to induce un-balanced partitions: just take
S to be an increasing or decreasing ordered sequence of items. Worse than this, it is the observation
that any deterministic choice incurs in this drawback.

One way to circumvent bad inputs is to select the pivot randomly among the items in S [i, j]. This
prevents the case that a given input is bad for Quicksort, but makes the behavior of the algorithm
un-predictable in advance and dependant on the random selection of the pivot. We can show that
the average time complexity is the optimal O(n log2 n), with an hidden constant small and equal to
1.39. This fact, together with the in-place nature of Quicksort, makes this approach much appealing
in practice (cfr qsort below).

THEOREM 5.5 The random selection of the pivot drives Quicksort to compare no more than
2n ln n items, on average.

Proof The proof is deceptively simple if attacked from the correct angle. We wish to compute the
number of comparisons executed by Partition over the sequence S . Let Xu,v be the random binary
variable which indicates whether S [u] and S [v] are compared by Partition, and denote by pu,v the
probability that this event occurs. The average number of comparisons executed by Quicksort can
then be computed as E[

∑
u,v Xu,v] =

∑
u
∑

v>u 1× pu,v + 0× (1− pu,v) =
∑n

u=1
∑n

v=u+1 pu,v by linearity
of expectation.

To estimate pu,v we concentrate on the random choice of the pivot S [r] because two items are
compared by Partition only if one of them is the pivot. So we distinguish three cases. If S [r] is
smaller or larger than both S [u] and S [v], then the two items S [u] and S [v] are not compared to
each other and they are passed to the same recursive call of Quicksort. So the problem presents
itself again on a smaller subset of items containing both S [u] and S [v]. This case is therefore not
interesting for estimating pu,v, because we cannot conclude anything at this recursive-point about
the execution or not of the comparison between S [u] and S [v]. In the case that either S [u] or S [v]
is the pivot, then they are compared by Partition. In all other cases, the pivot is taken among the
items of S whose value is between S [u] and S [v]; so these two items go to two different partitions
(hence two different recursive calls of Quicksort) and will never be compared.

As a result, to compute pu,v we have to consider as interesting pivot-selections the two last sit-
uations. Among them, two are the “good” cases, but how many are all these interesting pivot-
selections? We need to consider the sorted S , denoted by S ′. There is an obvious bijection between
pairs of items in S ′ and pairs of items in S . Let us assume that S [u] is mapped to S ′[u′] and S [v]
is mapped to S ′[v′], then it is easy to derive the number of interesting pivot-selections as v′ − u′ + 1
which corresponds to the number of items (hence pivot candidates) whose value is between S [u]
and S [v] (extremes included). So pu,v = 2/(v′ − u′ + 1).

This formula may appear complicate because we have on the left u, v and on the right u′, v′. Given
the bijection between S and S ′, We can rephrase the statement “considering all pairs (u, v) in S ” as
“considering all pairs (u′, v′) in S ′”, and thus write:

E[
∑

u,v

Xu,v] =

n∑

u=1

n∑

v=u+1

pu,v =

n∑

u′=1

n∑

v′>u′

2
v′ − u′ + 1

= 2
n∑

u′=1

n−u′+1∑

k=2

1
k
≤ 2

n∑

u′=1

n∑

k=2

1
k
≤ 2n ln n

where the last inequality comes from the properties of the n-th harmonic number, namely
∑n

k=1
1
k ≤

1 + ln n.

5-14 Paolo Ferragina

The next question is how we can enforce the average behavior. The natural answer is to sample
more than one pivot. Typically 3 pivots are randomly sampled from S and the central one (i.e.
the median) is taken, thus requiring just two comparisons in O(1) time. Taking more than 3 pivots
makes the selection of a “good one” more robust, as proved in the following theorem [2].

THEOREM 5.6 If Quicksort partitions around the median of 2s+1 randomly selected elements,
it sorts n distinct elements in 2nHn

H2s+2−Hs+1
+ O(n) expected comparisons, where Hz is the z-th harmonic

number
∑z

i=1
1
i .

By increasing s, we can push the expected number of comparisons close to n log n+O(n), however
the selection of the median incurs a higher cost. In fact this can be implemented either by sorting the
s samples in O(s log s) time and taking the one in the middle position s + 1 of the ordered sequence;
or in O(s) worst-case time via a sophisticated algorithm (not detailed here). Randomization helps
in simplifying the selection still guaranteeing O(s) time on average. We detail this approach here
because its analysis is elegant and its structure general enough to be applied not only for the selection
of the median of an unordered sequence, but also for selecting the item of any rank k.

Algorithm 5.5 Selecting the k-th ranked item: RandSelect(S , k)
1: r = Rand(1, n);
2: S < = items of S which are smaller than S [r];
3: S > = items of S which are larger than S [r];
4: n< = |S <|;
5: n= = |S | − (|S <| + |S >|);
6: if (k ≤ n<) then
7: return RandSelect(S <, k);
8: else if (k ≤ (n< + n=)) then
9: return S [r];

10: else
11: return RandSelect(S >, k − n< − n=);
12: end if

Algorithm 5.5 is randomized and selects the item of the unordered S having rank k. It is interest-
ing to see that the algorithmic scheme mimics the one used in the Partitioning phase of Quicksort:
here the selected item S [r] plays the same role of the pivot in Quicksort, because it is used to par-
tition the input sequence S in three parts consisting of items smaller/equal/larger than S [r]. But
unlike Quicksort, RandSelect recurses only in one of these three parts, namely the one containing
the k-th ranked item. This part can be determined by just looking at the sizes of those parts, as done
in Steps 6 and 8. There are two specific issues that deserve a comment. We do not need to recurse
on S = because it consists of items equal to S [r]. If recursion occurs on S >, we need to update the
rank k because we are dropping from the original sequence the items belonging to the set S < ∪ S =.
Correctness is therefore immediate, so we are left with computing the average time complexity of
this algorithm which turns to be the optimal O(n), given that S is unsorted and thus all of its n items
have to be examined to find the one having rank k among them.

THEOREM 5.7 Selecting the k-th ranked item in an unordered sequence of size n takes O(n)
average time in the RAM model, and O(n/B) I/Os in the two-level memory model.

Sorting Atomic Items 5-15

Proof Let us call “good selection” the one that induces a partition in which n< and n> are not
larger than 2n/3. We do not care of the size of S = since, if it contains the searched item, that item
is returned immediately as S [r]. It is not difficult to observe that S [r] must have rank in the range
[n/3, 2n/3] in order to ensure that n< ≤ 2n/3 and n> ≤ 2n/3. This occurs with probability 1/3,
given that S [r] is drawn uniformly at random from S . So let us denote by T̂ (n) the average time
complexity of RandSelect when run on an array S [1, n]. We can write

T̂ (n) ≤ O(n) +
1
3
× T̂ (2n/3) +

2
3
× T̂ (n),

where the first term accounts for the time complexity of Steps 2-5, the second term accounts
for the average time complexity of a recursive call on a “good selection”, and the third term is a
crude upper bound to the average time complexity of a recursive call on a “bad selection” (that is
actually assumed to recurse on the entire S again). This is not a classic recurrent relation because
the term T̂ (n) occurs on both sides; nevertheless, we observe that this term occurs with different
constants in the front. Thus we can simplify the relation by subtracting those terms, so getting
1
3 T̂ (n) ≤ O(n) + 1

3 T̂ (2n/3), which gives T̂ (n) = O(n) + T̂ (2n/3) = O(n). If this algorithm is executed
in the two-level memory model, the equation becomes T̂ (n) = O(n/B) + T̂ (2n/3) = O(n/B) given
that the construction of the three subsets can be done via a single pass over the input items.

We can use RandSelect in many different ways within Quicksort. For example, we can select the
pivot as the median of the entire array S (setting k = n/2) or the median among an over-sampled
set of 2s + 1 pivots (setting k = s + 1, where s � n/2), or finally, it could be subtly used to select
a pivot that generates a balanced partition in which the two parts have different sizes both being
a fraction of n, say αn and (1 − α)n with α < 0.5. This last choice k = bαnc seems meaningless
because the three-way partitioning still takes O(n) time but increases the number of recursive calls
from log2 n to log 1

1−α
n. But this observation neglects the sophistication of modern CPUs which

are parallel, pipelined and superscalar. These CPUs execute instructions in parallel, but if there
is an event that impacts on the instruction flow, their parallelism is broken and the computation
slows down significantly. Particularly slow are branch mispredictions, which occur in the execution
of Partition(S , i, j) whenever an item smaller than or equal to the pivot is encountered. If we
reduce these cases, then we reduce the number of branch-mispredictions, and thus deploy the full
parallelism of modern CPUs. Thus the goal is to properly set α in a way that the reduced number
of mispredictions balances the increased number of recursive calls. The right value for α is clearly
architecture dependent, recent results have shown that a reasonable value is 0.1.

5.3.3 Bounding the extra-working space

QuickSort is frequently named as an in-place sorter because it does not use extra-space for ordering
the array S . This is true if we limit ourself to the pseudocode of Algorithm 5.3, but it is no longer
true if we consider the cost of managing the recursive calls. In fact, at each recursive call, the OS
must allocate space to save the local variables of the caller, in order to retrieve them whenever the
recursive call ends. Each recursive call has a space cost of Θ(1) which has to be multiplied by
the number of nested calls Quicksort can issue on an array S [1, n]. This number can be Ω(n) in
the worst case, thus making the extra-working space Θ(n) on some bad inputs (such as the already
sorted ones, pointed out above).

We can circumvent this behavior by restructuring the pseudocode of Algorithm 5.3 as specified
in Algorithm 5.6. This algorithm is cryptic at a first glance, but the underlying design principle is
pretty smart and elegant. First of all we notice that the while-body is executed only if the input
array is longer than n0, otherwise Insertion-sort is called in Step 13, thus deploying the well-known
efficiency of this sorter over very small sequences. The value of n0 is typically chosen of few tens

5-16 Paolo Ferragina

Algorithm 5.6 The binary quick-sort with bounded recursive-depth: BoundedQS(S , i, j)
1: while (j − i > n0) do
2: r = pick the position of a “good pivot”;
3: swap S [r] with S [i];
4: p = Partition(S , i, j);
5: if (p ≤ i+ j

2) then
6: BoundedQS(S , i, p − 1);
7: i = p + 1;
8: else
9: BoundedQS(S , p + 1, j);

10: j = p − 1;
11: end if
12: end while
13: InsertionSort(S , i, j);

of items. If the input array is longer than n0, a modified version of the classic binary Quicksort
is executed that mixes one single recursive call with an iterative while-loop. The ratio underlying
this code re-factoring is that the correctness of classic Quicksort does not depend on the order of
the two recursive calls, so we can reshuffle them in such a way that the first call is always executed
on the smaller part of the two/three-way partition. This is exactly what the IF-statement in step 5
guarantees. In addition to that, the pseudo-code above drops the recursive call onto the larger part
of the partition in favor of another execution of the body of the while loop in which we properly
changed the parameters i and j to reflect the new extremes of that larger part. This “change” is
well-known in the literature of compilers with the name of elimination of tail recursion. The net
result is that the recursive call is executed on a sub-array whose size is no more than the half of the
input array. This guarantees an upper bound of O(log2 n) on the number of recursive calls, and thus
on the size of the extra-space needed to manage them.

THEOREM 5.8 BoundedQS sorts n atomic items in the RAM model taking O(n log n) average
time, and using O(log n) additional working space.

We conclude this section by observing that the C89 and C99 ANSI standards define a sorting
algorithm, called qsort, whose implementation encapsulates most of the algorithmic tricks detailed
above.3 This witnesses further the efficiency of the distribution-based sorting scheme over the 2-
levels: cache and DRAM.

5.3.4 From binary to multi-way Quicksort

Distribution-based sorting is the dual of merge-based sorting in that the first proceeds by splitting
sequences according to pivots and then ordering them recursively, while the latter merges sequences
which have been ordered recursively. Disk-efficiency was obtained in Multi-way Mergesort by
managing (fusing) multiple sequences together. The same idea is applied to design the Multi-way

3Actually qsort is based on a different two-way partitioning scheme that uses two iterators, one moves forward and the
other one moves backward over S ; a swap occurs whenever two un-sorted items are encountered. The asymptotic time
complexity does not change, but practical efficiency can spur from the fact that the number of swaps is reduced since
equal items are not moved.

Sorting Atomic Items 5-17

Quicksort which splits the input sequence into k = Θ(M/B) sub-sequences by using k − 1 pivots.
Given that k � 1 the selection of those pivots is not a trivial task because it must ensure that the k
partitions they form, are balanced and thus contain Θ(n/k) items each. Section 5.3.2 discussed the
difficulties underlying the selection of one pivot, so the case of selecting many pivots is even more
involved and needs a sophisticated analysis.

We start with denoting by s1, . . . , sk−1 the pivots used by the algorithm to split the input sequence
S [1, n] in k parts, also called buckets. For the sake of clarity we introduce two dummy pivots
s0 = −∞ and sk = +∞, and denote the i-th bucket by Bi = {S [j] : si−1 < S [j] ≤ si}. We wish to
guarantee that |Bi| = Θ(n/k) for all the k buckets. This would ensure that logk

n
M partitioning phases

are enough to get sub-sequences shorter than M, which can thus be sorted in internal-memory
without any further I/Os. Each partitioning phase can be implemented in O(n/B) I/Os by using a
memory organization which is the dual of the one employed for Mergesort: namely, 1 input block
(used to read from the input sequence to be partitioned) and k output blocks (used to write into the
k partitions under formation). By imposing k = Θ(M/B), we derive that the number of partitioning
phases is logk

n
M = Θ(logM/B

n
M) so that the Multi-way Quicksort takes the optimal I/O-bound of

Θ(n
B logM/B

n
M), provided that each partitioning step distributes evenly the input items among the k

buckets.
To find efficiently (k − 1) good pivots, we deploy a fast and simple randomized strategy based on

oversampling, whose pseudocode is given in Algorithm 5.7 below. Parameter a ≥ 0 controls the
amount of oversampling and thus impacts onto the robustness of the selection process as well as on
the cost of Step 2. The latter cost is O((ak) log(ak)) if we adopt an optimal in-memory sorter, such
as Heapsort or Mergesort, to sort the Θ(ak) sampled items.

Algorithm 5.7 Selection of k − 1 good pivots via oversampling
1: Take (a + 1)k − 1 samples at random from the input sequence;
2: Sort them into an ordered sequence A;
3: For i = 1, . . . , k − 1, pick the pivot si = A[(a + 1)i];
4: return the pivots si;

The main idea is to select Θ(ak) candidate pivots from the input sequence and then pick (k − 1)
among them, namely the ones which are evenly spaced and thus (a+1) far apart from each other. We
are arguing that those Θ(ak) samples provide a faithful picture of the distribution of the items in the
entire input sequence, so that the balanced selection si = A[(a + 1)i] should provide us with “good
pivots”. The larger is a the closer to Θ(n/k) should be the size of all buckets, but the higher would be
the cost of sorting the samples. At the extreme case of a = n/k, the samples could not be sorted in
internal memory! On the other hand, the closer a is to zero the faster would be the pivot selection but
more probable is to get unbalanced partitions. As we will see in the following Lemma 5.1, choosing
a = Θ(log k) is enough to obtain balanced partitions with a pivot-selection cost of O(k log2 k) time.
We notice that the buckets will be not perfectly balanced but quasi-balanced, since they include no
more than 4n

k = O(n/k) items; the factor 4 will nonetheless leave unchanged the aimed asymptotic
time complexity.

LEMMA 5.1 Let k ≥ 2 and a + 1 = 12 ln k. A sample of size (a + 1)k− 1 suffices to ensure that
all buckets receive less than 4n/k elements, with probability at least 1/2.

Proof We provide an upper bound of 1/2 to the probability of the complement event stated in

5-18 Paolo Ferragina

the Lemma, namely that there exists one bucket whose size is larger than 4n/k. This corresponds
to a failure sampling, which induces an un-balanced partition. To get this probability estimate
we will introduce a cascade of events that are implied by this one and thus have larger and larger
probabilities to occur. For the last one in the sequence we will be able to fix an explicit upper-bound
of 1/2. Given the implications, this upper bound will also hold for the original event. And so we
will be done.

Let us start by considering the sorted version of the input sequence S , which hereafter we denote
by S ′. We logically split S ′ in k/2 segments of length 2n/k each. The event we are interested in is
that there exists a bucket Bi with at least 4n/k items assigned to it. As illustrated in Figure 5.4 this
large bucket completely spans at least one segment, say t2 in the Figure below, because the former
contains ≥ 4n/k items whereas the latter contains 2n/k items.

2n/k 2n/k 2n/k 2n/k

k/2

Bi

t1 t2 t3 t j tk/2

FIGURE 5.4: Splitting of the sorted sequence S ′ into segments.

By definition of the buckets, the pivots si−1 and si which delimit Bi fall outside t2. Hence, by
Algorithm 5.7, less that (a + 1) samples fall in the segment overlapped by Bi. In the figure it is t2,
but it might be any segment of S ′. So we have that:

P(∃Bi : |Bi| ≥ 4n/k) ≤ P(∃t j : t j contains < (a + 1) samples)

≤ k
2
× P(a specific segment contains < (a + 1) samples) (5.1)

where the last inequality comes from the union bound, given that k/2 is the number of segments
constituting S ′. So we will hereafter concentrate on providing an upper bound to the last term.
The probability that one sample ends in a given segment is equal to (2n/k)

n = 2
k because they are

assumed to be drawn uniformly at random from S (and thus from S ′). So let us call X the number
of those samples, we are interested in computing P(X < a + 1). We start by observing that E[X] =

((a + 1)k − 1) × 2
k = 2(a + 1) − 2

k . The Lemma assumes that k ≥ 2, so E[X] ≥ 2(a + 1) − 1 which
is ≥ 3

2 (a + 1) for all a ≥ 1. We can thus state that a + 1 ≤ (2/3)E[X] = (1 − 1
3)E[X]. This form is

useful to resort the Chernoff bound:

P(X < (1 − δ)E[X]) ≤ e−
δ2
2 E[X]

By setting δ = 1/3, we derive

P(X < a + 1) ≤ P(X < (1 − 1
3

)E[X]) ≤ e−(E[X]/2)(1/3)2
= e−E[X]/18

≤ e−(3/2)(a+1)/18 = e−(a+1)/12 = e− ln k =
1
k

(5.2)

Sorting Atomic Items 5-19

where we used the inequality E[X] ≥ (3/2)(a+1) and the lemma’s assumption that a+1 = 12 ln k.
By plugging this value in Eqn 5.1, we get that P(∃Bi : |Bi| ≥ 4n/k) ≤ (k/2) ∗ (1/k) = 1/2 and thus
the statement of the Lemma easily follows.

5.3.5 The Dual Pivot Quicksort

In 2012, a new Quicksort variant due to Yaroslavskiy was chosen as the standard sorting method
for Oracle’s Java 7 runtime library.4 The decision for the change was based on empirical studies
showing that, on average, his new algorithm is faster than the formerly used classic Quicksort. The
improvement was achieved by using a new three-way partition strategy based on a pair of pivots
properly moved over the input sequence S . Surprisingly, this algorithmic scheme was considered
not promising by several theoretical studies in the past. Instead, authors of [7] showed that this
improvement is due to a reduction in the number of comparisons, about 1.9n ln n, at the expenses of
an increase in the number of swaps, about 0.6n ln n. Despite this trade-off, the dual-pivot strategy
results more than 10% faster, probably because branch mispredictions are more costly than memory
accesses in modern PC architectures, as we commented earlier in this chapter.5

< p ` p ≤ ◦ ≤ q k ? g > q

FIGURE 5.5: The invariant guaranteed by the Dual Pivot Quicksort

Figure 5.5 provides a pictorial representation of the Invariant maintained by the Dual Pivot Quick-
sort during the partitioning step. The algorithm uses two pivots– namely, p and q–, and three
iterators– namely, `, k and g– which partition the input sequence in four pieces.

• The leftmost piece, delimited by `, includes all items which are smaller that p;
• the mid-left piece, delimited between positions ` and k, includes items that are larger

than p and smaller than q;
• the mid-right piece, delimited between positions k and g, includes items that have still

to be examined by the algorithm;
• the rightmost piece, after position g, includes items that are larger than q.

This invariant is similar to the invariant maintained in Section 5.3.1, but there the three-way
partition was obtained by using one single pivot, treating in a special way the items equal to the
pivot, and all iterators were moving towards the right; here the algorithm uses two pivots, items
equal to these pivots are not treated separately, and two pivots move rightward (i.e. ` and k) whereas
the third one (i.e. g) moves leftward. This way the items larger than q are correctly located at the
end of the input sequence, and the items smaller than p are correctly located at the beginning of the
input sequence.

The partitioning proceeds in rounds until k ≥ g occurs. Each round first compares S [k] < p
and, if this is not true, it compares S [k] > q. In the former case it swaps S [k] with S [`], and then
advances the pointers. In the latter case, the algorithm enters in a loop that moves g leftward up

4The discussion is archived at http://permalink.gmane.org/gmane.comp.java.openjdk.core-libs.devel/2628
5Studies about the selection of the pivots and the reason for this improvement are yet underway.

5-20 Paolo Ferragina

to the position where S [g] ≤ q; here, it swaps S [k] with S [g] (and then possibly the new S [k] is
swapped with S [`] if it is smaller than p). So it is the comparison with S [k] which drives the phase,
possibly switching to a long g shifting to the left. This nesting of the comparisons is the key for the
efficiency of the algorithm which is able to move towards “better” comparisons which reduce the
branch mispredictions. We cannot go into the sophisticate details of the analysis, so we refer the
reader to [7].

This example is illustrative of the fact that classic algorithms and problems, known for decades
and considered antiquated, may be harbingers of innovation and deep/novel theoretical analysis. So
do not ever leave the curiosity to explore and analyze new algorithmic schemes!

5.4 Sorting with multi-disks∞

The bottleneck in disk-based sorting is obviously the time needed to perform an I/O operation. In
order to mitigate this problem, we can use D disks working in parallel so to transfer DB items per
I/O. On the one hand this increases the bandwidth of the I/O subsystem, but on the other hand, it
makes the design of I/O-efficient algorithms particularly difficult. Let’s see why.

The simplest approach to manage parallel disks is called disk striping and consists of looking
at the D disks as one single disk whose page size is B′ = DB. This way we gain simplicity in
algorithm design by just using as-is any algorithm designed for one disk, now with a disk-page of
size B′. Unfortunately, this simple approach pays an un-negligible price in terms of I/O-complexity:

O(
n
B′

logM/B′
n
M

) = O(
n

DB
logM/DB

n
M

)

This bound is not optimal because the base of the logarithm is D times smaller than what indicated
by the lower bound proved in Theorem 5.3. The ratio between the bound achieved via disk-striping
and the optimal bound is 1 − logM/B D, which shows disk striping to be less and less efficient as the
number of disks increases D −→ M/B. The problem resides in the fact that we are not deploying
the independency among disks by using them as a monolithic sub-system.

On the other hand, deploying this independency is tricky and it took several years before design-
ing fully-optimal algorithms running over multi-disks and achieving the bounds stated in Theorem
5.3. The key problem with the management of multi-disks is to guarantee that every time we ac-
cess the disk sub-system, we are able to read or write D pages each one coming from or going
to a different disk. This is to guarantee a throughput of DB items per I/O. In the case of sorting,
such a difficulty arises both in the case of distributed-based and merge-based sorters, each with its
specialties given the duality of those approaches.

Let us consider the multi-way Quicksort. In order to guarantee a D-way throughput in reading
the input items, these must be distributed evenly among the D disks. For example they could be
striped circularly as indicated in Figure 5.6. This would ensure that a scan of the input items takes
O(n/DB) optimal I/Os.

This way the subsequent distribution phase can read the input sequence at that I/O-speed. Nonethe-
less problems occur when writing the output sub-sequences produced by the partitioning process. In
fact that writing should guarantee that each of these sub-sequences is circularly striped among the
disks in order to maintain the invariant for the next distribution phase (to be executed independently
over those sub-sequences). In the case of D disks, we have D output blocks that are filled by the
partitioning phase. So when they are full these D blocks must be written to D distinct disks to en-
sure full I/O-parallelism, and thus one I/O. Given the striping of the runs, if all these output blocks
belong to the same run, then they can be written in one I/O. But, in general, they belong to different
runs so that conflicts may arise in the writing process because blocks of different runs could have to
be written onto the same disks. An example is given in Figure 5.7 where we have illustrated a situ-
ation in which we have three runs under formation by the partitioning phase of Quicksort, and three

Sorting Atomic Items 5-21

Block 1 Block 2 Block 3 Block 4 Block 5

Disk 1
1 9 17 25 33 . . .2 10 18 26 34

Disk 2
3 11 19 27 35 . . .4 12 20 28 36

Disk 3
5 13 21 29 37 . . .6 14 22 30 38

Disk 4
7 15 23 31 39 . . .8 16 24 32 40

FIGURE 5.6: An example of striping a sequence of items among D = 4 disks, with B = 2.

disks. Runs are striped circularly among the 3 disks and shadowed blocks correspond to the prefixes
of the runs that have been already written on those disks. Arrows point to the next free-blocks of
each run where the partitioning phase of Quicksort can append the next distributed items. The figure
depicts an extremely bad situation in which all these blocks are located on the same disk D2, so that
an I/O-conflict may arise if the next items to be output by the partitioning phase go to these runs.
This practically means that the I/O-subsystem must serialize the write operation in D = 3 distinct
I/Os, hence loosing all the I/O-parallelism of the D-disks. In order to avoid these difficulties, there
are known randomized solutions that ensure optimal I/Os in the average case [6].

R1 R2 R3

D1

D2

D3

FIGURE 5.7: An example of an I/O-conflict in writing D = 3 blocks belonging to 3 distinct runs.

In what follows we sketch a deterministic multi-disk sorter, known as Greed Sort [5], which solves
the difficulties above via an elegant merge-based approach which consists of two stages: first, items
are approximately sorted via an I/O-efficient Multi-way Merger that deals with R = Θ(

√
M/B)

sorted runs in an independent way (thus deploying disks in parallel), and then it completes the
sorting of the input sequence by using an algorithm (aka ColumnSort, due to T. Leighton in 1985)
that takes a linear number of I/Os when executed over short sequences of length O(M

3
2). Correctness

comes from the fact that the distance of the un-sorted items from their correct sorted position, after
the first stage, is smaller than the size of the sequences manageable by Columsort. Hence the second
stage can correctly turn the approximately-sorted sequence into a totally-sorted sequence by a single
pass.

How to get the approximately sorted runs in I/O-efficient way is the elegant algorithmic contribu-
tion of GreedSort. We sketch its main ideas here, and refer the interested reader to the corresponding
paper [5] for further details. We assume that sorted runs are stored in a striped way among the D

5-22 Paolo Ferragina

disks, so that reading D consecutive blocks from each of them takes one I/O. As we discussed for
Quicksort, also in this Merge-based approach we could incur in I/O-conflicts when reading these
runs. GreedSort avoids this problem by operating independently on each disk: in a parallel read
operation, GreedSort fetches the two best available blocks from each disk. These two blocks are
called “best” because they contain the smallest minimum item, say m1, and the smallest maximum
item, say m2, currently present in blocks stored on that disk (possibly these two blocks are the same).
It is evident that this selection can proceed independently over the D disks, and it needs a proper
data structure that keeps track of minimum/maximum items in disk-blocks. Actually [5] shows that
this data structure can fit in internal memory, thus not incurring any further I/Os for this selection
operations.

Disk j

Run 1 Run 2 . . . Run i . . .

1 ≥ 8

. . .

2 ≥ 7

. . .

≥ 1

. . .3 4 ·
5 6 ·
8 7 ≥ 7

Disk j

Run 1 Run 2 . . . Run i . . .

5 ≥ 8

. . .

≥ 7

. . .

≥ 1

. . .6 ·
7 ·
8 ≥ 7

Output

1
2
3
4

guaranteed ≤ 7

FIGURE 5.8: Example taken from the GreedSort’s paper [5].

Figure 5.8 shows an example on disk j, which contains the blocks of several runs because of the
striping-based storage. The figure assumes that run 1 contains the block with the smallest minimum
item (i.e. 1) and run 2 contains the block with the smallest maximum item (i.e. 7). All the other
blocks which come from run 1 contain items larger than 8 (i.e. the maximum of the first block),
and all the other blocks which come from run 2 contain items larger than 7. All blocks coming
form other runs have minimum larger than 1 and maximum larger than 7. Greedsort then merges
these blocks creating two new sorted blocks: the first one is written to output (it contains the items
{1, 2, 3, 4}), the second one is written back to the run of the smallest minimum m1, namely run 1
(it contains the items {5, 6, 7, 8}). This last write back into run 1 does not disrupt that ordered sub-
sequence, because the second block contains surely items smaller than the maximum of the block
of m1.

We notice that the items written in output are not necessarily the four smallest items of all runs.
In fact it could exist a block in another run (different from runs 1 and 2) which contains a value
within [1, 4], say 2.5, and whose minimum is larger than 1 and whose maximum is larger than 7. So
this block is compatible with the selection we did above from run 1 and 2, but it contains items that
should be stored in the first block of the sorted sequence. So the selection of the “two-best blocks”
proceeds independently over all disks until all runs have been examined and written in output. The
final sequence produced by this merging process is not sorted, but if we read it in a striped-way
along all D disks, then it results approximately sorted as stated in the following lemma (proved in

Sorting Atomic Items 5-23

[5]).

LEMMA 5.2 A sequence is called L-regressive if any pair of un-sorted records, say . . . y . . . x . . .
with y > x, has distance less than L in the sequence. The previous sorting algorithm creates an output
that is L-regressive, with L = RDB = D

√
MB.

The application of ColumnSort over the L-regressive sequence, by sliding a window of 2L items
which moves L steps forward at each phase, allows to produce a merged sequence which is totally
sorted. In fact L = D

√
MB ≤ DB

√
M ≤ M3/2 and thus ColumnSort is effective in producing the

entirely sorted sequence. We notice that at this point this sorted sequence is striped along all D
disks, thus the invariant for the next merging phase is preserved and the merge can thus start over
a number of runs that has been reduced by a factor R. The net result is that each merging takes
O(n/DB) I/Os, the total number of merging stages is logR

n
M = O(logM/B

n
M), and thus the optimal

I/O-bound follows.

References

[1] Alok Aggarwal and Jeffrey S. Vitter. The Input/Output complexity of Sorting and Related

Problems. Communication of the ACM, 31(9): 1116-1127, 1988.

[2] Jon L. Bentley and Robert Sedgewick. Fast algorithms for sorting and searching strings.

In Procs of the 8th ACM-SIAM Symposium on Discrete Algorithms, 360–369, 1997.

[3] Donald E. Knuth. The Art of Computer Programming: volume 3. Addison-Wesley, 2nd

Edition, 1998.

[4] Kurt Mehlhorn and Peter Sanders. Algorithms and Data Structures: The basic toolbox.
Springer, 2009.

[5] Mark H. Nodine and Jeffrey S. Vitter. Greed Sort: Optimal Deterministic Sorting on

Parallel Disks. Journal of the ACM, 42(4): 919-933, 1995.

[6] Jeffrey S. Vitter. External memory algorithms and data structures. ACM Computing
Surveys, 33(2):209–271, 2001.

[7] Sebastian Wild and Markus E. Nebel Average case analysis of Java 7’s Dual Pivot Quick-

sort. In European Symposium on Algorithms (ESA), Lecture Notes in Computer Science

7501, Springer, 826–836, 2012.

6
Set Intersection

“Sharing is caring!”

6.1 Merge-based approach . 6-2
6.2 Mutual Partitioning . 6-4
6.3 Doubling search . 6-6
6.4 Two-level storage approach . 6-7

This lecture attacks a simple problem over sets, it constitutes the backbone of every query resolver
in a (Web) search engine. A search engine is a well-known tool designed to search for information
in a collection of documents D. In the present chapter we restrict our attention to search engines
for textual documents, meaning with this the fact that a document di ∈ D is a book, a news, a tweet
or any file containing a sequence of linguistic tokens (aka, words). Among many other auxiliary
data structures, a search engine builds an index to answer efficiently the queries posed by users. The
user query Q is commonly structured as a bag of words, say w1w2 · · ·wk, and the goal of the search
engine is to retrieve the most relevant documents in D which contain all query words. The peo-
ple skilled in this art know that this is a very simplistic definition, because modern search engines
search for documents that contain possibly most of the words in Q, the verb contain may be fuzzy
interpreted as contain synonyms or related words, and the notion of relevance is pretty subjective
and time-varying so that it cannot be defined precisely. In any case, this is not a chapter of an Infor-
mation Retrieval book, so we refer the interested reader to the Information Retrieval literature, such
as [4, 8]. Here we content ourselves to attack the most generic algorithmic step specified above.

Problem. Given a sequence of words Q = w1w2 · · ·wk and a document collectionD, find the
documents inD that contain all words wi.

An obvious solution is to scan each document in D searching for all words specified by Q. This is
simple but it would take time proportional to the whole length of the document collection, which
is clearly too much even for a supercomputer or a data-center given the Web size! And, in fact,
modern search engines build a very simple, but efficient, data structure called inverted index that
helps in speeding up the flow of bi/million of daily user queries.

The inverted index consists of three main parts: the dictionary of words w, one list of occurrences
per dictionary word (called posting list, below indicated with L[w]), plus some additional infor-
mation indicating the importance of each of these occurrences (to be deployed in the subsequent
phases where the relevance of a document has to be established). The term “inverted” refers to the
fact that word occurrences are not sorted according to their position in the document, but according
to the alphabetic ordering of the words to which they refer. So inverted indexes remind the classic
glossary present at the end of books, here extended to represent occurrences of all the words present
into a collection of documents (and so, not just the most important words of them).

c© Paolo Ferragina, 2009-2020 6-1

6-2 Paolo Ferragina

Each posting list L[w] is stored contiguously in a single array, eventually on disk. The names of
the indexed documents (actually, their identifying URLs) are placed in another table and are suc-
cinctly identified by integers, called docIDs, which we may assume to have been assigned arbitrarily
by the search engine.1 Also the dictionary is stored in a table which contains some satellite infor-
mation plus the pointers to the posting lists. Figure 6.1 illustrates the main structure of an inverted
index.

Dictionary Posting list

.
abaco 50, 23, 10
abiura 131, 100, 90, 132
ball 20, 21, 90

mathematics 15, 1, 3, 23, 30, 7, 10, 18, 40, 70
zoo 5, 1000
.

FIGURE 6.1: An example of inverted (unsorted) index for a part of a dictionary.

Coming back to the problem stated above, let us assume that the query Q consists of two words
abaco mathematics. Finding the documents inD that contain both two words of Q boils down to
finding the docIDs shared by the two inverted lists pointed to by abaco and mathematics: namely,
10 and 23. It is easy to conclude that this means to solve a set intersection problem between the two
sets represented by L[abaco] and L[mathematics], which is the key subject of this chapter.

Given that the integers of two posting lists are arbitrarily arranged, the computation of the
intersection might be executed by comparing each docID a ∈ L[abaco] with all docIDs b ∈
L[mathematics]. If a = b then a is inserted in the result set. If the two lists have length n
and m, this brute-force algorithm takes n × m steps/comparisons. In the real case that n and m are
of the order of millions, as it typically occurs for common words in the modern Web, then that
number of steps/comparisons is of the order of 106×106 = 1012. Even assuming that a PC is able to
execute one billion comparisons per second (109 cmp/sec), this trivial algorithm takes 103 seconds
to process a bi-word query (so about ten minutes), which is too much even for a patient user!

The bad news is that the docIDs occurring in the two posting lists cannot be arranged arbitrarily,
but we must impose some proper structure over them in order to speed up the identification of the
common integers. The key idea here is to sort the posting lists as shown in Figure 6.2.
It is therefore preferable, from a computational point of view, to reformulate the intersection prob-
lem onto two sorted sets A = L[abaco] and B = L[mathematics], as follows:

(Sorted) Set Intersection Problem. Given two sorted integer sequences A = a1a2 · · · an and
B = b1b2 · · · bm, such that ai < ai+1 and bi < bi+1, compute the integers common to both sets.

6.1 Merge-based approach

1To be precise, the docID assignment process is a crucial one to save space in the storage of those posting lists, but its
solution is too much sophisticated to be discussed here and thus it is deferred to the scientific literature [7].

Set Intersection 6-3

Dictionary Posting list

.
abaco 10, 23, 50
abiura 90, 100, 131, 132
ball 20, 21, 90

mathematics 1, 3, 7, 10, 15, 18, 23, 30, 40, 70
zoo 5, 1000
.

FIGURE 6.2: An example of inverted (sorted) index for a part of a dictionary.

The sortedness of the two sequences allows to design an intersection algorithm that is deceptively
simple, elegant and fast. It consists of scanning A and B from left to right by comparing at each
step a pair of docIDs from the two lists. Say ai and b j are the two docIDs currently compared,
initially i = j = 1. If ai < b j the iterator i is incremented, if ai > b j the iterator j is incremented,
otherwise ai = b j and thus a common docID is found and both iterators are incremented. At each
step the algorithm executes one comparison and advances at least one iterator. Given that n = |A|
and m = |B| are the number of elements in the two sequences, we can deduct that i (resp. j) can
advance at most n times (resp. m times), so we can conclude that this algorithm requires no more
than n + m comparisons/steps; we write no more because it could be the case that one sequence is
exhausted much before the other one, so that many elements of the latter may be not compared. This
time cost is significantly smaller than the one mentioned above for the unsorted sequences (namely
n × m), and its real advantage in practice is strikingly evident. In fact, by considering our running
example with n and m of the order of 106 docIDs and a PC performing 109 comparisons per second,
we derive that this new algorithm takes 10−3 seconds to compute A ∩ B, which is in the order of
milliseconds, exactly what occurs in modern search engines.

An attentive reader may have noticed this algorithm mimics the merge-procedure used in Merge-
Sort, here adapted to find the common elements of the two sets A and B rather than merging them.

FACT 6.1 The intersection algorithm based on the merge-based paradigm solves the sorted set
intersection problem in O(m + n) time.

In the case that n = Θ(m) this algorithm is optimal, and thus it cannot be improved; moreover it is
based on the scan-based paradigm that it is optimal also in the disk model because it takes O(n/B)
I/Os. To be more precise, the scan-based paradigm is optimal whichever is the memory hierarchy
underlying the computation (the so called cache-oblivious model). The next question is what we can
do whenever m is much different of n, say m � n. This is the situation in which one word is much
more selective than the other one; here, the classic binary search can be helpful, in the sense that
we can design an algorithm that binary searches every element b ∈ B (they are few) into the (many)
sorted elements of A thus taking O(m log n) steps/comparisons. This time complexity is better than
O(n + m) if m = o(n/ log n) which is actually less stringent that the condition m � n we imposed
above.

FACT 6.2 The intersection algorithm based on the binary-search paradigm solves the sorted
set intersection problem in O(m log n) time.

The next question is whether an algorithm can be designed that combines the best of both merge-
based and search-based approaches. In fact, there is an inefficacy in the binary-search approach

6-4 Paolo Ferragina

which becomes apparent when m is of the order of n. When we search item bi in A we possibly
re-check over and over the same elements of A. Surely this is the case for its middle element, say
an/2, which is the first one checked by any binary search. But if bi > an/2 then it is useless to
compare bi+1 with an/2 because for sure it is larger, since bi+1 ≥ bi > an/2. And the same holds for
all subsequent elements of B. A similar argument applies possibly to other elements in A checked
by the binary search; so the next challenge we address is how to avoid this useless comparisons.

A 1 3 7 12 16 19 20 25 27 40 50 100

B 2 5 6 10 12 16 20 29 32

pivot

merge merge

FIGURE 6.3: An example of the Intersection paradigm based on Mutual Partitioning: the pivot is
12, the median element of B.

6.2 Mutual Partitioning

This is achieved by adopting another classic algorithmic paradigm, called partitioning, which is
the one we used to design the Quicksort, and here applied to split repeatedly and mutually two
sequences. Formally, let us assume that m ≤ n and be both even numbers, we pick the median
element bm/2 of the shortest sequence B as a pivot and search for it into the longer sequence A. Two
cases may occur: (i) bm/2 ∈ A, say bm/2 = a j for some j, and thus bm/2 is returned as one of the
elements of the intersection A ∩ B; or (ii) bm/2 < A, say a j < bm/2 < a j+1 (where we assume that
a0 = −∞ and an+1 = +∞). In both cases the intersection algorithm proceeds recursively in the two
parts in which each sequence A and B has been split by the choice of the pivot, thus computing
recursively A[1, j] ∩ B[1,m/2 − 1] and A[j + 1, n] ∩ B[m/2 + 1, n]. A small optimization consists
of discarding from the first recursive call the element bm/2 = a j (in case (i)). The pseudo-code is
given in Figure 6.1, and a running example is illustrated in Figure 6.3. There the median element
of B used as the pivot for the mutual partitioning of the two sequences is 12, and it splits A into two
unbalanced parts (i.e. A[1, 4] and A[5, 12]) and B into two almost-halves (i.e. B[1, 5] and B[6, 9])
which are recursively intersected; since the pivot occurs both in A and B it is returned as an element
of the intersection. Moreover we notice that the first part of A is shorter than the first part of B and
thus in the recursive call their role will be exchanged.

In order to evaluate the time complexity we need to identify the worst case. Let us begin with the
simplest situation in which the pivot falls outside A (i.e. j = 0 or j = n). This means that one of the
two parts in A is empty and thus the corresponding halve of B can be discarded from the subsequent
recursive calls. So one binary search over A, costing O(log n), has discarded an half of B. If this
occurs at any recursive call, the total number of calls will be O(log m) thus inducing an overall cost
for the algorithm equal to O(log m log n). That is, an unbalanced partitioning of A induces indeed a
very good behavior of the intersection algorithm; this is something opposite to what stated typically
about recursive algorithms. On the other hand, let us assume that the pivot bm/2 falls inside the

Set Intersection 6-5

Algorithm 6.1 Intersection based on Mutual Partitioning
1: Let m = |B| ≤ n = |A|, otherwise exchange the role of A and B;
2: Pick the median element p = bbm/2c of B;
3: Binary search for the position of p in A, say a j ≤ p < a j+1;
4: if p = a j then
5: print p;
6: end if
7: Compute recursively the intersection A[1, j] ∩ B[1,m/2];
8: Compute recursively the intersection A[j + 1, n] ∩ B[m/2 + 1, n].

sequence A and consider the case that it coincides with the median element of A, say an/2. In this
specific situation the two partitions are balanced in both sequences we are intersecting, so the time
complexity can be expressed via the following recurrent relation T (n,m) = O(log n)+2T (n/2,m/2),
with the base case of T (n,m) = O(1) whenever n,m ≤ 1. It can be proved that this recurrent relation
has solution T (n,m) = O(m(1 + log n

m)) for any m ≤ n. It is interesting to observe that this time
complexity subsumes the ones of the previous two algorithms (namely the one based on merging
and the one based on binary searching). In fact, when m = Θ(n) it is T (n,m) = O(n) (á la merging);
when m � n it is T (n,m) = O(m log n) (á la binary searching). As we will see in Chapter 12, about
Statistical compression, the term m log n

m reminds an entropy cost of encoding m items within n
items and thus induces to think about something that cannot be improved (for details see [1]).

FACT 6.3 The intersection algorithm based on the mutual-partitioning paradigm solves the
sorted set intersection problem in O(m(1 + log n

m)) time.

We point out that the bound m log n
m is optimal in the comparison model because it follows from

the classic binary decision-tree argument. In fact, they do exist at least
(

n
m

)
solutions to the set inter-

section problem (here we account only for the case in which B ⊆ A), and thus every comparison-
based algorithm computing anyone of them must execute Ω(log

(
n
m

)
) steps, which is Ω(m log n

m) by
definition of binomial coefficient.

Algorithm 6.2 Intersection based on Doubling Search
1: Let m = |B| ≤ n = |A|, otherwise exchange the role of A and B;
2: i = 0;
3: for j = 1, 2, . . . ,m do
4: k = 0;
5: while (i + 2k ≤ n) and (B[j] > A[i + 2k]) do
6: k = k + 1;
7: end while
8: i′ = Binary search B[j] into A[i + 2k−1 + 1,min{i + 2k, n}];
9: if (ai′ = b j) then

10: print b j;
11: end if
12: i = i′.
13: end for

6-6 Paolo Ferragina

6.3 Doubling search

Although this time complexity is appealing, the previous algorithm is heavily based on recursive
calls and binary searching which are two paradigms that offer poor performance in a disk-based
setting when sequences are long and thus the number of recursive calls can be large (i.e. many
dynamic memory allocations) and large is the number of binary-search steps (i.e. random memory
accesses). In order to partially compensate with these issues we introduce another approach to
ordered set intersection which allows us to discuss another interesting algorithmic paradigm: the so
called doubling search or galloping search or also exponential search. It is a mix of merging and
binary searching, which is clearer to discuss by means of an inductive argument. Let us assume that
we have already checked the first j − 1 elements of B for their appearance in A, and assume that
ai ≤ b j−1 < ai+1. To check for the next element of B, namely b j, it suffices to search it in A[i + 1, n].
However, and this is the bright idea of this approach, instead of binary searching this sub-array, we
execute a galloping search which consists of checking elements of A[i + 1, n] at distances which
grow as a power of two. This means that we compare b j against A[i + 2k] for k = 0, 1, . . . until we
find that either b j < A[i + 2k], for some k, or it is i + 2k > n and thus we jumped out of the array A.
Finally we perform a binary search for b j in A[i + 1,min{i + 2k, n}], and we return b j if the search is
successful.2 This way, we determine the position of b j in that subarray, say ai′ ≤ b j < ai′+1, so that
the process can be repeated by discarding A[1, i′] from the subsequent search for the next element
of B, i.e. b j+1. Figure 6.4 shows a running example, whereas Figure 6.2 shows the pseudo-code of
the doubling search algorithm.

A . . . 12 16 19 20 25 27 30 31 34 38 40 41 44 45 47 50 60 61 65 68 . . .

B . . . 12 41 . . .

FIGURE 6.4: An example of the Doubling Search paradigm: the two sequences A and B are as-
sumed to have been intersected up to the element 12. The next element in B, i.e. 41, is taken to be
exponentially searched in the suffix of A following 12. This search checks A’s elements at distances
which are a power of two— namely 1, 2, 4, 8, 16— until it finds the element 60 which is larger than
41 and thus delimits the portion of A within which the binary search for 41 can be confined. We
notice that the searched sub-array has size 16, whereas the distance of 41 from 12 in A is 11 thus
showing, on this example, that the binary search is executed on a sub-array whose size is smaller
than twice the real distance of the searched element.

2Actually, we could search within A[i + 2k−1, i + 2k] but we choose this looser form in order to simplify the following
calculations that, anyway, do not change the asymptotic analysis.

Set Intersection 6-7

As far as the time complexity is concerned, let us denote with i j = i′ as the position where b j

occurs in A. For the sake of presentation we set i0 = 0. It is 2k−1 < i j−i j−1 ≤ 2k and thus the distance
of b j from the beginning of A[i+1,min{i+2k, n}] is not much smaller than the size of this sub-array,
actually it is longer than its half. If we multiply by two the left inequality, we get 2k < 2(i j − i j−1).
Let us therefore denote with ∆ j = min{2k, n} the size of the sub-array where the binary search of
b j is executed, so ∆ j ≤ 2k ≤ 2(i j − i j−1). Hence, these sub-arrays may be overlapping but by not
much, as indeed we have

∑m
j=1 ∆ j ≤ ∑m

j=1 2(i j − i j−1) = 2n because this is a telescopic sum in which
consecutive terms in the summation cancel out. For every j, the algorithm in Figure 6.2 executes
O(1 + log ∆ j) steps because of the while-statement and because of the binary search. Summing for
j = 1, 2, . . . ,m we get a total time complexity of O(

∑m
j=1(1 + log ∆ j)) = O(m + m log

∑m
j=1

∆ j

m) =

O(m(1 + log n
m)).3

FACT 6.4 The intersection algorithm based on the doubling-search paradigm solves the sorted
set intersection problem in O(m(1+ log n

m)) time. This is the same time complexity of the intersection
algorithm based on the mutual-partitioning paradigm but without incurring in the costs due to
the recursive partitioning of the two sequences A and B. The time complexity is optimal in the
comparison model.

6.4 Two-level storage approach

Although the previous approach avoids some of the pitfalls due to the recursive partitioning of the
two sequences A and B, it still needs to jump over the array A because of the doubling scheme; and
we know that this is inefficient when executed in a hierarchical memory. In order to avoid this issue,
programmers adopt a two-level organization of the data, which is a very frequent scheme of efficient
data structures for disk. The main idea of this storage scheme is to logically partition the sequence
A into blocks Ai of size L each, and copy the first element of each block (i.e. Ai[1] = A[iL + 1]) into
an auxiliary array A′ of size O(n/L). For the simplicity of exposition, let us assume that n = hL so
that the blocks Ai are h in number. The intersection algorithm then proceeds in two main phases.
Phase 1 consists of merging the two sorted sequences A′ and B, thus taking O(n/L + m) time. As a
result, the elements of B are interspersed among the element of A′. Let us denote by Bi the elements
of B which fall between Ai[1] and Ai+1[1] and thus may occur in the block Ai. Phase 2 then consists
of executing the merge-based paradigm of Fact 6.1 over all pairs of sorted sequences Ai and Bi

which are non empty. Clearly, these pairs are no more than m. The cost of one of these merges is
O(|Ai| + |Bi|) = O(L + |Bi|) and they are at most m because this is the number of unempty blocks
Bi. Moreover B = ∪iBi, consequently this second phase costs O(L m + m). Overall, this intersection
algorithm takes a total of O(n

L + mL) time. For further details on this approach and its performance
in practice the reader can look at [5].

FACT 6.5 The intersection algorithm based on the two-level storage paradigm solves the sorted
set intersection problem in O(n

L + mL) time and O(n
LB + mL

B + m) I/Os, because every merge of two
sorted sequences Ai and Bi takes at least 1 I/O and they are no more than m.

The two-level storage paradigm is suitable to adopt a compressed storage for the docIDs in order

3We are applying the so called Jensen’s inequality: https://en.wikipedia.org/wiki/Jensen%27s inequality

6-8 Paolo Ferragina

to save space and, surprisingly, also speed up performance. Let a′1, a
′
2, . . . , a

′
L be the L docIDs stored

ordered in some block Ai. These integers can be squeezed by adopting the so called ∆-compression
scheme which consists of setting a′0 = 0 and then representing a′j as its difference with the preceding
docID a′j−1 for j = 1, 2, . . . , L. Then each of these differences can be stored somewhat compressed
by using dlog2 maxi{a′i − a′i−1}e bits, instead of the full-representation of four bytes. Moreover they
can be easily decompressed if the algorithm proceeds by scanning rightward the sequence.

The ∆-compression scheme is clearly advantageous in space whenever the differences are much
smaller than the universe size u from which the docIDs are taken. The distribution of docIDs which
guarantees the smallest-maximum gap is the uniform one: for which it is maxi{a′i − a′i−1} ≤ u

n . In
order to force this situation we preliminary shuffle the docIDs via a random permutation π : U −→
U and then apply an approach similar to the two-level one above onto the permuted sequences.

A 1 2 3 4 7 8 11 12 sorted π
7|3 4|4 1|5 11|6 8|7 2|9 12|10 3|13

B 2 4 6 12 sorted π
4|4 2|9 12|10 6|12

A1

B1

00

A2

B2

01

A3

B3

10

A4

B4

11

FIGURE 6.5: An example of the Random Permuting and Splitting paradigm. We assume universe
U = {1, . . . , 13}, set L = 2 and n̂ = 8, and consider the permutation π(x) = 1 + (4x mod 13). So U
is partitioned in n̂/L = 4 buckets identified by the most significant bits ` = dlog2 n̂/Le = dlog2 4e = 2
bits of the π-image of each element. Recall that every π-image is represented in log2 u = 4 bits, so
that π(1) = 5 = (0101)2 and its 2 most significant bits are 01. The figure shows in bold the elements
of A∩ B, moreover it depicts for the sake of exposition each docID as the pair x | π(x) and, on top of
every sublist, shows the 2 most significant bits. In the example only three buckets of B are unempty,
so we intersect only them with the corresponding ones of A, so that we drop the sublist A0 without
scanning it. The result is {4|4, 2|9, 12|10}, that gives A ∩ B by dropping the second π-component:
namely, {2, 4, 12}.

More precisely, in the preprocessing phase, for each list A of length n ≤ n̂ we permute A according
to the random permutation π and then assign its permuted elements to the buckets Ui according to
their ` = dlog2

n̂
L e most significant bits.4

In the query phase, the intersection of two sets A and B exploits the intuition that, since the
permutation π is the same for all sets, if element z ∈ A ∩ B then π(z) is the same for A and B. The
algorithm proceeds similarly as in the above two-level storage paradigm but it exploits now the fact
that the bucketing is fixed and it is the same for all sets driven by the top-` bits of each element.
Namely, we scan the non empty buckets of B, they are at most m, and check for emptiness the
corresponding buckets of A. This check takes constant time per bucket, given that they are indexed
by ` bits. If the two buckets are not empty, then we proceed to their intersection by the merge-based
approach, thus paying a time cost which is linear in the buckets’ sizes. Overall, the sum of the sizes

4This is similar to partition the universe U in n̂/L buckets of length UL/n̂. Clearly every list induces a different parti-
tioning of the universe depending on its length.

Set Intersection 6-9

of B’s buckets obviously is |B| = m, whereas the sum of the sizes of the involved A’s buckets can
be upper bounded by multiplying the number of involved buckets, which is at most m, times their
average size, which is |A| ∗ (L/n̂) ≤ L, because n̂/L is the number of buckets and |A| = n ≤ n̂.
So the cost to scan the involved buckets of A is at most mL on average. Hence the overall cost is
O(m + mL) time on average. Actually, we can further bound the second term by observing that the
total number of elements of A involved in the scan cannot be larger than n = |A|, and thus write
O(m + min{n,mL}) average time and O(mL

B + m) average I/Os (see Fact 6.5). At the end, if we use
an invertible permutation, we can recover the original shared item z after having matched π(z). A
running example is shown in Figure 6.6.

As far as the space occupancy is concerned we notice that there are Θ(n̂/L) buckets for A, and
the largest difference between two bucket entries can be bounded in two ways: either with the
bucket width O(uL/n̂) or with the largest difference between any two consecutive list entries (after
π-mapping). The latter quantity is well known from balls-and-bins problem: here having n balls
and u bins. It can be shown that the largest difference is O(u

n log n) with high probability. The
two bounds can be combined to a bound of log2 min{ uL

n̂ ,
u
n log n} ≤ log2 min{ uL

n ,
u
n log n} = log2

u
n +

log2 min{L, log n}+ O(1) bits per list element (after π-mapping). The first term is unavoidable since
it already shows up in the information theoretic lower bound, the other is expected to be very small.
In addition to this we should consider O(n

L log n) bits for each list in order to account for the cost
of the O(log n)-bits pointer to (the beginning of) each sublist of A, which are at most equal to the
number of buckets. This term is O(log n

L) per element of A and thus it is negligible indeed in practice.

FACT 6.6 The intersection algorithm based on the random-permuting paradigm solves the
sorted set intersection problem in O(m + min{n,mL}) average time and O(m + min{ n

B ,
mL
B }) average

I/Os. The space cost for storing a list of length n is n(log2
u
n + log2 min{L, log n} +

log n
L) bits with

high probability.

By analyzing the algorithmic structure of this last solution we notice few further advantages. First,
we do not need to sort the original sequences, because the sorting is required only within the indi-
vidual sublists which have average length L; this is much shorter than the lists’ length so that we
can use an internal-memory sorting algorithm over each π-permuted sublist. A second advantage
is that we can avoid the checking of some sublists during the intersection process (by exploting
the π-mapping like an hash-based merge), without looking at them; this allows to drop the term n

L
occurring in Fact 6.5. Third, the choice of L can be done according to the hierarchical memory in
which the algorithm is run; this means that if sublists are stored on disk, then L = Θ(B) can be the
right choice.

The authors of [5, 3, 2] discuss some variants and improvements over all previous algorithms,
some really sophisticate, we refer the interested reader to this literature. Here we report a picture
taken from [5] that compares various algorithms with the following legenda: zipper is the merge-
based algorithm (Fact 6.1), skipper is the two-level algorithm (Fact 6.5, with L = 32), Baeza-Yates
is the mutual-intersection algorithm (Fact 6.3, 32 denotes the bucket size for which recursion is
stopped), lookup is our last proposal (Fact 6.6, L = 8).

We notice that lookup is the best algorithm up to a length ratio close to one. For lists of similar
length all algorithms are very good. Still, it could be a good idea to implement a version of lookup
optimized for lists of similar length. It is also interesting to notice that skipper improves Baeza-
Yates for all but very small length ratios. For compressed lists and very different list lengths, we can
claim that lookup is considerably faster over all other algorithms. Randomization allows interesting
performance guarantees on both time and space performance. The experimented version of skipper
uses a compressed first-level array; probably by dropping compression from the first-level would not
increase much the space, but it would induce a significant speedup in time. The only clear looser is

6-10 Paolo Ferragina

FIGURE 6.6: An experimental comparison among four sorted-set intersection algorithms.

Baeza-Yates, for every list lengths there are other algorithms that improve it. It is pretty much clear
that a good asymptotic complexity does not reflect onto a good time efficiency whenever recursion
is involved.

References

[1] Ricardo Baeza-Yates. A fast set intersection algorithm for sorted sequences. In Procs of
Annual Symposium on Combinatorial Pattern Matching (CPM), Lecture Notes in Com-

puter Science 3109, pp. 400-408, 2014.

[2] Jérémy Barbay, Alejandro López-Ortiz, Tyler Lu, Alejandro Salinger. An experimental

investigation of set intersection algorithms for text searching. ACM Journal of Experi-
mental Algorithmics, 14, 2009.

[3] Bolin Ding, Arnd Christian König. Fast set intersection in memory. PVLDB, 4(4):

255-266, 2011.

[4] Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze. Introduction to
Information Retrieval. Cambridge University Press, 2008.

[5] Peter Sanders, Frederik Transier. Intersection in integer inverted indices. In Procs of
Workshop on Algorithm Engineering and Experiments (ALENEX), 2007.

[6] Hao Yan, Shuai Ding, Torsten Suel. Inverted index compression and query processing

with optimized document ordering. In Procs of WWW, pp. 401-410, 2009.

[7] Ian H. Witten, Alistair Moffat, Timoty C. Bell. Managing Gigabytes. Morgan Kauffman,

second edition, 1999.

7
Sorting Strings

7.1 A lower bound . 7-2
7.2 RadixSort . 7-3

MSD-first • LSD-first

7.3 Multi-key Quicksort . 7-8
7.4 Some observations on the I/O-model∞ 7-11

In the previous chapter we dealt with sorting atomic items, namely items that either occupy O(1)
space or have to be managed in their entirety as atomic objects, and thus without possibly deploying
their constituent parts. In the present chapter we will generalize those algorithms, and introduce
new ones, to deal with the case of variable-length items (aka strings). More formally, we will be
interested in solving efficiently the following problem:

The string-sorting problem. Given a sequence S [1, n] of strings, having total length N and
drawn from an alphabet of size σ, sort these strings in increasing lexicographic order.

The first idea to attack this problem consists of deploying the power of comparison-based sorting
algorithms, such as QuickSort or MergeSort, and implementing a proper comparison function be-
tween pair of strings. The obvious way to do this is to compare the two strings from their beginning,
character-by-character, find their mismatch and then use this character to derive their lexicographic
order. Let L = N/n be the average length of the strings in S , an optimal comparison-based sorter
would take O(L n log n) = O(N log n) average time on RAM, because every string comparison may
involve O(L) characters on average.

Apart from the time complexity, which is not optimal (see next), the key limitation of this ap-
proach in a memory-hierarchy is that S is typically implemented as an array of pointers to strings
which are stored elsewhere, possibly on disk if N is very large or spread in the internal-memory
of the computer. Figure 7.1 shows the two situations via a graphical example. Whichever is the
allocation your program chooses to adopt, the sorter will indirectly order the strings of S by moving
their pointers rather than their characters. This situation is typically neglected by programmers, with
a consequent slowness of their sorter when executed on large string sets. The motivation is clear,
every time a string comparison is executed between two items, say S [i] and S [j], these two pointers
are resolved by accessing their corresponding strings, so that two cache misses or I/Os are elicited
in order to fetch and then compare their characters. As a result, the algorithm might incur Θ(n log n)
I/Os. As we noticed in the first chapter of these notes, the Virtual Memory of the OS will provide
an help by buffering the most recently compared strings, and thus possibly reducing the number of
incurred I/Os. Nevertheless, two arrays are here competing for that buffering space— i.e. the array
of pointers and the strings— and time is wasted by re-scanning over and over again string prefixes
which have been already compared because of their brute-force comparison.

c© Paolo Ferragina, 2009-2020 7-1

7-2 Paolo Ferragina

The rest of this lecture is devoted to propose algorithms which are optimal in the number of exe-
cuted character comparisons, and possibly offer I/O-conscious patterns of memory accesses which
make them efficient also in the presence of a memory hierarchy.

Internal memory

n

3

2

1

S

pingu

abaco

all

zoo

Internal
memory

File on disk

n

3

2

1

S

pingu abaco all zoo

FIGURE 7.1: Two examples of string allocation, spread in the internal memory (left) and written
contiguously in a file (right).

7.1 A lower bound

Let ds be the length of the shortest prefix of the string s ∈ S that distinguishes it from the other
strings in the set. The sum d =

∑
s∈S ds is called the distinguishing prefix of the set S . Referring

to Figure 7.1, and assuming that S consists of the 4 strings shown in the picture, the distinguishing
prefix of the string all is al because this substring does not prefixes any other string in S , whereas
a does.

It is evident that any string sorter must compare the initial ds characters of s, otherwise it would
be unable to distinguish s from the other strings in S . So Ω(d) is a term that must appear in the
string-sorting lower bound. However, this term does not take into account the cost to compute the
sorted order among the n strings, which is Ω(n log n) string comparisons.

LEMMA 7.1 Any algorithm solving the string-sorting problem must execute Ω(d + n log n)
comparisons.

This formula deserves few comments. Assume that the n strings of S are binary, share the initial `
bits, and differ for the rest log n bits. So each string consists of `+log n bits, and thus N = n(`+log n)
and d = Θ(N). The lower bound in this case is Ω(d + n log n) = Ω(N + n log n) = Ω(N). But string
sorters based on Mergesort or Quicksort (as the ones detailed above) take Θ((` + log n)n log n) =

Θ(N log n) time. Thus, for any `, those algorithms may be far from optimality of a factor Θ(log n).
One could wonder whether the upper-bound can be turned to be smaller than the input size N.

This is possible because the string sorting could be implemented without looking at the entire con-
tent of strings, provided that d < N. And indeed, this is the reason why we introduced the parameter
d, which allows a finer analysis of the following algorithms.

Sorting Strings 7-3

0 1 2 3 4 5 6 7 8 9

017

042

007

111 666 911

999

FIGURE 7.2: First distribution step in MSD-first RadixSort.

7.2 RadixSort

The first step to get a more competitive algorithm for string sorting is to look at strings as sequence
of characters drawn from an integer alphabet {0, 1, 2, . . . , σ−1} (aka digits). This last condition can
be easily enforced by sorting in advance the characters occurring in S , and then assigning to each of
them an integer (rank) in that range. This is typically called naming process and takes O(N logσ)
time because we can use a binary-search tree built over the at most σ distinct characters occurring
in S . After that, all strings can be sorted by considering them as sequence of σ-bounded digits.

Hereafter we assume that strings in S have been drawn from a integer alphabet of size σ and
keep in mind that, if this is not the case, a term O(N logσ) has to be added to the time complexity.
Moreover, we observe that each character can be encoded in dlog(σ + 1)e bits; so that the input size
is Θ(N logσ) whenever it is measured in bits.

We can devise two main variants of RadixSort that differentiate each other according to the order
in which the digits of the strings are processed: MSD-first processes the strings rightward starting
from the Most Significant Digit, LSD-first processes the strings leftward starting from the Least
Significant Digit.

7.2.1 MSD-first

This algorithm follows a divide&conquer approach which processes the strings character-by-character
from their beginning, and distributes them into σ buckets. Figure 7.2 shows an example in which
S consists of seven strings which are distributed according to their first (most-significant) digit in
10 buckets, because σ = 10. Since buckets 1 and 6 consist of one single string each, their ordering
is known. Conversely, buckets 0 and 9 have to be sorted recursively according to the second digit
of the strings contained into them. Figure 7.3 shows the result of the recursive sorting of those two
buckets. Then, to get the ordered sequence of strings, all groups are concatenated in left-to-right
order.

We point out that, the distribution of the strings among the buckets can be obtained via a comparison-
based approach, namely binary search, or by the usage of CountingSort. In the former case the
distribution cost is O(logσ) per string, in the latter case it is O(1).

It is not difficult to notice that distribution-based approaches originate search trees. The classic
Quicksort originates a binary search tree. The above MSD-first RadixSort originates a σ-ary tree
because of the σ-ary partition executed at every distribution step. This tree takes in the literature
the name of trie, or digital search tree, and its main use is in string searching (as we will detail in
the Chapter 9). An example of trie is given in Figure 7.4.

Every node is implemented as a σ-sized array, one entry per possible alphabet character. Strings
are stored in the leaves of the trie, hence we have n leaves. Internal nodes are less than N, one per
character occurring in the strings of S . Given a node u, the downward path from the root of the

7-4 Paolo Ferragina

0 1 2 3 4 5 6 7 8 9

007 017 042

0 1 2 3 4 5 6 7 8 9

911 999

FIGURE 7.3: Recursive sort of bucket 0 (left) and bucket 9 (right) according to the second digit of
their strings.

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

007

017

042 111 666

911

999

FIGURE 7.4: The trie-based view of MSD-first RadixSort for the strings of Figure 7.2

trie to u spells out a string, say s[u], which is obtained by concatenating the characters encountered
in the path traversal. For example, the path leading to the leaf 017 traverses three nodes, one per
possible prefix of that string. Fixed a node u, all strings that descend from u share the same prefix
s[u]. For example, s[root] is the empty string, and indeed all strings of S do share no prefix. Take
the leftmost child of the root, it spells the string 0 because it is reached form the root by traversing
the edge spurring from the 0-entry of the array. Notice that the trie may contain unary nodes,
namely nodes that have one single child. All the other internal nodes that have at least two children
are called branching nodes. In the figure we have 9 unary nodes and 3 branching nodes, where
n = 7 and N = 21. In general the trie can have no more than n branching nodes, and O(N) unary
nodes. Actually the unary nodes which have a descending branching node are at most O(d). In fact,
these unary nodes correspond to characters occurring in the distinguishing prefixes and the lowest
descending branching nodes correspond to the characters that end the distinguishing prefixes; on the
other hand, the unary paths which spur from the lowest branching nodes in the trie and lead to leaves
correspond to the string suffixes which follow those distinguishing prefixes. In algorithmic terms,
the unary nodes correspond to buckets formed by items all sharing the same compared-character
in the distribution of MSD-first RadixSort, the branching nodes correspond to buckets formed by
items with distinct compared-characters in the distribution of MSD-first RadixSort.

If edge labels are alphabetically sorted, as in Figure 7.4, reading the leaves according to the pre-
order visit of the trie gets the sorted S . This suggests a simple trie-based string sorter. The idea
is to start with an empty trie, and then insert one string after the other into it. Inserting a string
s ∈ S in the current trie consists of tracing a downward path until s’s characters are matched with
edge labels. As soon as the next character in s cannot be matched with any of the edges outgoing
from the reached node u,1 then we say that the mismatch for s is found. So a special node is

1This actually means that the slot in the σ-sized array of u corresponding to the next character of s is null.

Sorting Strings 7-5

appended to the trie at u with that branching character. This special node points to s. The specialty
resides in the fact that we have dropped the not-yet-matched suffix of s, but the pointer to the string
keeps implicitly track of it for the subsequent insertions. In fact, if inserting another string s′ we
encounter the special-node u, then we resort the string s (linked to it) and create a (unary) path for
the other characters constituting the common prefix between s and s′ which descends from u. The
last node in this path branches to s and s′, possibly dropping again the two paths corresponding
to the not-yet-matched suffixes of these two strings, and introducing for each of them one special
character.2

Every time a trie node is created, an array of size σ is allocated, thus taking O(σ) time and space.
So the following theorem can be proved.

THEOREM 7.1 Sorting strings over an (integer) alphabet of size σ can be solved via a trie-
based approach in O(d σ) time and space.

Proof Every string s spells out a path of length O(ds), before that the special node pointing to
s is created. Each node of those paths allocates O(σ) space and takes that amount of time to be
allocated. Moreover O(1) is the time cost for traversing a trie-node. Therefore O(σ) is the time
spent for each traversed/created node. The claim then follows by visiting the constructed trie and
listing its leaves from left to right (given that they are lexicographically sorted, because the naming
of characters is lexicographic and thus reflects their order).

The space occupancy is significant and should be reduced. An option is to replace the σ-sized
array into each node u with an hash table (with chaining) of size proportional to the number of
edges spurring out of u, say eu. This guarantees O(1) average time for searching and inserting one
edge in each node. The construction time becomes in this case: O(d) to insert all strings in the trie
(here every node access takes constant time), O(

∑
u eu log eu) = O(

∑
u eu logσ) = O(d logσ) for

the sorting of the trie edges over all nodes, and O(d) time to scan the trie leaves rightward via a
pre-order visit of the trie, and thus get the dictionary strings in lexicographic order.

THEOREM 7.2 Sorting strings drawn from an integer alphabet of size σ, by using the trie-
based approach with hashing, takes O(d logσ) average time and O(d) space.

When σ is small we cannot conclude that this result is better than the lower bound provided
in Lemma 7.1 because that applies to comparison-based algorithms and thus it does not apply to
hashing or integer sorting.

The space allocated for the trie can be further reduced to O(n), and the construction time to
O(d+n logσ), by using compacted tries, namely tries in which the unary paths have been compacted
into single edges whose length is equal to the length of the compacted unary path. The discussion
of this data structure is deferred to Chapter 9.

7.2.2 LSD-first

The next sorter was discovered by Herman Hollerith more than a century ago and led to the imple-
mentation of a card-sorting machine for the 1890 U.S. Census. It is curious to find that he was the

2We are assuming that allocating a σ-sized array cost O(1) time.

7-6 Paolo Ferragina

founder of a company that then became IBM [4]. The algorithm is counter-intuitive because it sorts
strings digit-by-digit starting from the least-significant one and using a stable sorter as black-box for
ordering the digits. We recall that a sorter is stable iff equal keys maintain in the final sorted order
the one they had in the input. This sorter is typically the CountingSort (see e.g. [5]), and this is the
one we use below to describe the LSD-first RadixSort. We assume that all strings have the same
length L, otherwise they are logically padded to their front with a special digit which is assumed
to be smaller than any other alphabet digit. The ratio is that, this way, the LSD-first RadixSort
correctly obtains an ordered lexicographic sequence.

017

042

666

111

911

999

007

111

911

042

666

017

007

999

007

111

911

017

042

666

999

007

017

041

111

666

911

999

1st char 2st char 3st char

Unsorted string Sorted string

FIGURE 7.5: A running example for LSD-first RadixSort.

The LSD-first RadixSort consists of L phases, say i = 1, 2, . . . , L, in each phase we stably sort
all strings according to their i-th least significant digit. A running example of LSD-first RadixSort
is given in Figure 7.5: the red digits (characters) are the ones that are going to be sorted in the
current phase, whereas the green digits are the ones already sorted in the previous phases. Each
phase produces a new sorted order which deploys the order in the input sequence, obtained from
the previous phases, to resolve the ordering of the strings which show equal digits in the currently
compared position i. As an example let us consider the strings 111 and 017 in the 2nd phase of
Figure 7.5. These strings present the same second digit so their ordering in the second phase poses
111 before 017, just because this was the ordering after the first sorting step. This is clearly a
wrong order which will be nonetheless correctly adjusted after the last phase which operates on
the third digit, i.e. 1 vs 0. The time complexity can be easily estimated as L times the cost of
executing CountingSort over n integer digits drawn from the range [1, σ]. Hence it is O(L (n + σ)).
A nice property of this sorter is that it is in-place whenever the sorting black-box is in-place, namely
σ = O(1).

LEMMA 7.2 LSD-first Radixsort solves the string-sorting problem over an integer alphabet of
size σ in O(L (n +σ)) = O(N + Lσ) time and O(N) space. The sorter is in-place iff an in-place digit
sorter is adopted.

Proof Time and space efficiency follow from the previous observations. The correctness is
proved by deploying the stability of the Counting Sort. Let α and β be two strings of S , and assume
that α < β according to the lexicographic order. Since we assumed that S ’s strings have the same
length we can decompose these two strings into three parts: α = γaα1 and β = γbβ1, where γ is

Sorting Strings 7-7

the longest common prefix between α and β (possibly it is empty), a < b are the first mismatch
characters, α1 and β1 are the two remaining suffixes (which may be empty).

Let us now look at the history of comparisons between the digits of α and β. We can identify
three stages, depending on the position of the compared digit within the three-way decomposition
above. Since the algorithm starts from the least-significant digit, it starts comparing digits in α1 and
β1. We do not care about the ordering after the first |α1| = |β1| phases, because at the immediately
next phase, α and β are sorted in accordance to characters a and b. Since a < b this sorting places
α before β. All other |γ| sorting steps will compare the digits falling in γ, which are equal in both
strings, so their order will not change because of the stability of the digit-sorter. At the end we will
correctly have α < β. Since this holds for any pair of strings in S , the final sequence produced by
LSD-first RadixSort will be lexicographically ordered.

The previous time bound deserves few comments. LSD-first RadixSort processes all digits of
all strings, so it seems not appealing when d � N with respect to MSD-first RadixSort. But the
efficiency of LSD-first RadixSort hinges onto the observation that nobody prevents a phase to sort
groups of digits rather than a single digit at a time. Clearly the longer is this group, the larger is
the time complexity of a phase, but the smaller is the number of phases. We are in the presence
of a trade-off that can be tuned by investigating deeply the relation that exists between these two
parameters. Without loss of generality, we simplify our discussion by assuming that the strings in
S are binary and have equal-length of b bits, so N logσ = bn. Of course, this is not a limitation
in practice because any string is encoded in memory as a bit sequence, where each digit in Σ is
encoded in logσ bits.

LEMMA 7.3 LSD-first RadixSort takes Θ(b
r (n + 2r)) time and O(nb) = O(N logσ) space to

sort n strings of b bits each. Here r ≤ b is a positive integer fixed in advance.

Proof We decompose each string in g = b
r groups of r bits each. Each phase will order the

strings according to a group of r bits. Hence CountingSort is asked to order n integers between 0
and 2r − 1 (extremes included), so it takes O(n + 2r) time. As there are g = b

r phases, the total time
is O(g (n + 2r)) = O((b

r)(n + 2r)).

Given n and b, we need to choose a proper value for r such that the time complexity is minimized.
We could derive this minimum via analytic calculus (i.e. first-order derivatives) but, instead, we
argue for the minimum as follows. Since the CountingSort uses O(n + 2r) time to sort each group
of r digits, it is useless to use groups shorter than log n, given that Ω(n) time has to be payed in
any case. So we have to choose r in the interval [log n, b]. As r grows larger than log n, the time
complexity in Lemma 7.3 also increases because of the ratio 2r/r. So the best choice is r = Θ(log n)
for which the time complexity is O(bn

log n).

THEOREM 7.3 LSD-first Radixsort sorts n strings of b bits each in O(bn
log n) time and O(bn)

space, by using CountingSort on groups of Θ(log n) bits. The algorithm is not in-place because it
needs Θ(n) space for the Counting Sort.

We finally observe that bn is the total length in bits of the strings in S , so we can express that
number also as N logσ since each character takes logσ bits to be represented.

COROLLARY 7.1 LSD-first Radixsort solves the string-sorting problem on strings drawn
from an arbitrary alphabet in O(N logσ

log n) time and O(N logσ) bits of space.

7-8 Paolo Ferragina

If d = Θ(N) and σ is a constant, the comparison-based lower-bound (Lemma 7.1) becomes
Ω(d + n log n) = Ω(N). So LSD-first Radixsort equals or even beats that lower bound; but this is not
surprising because this sorter operates on an integer alphabet and uses CountingSort, so it is not a
comparison-based string sorter.

Comparing the trie-based construction (Theorems 7.1–7.2) and the LSD-first RadixSort algorithm
we conclude that the former is always better than the latter for d = O(N

log n), which is true for
most practical cases. In fact LSD-first RadixSort needs to scan the whole string set whichever
are the string compositions, whereas the trie-construction may skip some string suffixes whenever
d � N. However the LSD-first approach avoids the dynamic memory allocation, incurred by the
construction of the trie, and the extra-space due to the storage of the trie structure. This additional
space and work is non negligible in practice and could impact unfavorably on the real performance
of the trie-based sorter, or even prevent its use over large string sets because the internal memory
has bounded size M.

7.3 Multi-key Quicksort

This is a variant of the well-known Quicksort algorithm extended to manage items of variable length.
Moreover it is a comparison-based string sorter which matches the lower bound of Ω(d + n log n)
stated in Lemma 7.1. For a recap about Quicksort we refer the reader to the previous chapter. Here
it is enough to recall that Quicksort hinges onto two main ingredients: the pivot-selection procedure
and the algorithm to partition the input array according to the selected pivot. In Chapter 5 we
discussed widely these issues, for the present section we fix ourselves to a pivot-selection based on
a random choice and to a three-way partitioning of the input array. All other variants discussed in
Chapter 5 can be easily adapted to work in the string setting too.

The key here is that items are not considered as atomic, but they are strings to be split into their
constituent characters. Now the pivot is a character, and the partitioning of the input strings is done
according to the single character that occupies a given position within them. Figure 7.1 details the
pseudocode of Multi-key Quicksort, in which it is assumed that the input set R is prefix free, so
no string in R prefixes any other string. This condition can be easily guaranteed by assuming that
strings of R are distinct and logically padded with a dummy character that is smaller than any other
character in the alphabet. This guarantees that any pair of strings in R admits a bounded longest-
common-prefix (shortly, lcp), and that the mismatch character following the lcp does exist in both
strings.

Algorithm 7.1 MultikeyQS(R, i)
1: if |R| ≤ 1 then
2: return R;
3: else
4: choose a pivot-string p ∈ R;
5: R< = {s ∈ R | s[i] < p[i]};
6: R= = {s ∈ R | s[i] = p[i]};
7: R> = {s ∈ R | s[i] > p[i]};
8: A = MultikeyQS (R<, i);
9: B = MultikeyQS (R=, i + 1);

10: C = MultikeyQS (R>, i);
11: return the concatenated sequence A, B,C;
12: end if

Sorting Strings 7-9

The algorithm receives in input a sequence R of strings to be sorted and an integer parameter
i ≥ 0 which denotes the offset of the character driving the three-way partitioning of R. The pivot-
character is p[i] where p is randomly chosen string within R. The real implementation of this
three-way partitioning can follow the Partition procedure of Chapter 5. MultikeyQS(R, i) assumes
that the following pre-condition holds on its input parameters: All strings in R are lexicographically
sorted up to their (i − 1)-long prefixes. So the sorting of a string sequence R[1, n] is obtained by
invoking MultikeyQS(R, 1), which ensures that the invariant trivially holds for the initial sequence
R. Steps 5-7 partitions R in three subsets whose notation is explicative of their content. All these
three subsets are recursively sorted and their ordered sequences are eventually concatenated in order
to obtain the ordered R. The tricky issue here is the invocation of the three recursive calls:

• the sorting of the strings in R< and R> has still to reconsider the ith character, because
we just checked that it is smaller/greater than p[i] (and this is not sufficient to order
those strings). So recursion does not advance i, but it hinges on the current validity of
the invariant.

• the sorting of the strings in R= can advance i because, by the invariant, these strings are
sorted up to their (i − 1)-long prefixes and, by construction of R=, they share the i-th
character. Actually this character is equal to p[i], so p ∈ R= too.

Alabama
Abaco
Asturias
Avenue
Allure
Albanian
Amref
Attic
Average
Amazng

Alabama
Abaco
Allure
Albanian

Amazng
Amref

Attic
Average
Asturias
Avenue

pivot p[2] = m

R R=

R<

R>

i = 2

FIGURE 7.6: A running example for MultikeyQS(R, 2). In red we have the 1-long prefix shared by
all strings in R.

These observations make correctness immediate. We are therefore left with the problem of com-
puting the average time complexity of MultikeyQS(R, 1). Let us concentrate on a single string, say
s ∈ R, and count the number of comparisons that involve one of its characters. There are two cases,
either s ∈ R< ∪ R> or s ∈ R=. In the first case, s is compared with the pivot-string p and then
included in a smaller set R< ∪ R> ⊂ R with the offset i unchanged. In the other case s is compared
with p but, since the i-th character is found equal, it is included in a smaller set and offset i is ad-
vanced. If the pivot selection is good (see Chapter 5), the three-way partitions are balanced and thus
|R< ∪ R>| ≤ α n, for a proper constant α < 1. As a result, both cases cost O(1) time but one reduces
the string set by a constant factor, while the other increases i. Since the initial set R has size n, and
i is bounded above by the string length |s|, we have that the number of comparisons involving s is
O(|s| + log n). Summing up over all strings in R we get the time bound O(N + n log n). A finer look

7-10 Paolo Ferragina

at the second case shows that i can be bounded above by the number of characters that belong to s’s
distinguishing prefix, because these characters will led s to be located in a singleton set.

THEOREM 7.4 Multi-key Quicksort solves the string-sorting problem by performing O(d +

n log n) character comparisons on average. The bound can be turned into a worst-case bound by
adopting a worst-case linear-time algorithm to select the pivot as the median of R. This is optimal.

Comparing this result against what was obtained for the MSD-first RadixSort (Theorem 7.2) we
observe that in that Theorem we got logσ instead of log n, nevertheless the succinct space oc-
cupancy make Multi-key Quicksort very appealing in practice. Moreover, similarly as done for
Quicksort, it is possible to prove that if the partition is done around the median of 2t + 1 randomly
selected pivots, Multi-key Quicksort needs at most 2nHn

H2t−2−Ht+1
+ O(d) average comparisons. By in-

creasing the sample size t, one can reduce the time near to n log n + O(d). This bound is similar to
the one obtained with the trie-based sorter (see Theorem 7.2, where the log-argument was σ instead
of n), but the algorithm is much simpler, it does not use additional data structures (i.e. hash tables),
and in fact it is the typical choice in practice.

i

b

a

s

as at

e

be by

h

he

s

in is it

o

n

of on or

t

to

FIGURE 7.7: A ternary search tree for 12 two-letter strings. The low and high pointers are shown
as solid lines, while the pointers to the equal-child are shown as dashed lines. The split character is
indicated within the nodes.

We conclude this section by noticing an interesting parallel between Multikey Quicksort and
ternary search trees, as discussed in [6]. These are search data structures in which each node
contains a split character and pointers to low and high (or left and right) children. In some sense a
ternary search tree is obtained from a trie by collapsing together the children whose leading edges
are smaller/greater than the split character. If a given node splits on the character in position i, its
low and high children also split on i-th character. Instead, the equal-child splits on the next (i + 1)-
th character. Ternary search trees may be balanced by either inserting elements in random order
or applying a variety of known schemes. Searching proceeds by following edges according to the
split-characters of the encountered nodes. Figure 7.7 shows an example of a ternary search tree.
The search for the word P =”ir” starts at the root, which is labeled with the character i, with the
offset x = 1. Since P[1] = i, the search proceeds down to the equal-child, increments x to 2, and
thus reaches the node with split-character s. Here P[2] = r < s, so the search goes to the low/left

Sorting Strings 7-11

child which is labeled n, and keeps x unchanged. At that node the search stops, because the split
character is different and no (low or high) children do exist. So the search concludes that P does not
belong to the string set indexed by the ternary search tree.

THEOREM 7.5 A search for a pattern P[1, p] in a perfectly-balanced ternary search tree
representing n strings takes at most blog nc + p comparisons. This is optimal when P is drawn from
a general alphabet (or, equivalently, for a comparison-based search algorithm).

7.4 Some observations on the I/O-model∞

Sorting strings on disk is not nearly as simple as it is in internal memory, and a bunch of sophisti-
cated string-sorting algorithms have been introduced in the literature which achieve I/O-efficiency
(see e.g. [1, 3]). The difficulty is that strings have variable length and their brute-force comparisons
over the sorting process may induce a lot of I/Os. In the following we will use the notation: ns is the
number of strings shorter than B, whose total length is Ns, nl is the number of strings longer than B,
whose total length is Nl. Clearly n = ns + nl and N = Ns + Nl,

The known algorithms can be classified according to the way strings are managed in their sorting
process. We can devise mainly three models of computations [1]:

Model A: Strings are considered indivisible (i.e., they are moved in their entirety and cannot
be broken into characters), except that long strings can be divided into blocks of size B.

Model B: Relaxes the indivisibility assumption of Model A by allowing strings to be divided
into single characters, but this may happen only in internal memory.

Model C: Waives the indivisibility assumption by allowing division of strings in both internal
and external memory.

Model A forces to use Mergesort-based sorters which achieve the following optimal bounds:

THEOREM 7.6 In Model A, string sorting takes Θ(Ns
B logM/B

Ns
B + nl logM/B nl +

Ns+Nl
B) I/Os.

The first term in the bound is the cost of sorting the short strings, the second term is the cost of
sorting the long strings, and the last term accounts for the cost of reading the whole input. The result
shows that sorting short strings is as difficult as sorting their individual characters, which are Ns,
while sorting long strings is as difficult as sorting their first B characters. The lower bound for small
strings in Theorem 7.6 is proved by extending the technique used in Chapter 5 and considering the
special case where all ns small strings have the same length Ns/ns. The lower bound for the long
strings is proved by considering the nl small strings obtained by looking at their first B characters.
The upper bounds in Theorem 7.6 are obtained by using a special Multi-way MergeSort approach
that takes advantage of a lazy trie stored in internal memory to guide the merge passes among the
strings.

Model B presents a more complex situation, and leads to handle long and short strings separately.

THEOREM 7.7 In Model B, sorting long strings takes Θ(nl logM nl +
Nl
B) I/Os, whereas sorting

short strings takes O(min{ns logM ns,
Ns
B logM/B

Ns
B }) I/Os.

The first bound for long strings is optimal, the second for short strings is not. Comparing the
optimal bound for long strings with the corresponding bound in Theorem 7.6, we notice that they

7-12 Paolo Ferragina

differ in terms of the base of the logarithm: the base is M rather than M/B. This shows that breaking
up long strings in internal memory is provably helpful for external string-sorting. The upper bound
is obtained by combining the String B-tree data structure (described in Chapter 9) with a proper
buffering technique. As far as short strings are concerned, we notice that the I/O-bound is the same
as the cost of sorting all the characters in the strings when the average length Ns/ns is O(B

logM/B M).

For the (in practice) narrow range B
logM/B M < Ns

ns
< B, the cost of sorting short strings becomes

O(ns logM ns). In this range, the sorting complexity for Model B is lower than the one for Model A,
which shows that breaking up short strings in internal memory is provably helpful.

Surprisingly enough, the best deterministic algorithm for Model C is derived from the one de-
signed from Model B. However, since Model C allows to split strings on disk too, we can use
randomization and hashing. The main idea is to shrink strings by hashing some of their pieces.
Since hashing does not preserve the lexicographic order, these algorithms must orchestrate the se-
lection of the string pieces to be hashed with a carefully designed sorting process so that the correct
sorted order may be eventually computed. Recently [3] proved the following result (which can be
extended to the more powerful cache-oblivious model):

THEOREM 7.8 In Model C, the string-sorting problem can be solved by a randomized algo-
rithm using O(n

B (log2
M/B

N
M)(log n) + N

B) I/Os, with arbitrarily high probability.

References

[1] Lars Arge, Paolo Ferragina, Roberto Grossi, and Jeff S. Vitter. On sorting strings in

external memory. In Procs of the ACM Symposium on Theory of Computing (STOC),
pp. 540–548, 1997.

[2] Jon L. Bentley and Doug McIlroy. Engineering a sort function. Software-Practice and
Experience, pages 1249–1265, 1993.

[3] Rolf Fagerberg, Anna Pagh, Rasmus Pagh. External String Sorting: Faster and

Cache-Oblivious. In Procs of the Symposium on Theoretical Aspects of Computer Sci-
ence (STACS), LNCS 3884, Springer, pp. 68-79, 2006.

[4] Herman Hollerith. Wikipedia’s entry at http://en.wikipedia.org/wiki/Herman Hollerith.

[5] Tomas H. Cormen, Charles E. Leiserson, Ron L. Rivest and Cliff Stein. Introduction to
Algorithms. The MIT Press, third edition, 2009.

[6] Robert Sedgewick and Jon L. Bentley. Fast algorithms for sorting and searching strings.

Eight Annual ACM-SIAM Symposium on Discrete Algorithms, 360-369, 1997.

8
The Dictionary Problem

8.1 Direct-address tables . 8-2
8.2 Hash Tables . 8-3

How do we design a “good” hash function ?

8.3 Universal hashing . 8-6
Do universal hash functions exist?

8.4 Perfect hashing, minimal, ordered! 8-12
8.5 A simple perfect hash table . 8-16
8.6 Cuckoo hashing . 8-18

An analysis

8.7 Bloom filters . 8-23
A lower bound on space • Compressed Bloom filters •

Spectral Bloom filters • A simple application

In this lecture we present randomized and simple, yet smart, data structures that solve efficiently
the classic Dictionary Problem. These solutions will allow us to propose algorithmic fixes to some
issues that are typically left untouched or only addressed via “hand waving” in basic courses on
algorithms.

Problem. Let D be a set of n objects, called the dictionary, uniquely identified by keys
drawn from a universe U. The dictionary problem consists of designing a data structure that
efficiently supports the following three basic operations:

• Search(k): Check whetherD contains an object o with key k = key[o], and then
return true or false, accordingly. In some cases, we will ask to return the object
associated to this key, if any, otherwise return null.

• Insert(x): Insert inD the object x indexed by the key k = key[x]. Typically it is
assumed that no object inD has key k, before the insertion takes place; condition
which may easily be checked by executing a preliminary query Search(k).

• Delete(k): Delete fromD the object indexed by the key k, if any.

In the case that all three operations have to be supported, the problem and the data structure are
named dynamic; otherwise, if only the query operation has to be supported, the problem and the
data structure are named static.

We point out that in several applications the structure of an object x typically consists of a pair
〈k, d〉, where k ∈ U is the key indexing x in D, and d is the so called satellite data featuring x. For
the sake of presentation, in the rest of this chapter, we will drop the satellite data and the notation
D in favor just of the key set S ⊆ U which consists of all keys indexing objects inD. This way we
will simplify the discussion by considering dictionary search and update operations only on those

c© Paolo Ferragina, 2009-2020 8-1

8-2 Paolo Ferragina

k = key[x]

object x

k = key[x]

x k

S

U

D

Other fields
containing
satellite data
for x

FIGURE 8.1: Illustrative example for U, S ,D and an object x.

keys rather than on (full) objects. But if the context will require also satellite data, we will again
talk about objects and their implementing pairs. See Figure 8.1 for a graphical representation.

Without any loss of generality, we can assume that keys are non-negative integers: U = {0, 1, 2, ...}.
In fact keys are represented in our computer as binary strings, which can thus be interpreted as nat-
ural numbers.

In the following sections, we will analyze three main data structures: direct-address tables (or
arrays), hash tables (and some of their sophisticated variants) and the Bloom Filter. The former
are introduced for teaching purposes, because several times the dictionary problem can be solved
very efficiently without resorting involved data structures. The subsequent discussion on hash tables
will allow us, first, to fix some issues concerning with the design of a good hash function (typically
flied over in basic algorithm courses), then, to design the so called perfect hash tables, that address
optimally and in the worst case the static dictionary problem, and then move to the elegant cuckoo
hash tables, that manage dictionary updates efficiently, still guaranteing constant query time in the
worst case. The chapter concludes with the Bloom Filter, one of the most used data structures in the
context of large dictionaries and Web/Networking applications. Its surprising feature is to guarantee
query and update operations in constant time, and, more surprisingly, to take space depending on
the number of keys n, but not on their lengths. The reason for this impressive “compression” is
that keys are dropped and only a fingerprint of few bits for each of them is stored; the incurred
cost is a one-side error when executing Search(k): namely, the data structure answers in a correct
way when k ∈ S , but it may answer un-correctly if k is not in the dictionary, by returning answer
true (a so called false positive). Despite that, we will show that the probability of this error can be
mathematically bounded by a function which exponentially decreases with the space m reserved to
the Bloom Filter or, equivalently, with the number of bits allocated per each key (i.e. its fingerprint).
The nice thing of this formula is that it is enough to take m a constant-factor slightly more than n
and reach a negligible probability of error. This makes the Bloom Filter much appealing in several
interesting applications: crawlers in search engines, storage systems, P2P systems, etc..

8.1 Direct-address tables

The simplest data structure to support all dictionary operations is the one based on a binary table T ,
of size u = |U | bits. There is a one-to-one mapping between keys and table’s entries, so that entry
T [k] is set to 1 iff the key k ∈ S . If some satellite data for k has to be stored, then T is implemented
as a table of pointers to these satellite data. In this case we have that T [k] , NULL iff k ∈ S and it
points to the memory location where the satellite data for k are stored.

Dictionary operations are trivially implemented on T and can be performed in constant (optimal)
time in the worst case. The main issue with this solution is that table’s occupancy depends on the
universe size u; so if n = Θ(u), then the approach is optimal. But if the dictionary is small compared

The Dictionary Problem 8-3

D
a

x

y

U

S

b

k

k′

T Hash Table with chaining

m− 1

0

b

k k′
k = key[x]

h(b)

h(k) = h(k′)

FIGURE 8.2: Hash table with chaining.

to the universe, the approach wastes a lot of space and becomes unacceptable. Take the case of a
university which stores the data of its students indexed by their IDs: there can be even million of
students but if the IDs are encoded with integers (hence, 4 bytes) then the universe size is 232, and
thus of the order of billions. Smarter solutions have been therefore designed to reduce the sparseness
of the table still guaranteeing the efficiency of the dictionary operations: among all proposals, hash
tables and their many variations provide an excellent choice!

8.2 Hash Tables

The simplest data structure for implementing a dictionary are arrays and lists. The former data
structure offers constant-time access to its entries but linear-time updates; the latter offers opposite
performance, namely linear-time to access its elements but constant-time updates whenever the
position where they have to occur is given. Hash tables combine the best of these two approaches,
their simplest implementation is the so called hashing with chaining which consists of an array
of lists. The idea is pretty simple, the hash table consists of an array T of size m, whose entries
are either NULL or they point to lists of dictionary items. The mapping of items to array entries is
implemented via an hash function h : U → {0, 1, 2 . . . ,m − 1}. An item with key k is appended
to the list pointed to by the entry T [h(k)]. Figure 8.2 shows a graphical example of an hash table
with chaining; as mentioned above we will hereafter interchange the role of items and their indexing
keys, to simplify the presentation, and imply the existence of some satellite data.

Forget for a moment the implementation of the function h, and assume just that its computation
takes constant time. We will dedicate to this issue a significant part of this chapter, because the
overall efficiency of the proposed scheme strongly depends on the efficiency and efficacy of h to
distribute items evenly among the table slots.

Given a good hash function, dictionary operations are easy to implement over the hash table
because they are just turned into operations on the array T and on the lists which spur out from its
entries. Searching for an item with key k boils down to a search for this key in the list T [h(k)].
Inserting an item x consists of appending it at the front of the list pointed to by T [h(key[x])].
Deleting an item with key k consists of first searching for it in the list T [h(k)], and then removing
the corresponding object from that list. The running time of dictionary operations is constant for
Insert(x), provided that the computation of h(k) takes constant time, and it is linear in the length
of the list pointed to by T [h(k)] for both the other operations, namely Search(k) and Delete(k).
Therefore, the efficiency of hashing with chaining depends on the ability of the hash function h to
evenly distribute the dictionary items among the m entries of table T , the more evenly distributed
they are the shorter is the list to scan. The worst situation is when all dictionary items are hashed
to the same entry of T , thus creating a list of length n. In this case, the cost of searching is Θ(n)
because, actually, the hash table boils down to a single linked list!

8-4 Paolo Ferragina

This is the reason why we are interested in good hash functions, namely ones that distribute items
among table slots uniformly at random (aka simple uniform hashing). This means that, for such
hash functions, every key k ∈ S is equally likely to be hashed to everyone of the m slots in T ,
independently of where other keys are hashed. If h is such, then the following result can be easily
proved.

THEOREM 8.1 Under the hypotheses of simple uniform hashing, there exists a hash table
with chaining, of size m, in which the operation Search(k) over a dictionary of n items takes
Θ(1 + n/m) time on average. The value α = n/m is often called the load factor of the hash table.

Proof In case of unsuccessful search (i.e. k < S), the average time for operation Search(k)
equals the time to perform a full scan of the list T [h(k)], and thus it equals its length. Given
the uniform distribution of the dictionary items by h, the average length of a generic list T [i] is∑

x∈S p(h(key[x]) = i) = |S | × 1
m = n/m = α. The “plus 1” in the time complexity comes from the

constant-time computation of h(k).
In case of successful search (i.e. k ∈ S), the proof is less straightforward. Assume x is the i-th

item inserted in T , and let the insertion be executed at the tail of the list L(x) = T [h(key[x])]; we
need just one additional pointer per list keep track of it. The number of elements examined during
Search(key[x]) equals the number of items which were present in L(x) plus 1, i.e. x itself. The
average length of L(x) can be estimated as ni = i−1

m (given that x is the i-th item to be inserted), so
the cost of a successful search is obtained by averaging ni + 1 over all n dictionary items. Namely,

1
n

n∑

i=1

(
1 +

i − 1
m

)
= 1 +

α

2
− 1

2m

Therefore, the total time is O(2 + α
2 − 1

2m) = O(1 + α).

The space taken by the hash table can be estimated very easily by observing that list pointers take
O(log n) bits, because they have to index one out of n items, and the item keys take O(log u) bits,
because they are drawn from a universe U of size u. It is interesting to note that the key storage can
dominate the overall space occupancy of the table as the universe size increases (think e.g. to URL
as keys). It might take even more space than what it is required by the list pointers and the table
T (aka, the indexing part of the hash table). This is a simple but subtle observation which will be
exploited when designing the Bloom Filter in Section 8.7. To be precise on the space occupancy,
we state the following corollary.

COROLLARY 8.1 Hash table with chaining occupies (m + n) log2 n + n log2 u bits.

It is evident that if the dictionary size n is known, the table can be designed to consists of m = Θ(n)
cells, and thus obtain a constant-time performance over all dictionary operations, on average. If n is
unknown, one can resize the table whenever the dictionary gets too small (many deletions), or too
large (many insertions). The idea is to start with a table size m = 2n0, where n0 is the initial number
of dictionary items. Then, we keep track of the current number n of dictionary items present in T .
If the dictionary gets too small, i.e. n < n0/2, then we halve the table size and rebuild it; if the
dictionary gets too large, i.e. n > 2n0, then we double the table size and rebuild it. This scheme
guarantees that, at any time, the table size m is proportional to the dictionary size n by a factor 2,
thus implying that α = m/n = O(1). Table rebuilding consists of inserting the current dictionary
items in a new table of proper size, and drop the old one. Since insertion takes O(1) time per item,

The Dictionary Problem 8-5

and the rebuilding affects Θ(n) items to be deleted and Θ(n) items to be inserted, the total rebuilding
cost is Θ(n). But this cost is paid at least every n0/2 = Ω(n) operations, the worst case being the
one in which these operations consist of all insertions or all deletions; so the rebuilding cost can be
spread over the operations of this sequence, thus adding a O(1 + m/n) = O(1) amortized cost at the
actual cost of each operation. Overall this means that

COROLLARY 8.2 Under the hypothesis of simple uniform hashing, there exists a dynamic
hash table with chaining which takes constant time, expected and amortized, for all three dictionary
operations, and uses O(n) space.

8.2.1 How do we design a “good” hash function ?

Simple uniform hashing is difficult to guarantee, because one rarely knows the probability distribu-
tion according to which the keys are drawn and, in addition, it could be the case that the keys are not
drawn independently. Let us dig into this latter feature. Since h maps keys from a universe of size u
to a integer-range of size m, it induces a partition of those keys in m subsets Ui = {k ∈ U : h(k) = i}.
By the pigeon principle it does exist at least one of these subsets whose size is larger than the average
load factor u/m. Now, if we reasonably assume that the universe is sufficiently large to guarantee
that u/m = Ω(n), then we can choose the dictionary S as that subset of keys and thus force the hash
table to offer its worst behavior, by boiling down to a single linked list of length Ω(n).

This argument is independent of the hash function h, so we can conclude that no hash function is
robust enough to guarantee always a “good” behavior. In practice heuristics are used to create hash
functions that perform well sufficiently often: the design principle is to compute the hash value in a
way that it is expected to be independent of any regular pattern that might exist among the keys in
S . The two most famous and practical hashing schemes are based on division and multiplication,
and are briefly recalled below (for more details we refer to any classic text in Algorithms, such as
[3].

Hashing by division. The hash value is computed as the remainder of the division of k by the table
size m, that is: h(k) = k modm. This is quite fast and behaves well as long as h(k) does not depend
on few bits of k. So power-of-two values for m should be avoided, whereas prime numbers not
too much close to a power-of-two should be chosen. For the selection of large prime numbers do
exist either simple, but slow (exponential time) algorithms (such as the famous Sieve of Eratosthenes
method); or fast algorithms based on some (randomized or deterministic) primality test.1 In general,
the cost of prime selection is o(m); and thus turns out to be negligible with respect to the cost of
table allocation.

Hashing by multiplication. The hash value is computed in two steps: First, the key k is multiplied
by a constant A, with 0 < A < 1; then, the fractionary part of kA is multiplied by m and the integral
part of the result is taken as index into the hash table T . In formula: h(k) = bm frac(kA)c. An
advantage of this method is that the choice of m is not critical, and indeed it is usually chosen as a
power of 2, thus simplifying the multiplication step. For the value of A, it is often suggested to take
A = (

√
5 − 1)/2 � 0.618.

It goes without saying that none of these practical hashing schemes surpasses the problem stated
above: it is always possible to select a bad set of keys which makes the table T to boil down to a

1The most famous, and randomized, primality test is the one by Miller and Rabin; more recently, a determin-
istic test has been proposed which allowed to prove that this problem is in P. For some more details look at
http://en.wikipedia.org/wiki/Prime number.

8-6 Paolo Ferragina

single linked list, e.g., just take multiples of m to disrupt the hashing-by-division method. In the
next section, we propose an hashing scheme that is robust enough to guarantee a “good” behavior
on average, whichever is the input dictionary.

8.3 Universal hashing

Let us first argue by a counting argument why the uniformity property, we required to good hash
functions, is computationally hard to guarantee. Recall that we are interested in hash functions
which map keys in U to integers in {0, 1, ...,m − 1}. The total number of such hash functions is
m|U |, given that each key among the |U | ones can be mapped into m slots of the hash table. In order
to guarantee uniform distribution of the keys and independence among them, our hash function
should be anyone of those ones. But, in this case, its representation would need Ω(log2 m|U |) =

Ω(|U | log2 m) bits, which is really too much in terms of space occupancy and in the terms of
computing time (i.e. it would take at least Ω(|U | log2 m

log2 |U |) time to just read the hash encoding).
Practical hash functions, on the other hand, suffer of several weaknesses we mentioned above. In

this section we introduce the powerful Universal Hashing scheme which overcomes these drawbacks
by means of randomization proceeding similarly to what was done to make more robust the pivot
selection in the Quicksort procedure (see Chapter 5). There, instead of taking the pivot from a
fixed position, it was chosen uniformly at random from the underlying array to be sorted. This way
no input was bad for the pivot-selection strategy, which being unfixed and randomized, allowed to
spread the risk over the many pivot choices guaranteeing that most of them led to a good-balanced
partitioning.

Universal hashing mimics this algorithmic approach into the context of hash functions. Infor-
mally, we do not set the hash function in advance (cfr. fix the pivot position), but we will choose
the hash function uniformly at random from a properly defined set of hash functions (cfr. random
pivot selection) which is defined in a way that it is very probable to pick a good hash for the current
input set of keys S (cfr. the partitioning is balanced). Good function means one that minimizes
the number of collisions among the keys in S , and can be computed in constant time. Because of
the randomization, even if S is fixed, the algorithm will behave differently on various executions,
but the nice property of Universal Hashing will be that, on average, the performance will be the
expected one. It is now time to formalize these ideas.

DEFINITION 8.1

LetH be a finite collection of hash functions which map a given universe U of keys into integers
in {0, 1, ...,m − 1}. H is said to be universal if, and only if, for all pairs of distinct keys x, y ∈ U it
is:

|{h ∈ H : h(x) = h(y)}| ≤ |H|m

In other words, the classH is defined in such a way that a randomly-chosen hash function h from
this set has a chance to make the distinct keys x and y to collide no more than 1

m . This is exactly the
basic property that we deployed when designing hashing with chaining (see the proof of Theorem
8.1). Figure 8.3 pictorially shows this concept.

It is interesting to observe that the definition of Universal Hashing can be extended with some
slackness into the guarantee of probability of collision.

DEFINITION 8.2 Let c be a positive constant and H be a finite collection of hash functions
that map a given universe U of keys into integers in {0, 1, ...,m − 1}. H is said to be c-universal if,

The Dictionary Problem 8-7

x, y fixed
{h : h(x) = h(y)}

H

H
m

FIGURE 8.3: A schematic figure to illustrate the Universal Hash property.

and only if, for all pairs of distinct keys x, y ∈ U it is:

|{h ∈ H : h(x) = h(y)}| ≤ c|H|
m

That is, for each pair of distinct keys, the number of hash functions for which there is a collision
between this keys-pair is c times larger than what is guaranteed by universal hashing. The following
theorem shows that we can use a universal class of hash functions to design a good hash table with
chaining. This specifically means that Theorem 8.1 and its Corollaries 8.1–8.2 can be obtained
by substituting the ideal Simple Uniform Hashing with Universal Hashing. This change will be
effective in that, in the next section, we will define a real Universal class H , thus making concrete
all these mathematical ruminations.

THEOREM 8.2 Let T [0,m − 1] be an hash table with chaining, and suppose that the hash
function h is picked at random from a universal class H . The expected length of the chaining lists
in T , whichever is the input dictionary of keys S , is still no more than 1 + α, where α is the load
factor n/m of the table T .

Proof We note that the expectation here is over the choices of h inH , and it does not depend on
the distribution of the keys in S . For each pair of keys x, y ∈ S , define the indicator random variable
Ixy which is 1 if these two keys collide according to a given h, namely h(x) = h(y), otherwise it
assumes the value 0. By definition of universal class, given the random choice of h, it is P(Ixy =

1) = P(h(x) = h(y)) ≤ 1/m. Therefore we can derive E[Ixy] = 1 × P(Ixy = 1) + 0 × P(Ixy = 0) =

P(Ixy = 1) ≤ 1/m, where the average is computed over h’s random choices.
Now we define, for each key x ∈ S , the random variable Nx that counts the number of keys other

than x that hash to the slot h(x), and thus collide with x. We can write Nx as
∑

y∈S
y,x

Ixy. By averaging,

and applying the linearity of the expectation, we get
∑

y∈S
y,x

E[Ixy] = (n − 1)/m < α. By adding 1,

because of x, the theorem follows.

We point out that the time bounds given for hashing with chaining are in expectation. This means
that the average length of the lists in T is small, namely O(α), but there could be one or few lists
which might be very long, possibly containing up to Θ(n) items. This satisfies Theorem 8.2 but
is of course not a nice situation because it might occur sadly that the distribution of the searches
privileges keys which belong to the very long lists, thus taking significantly more that the “average”
time bound! In order to circumvent this problem, one should guarantee also a small upper bound on
the length of the longest list in T . This can be achieved by putting some care when inserting items

8-8 Paolo Ferragina

in the hash table.

THEOREM 8.3 Let T be an hash table with chaining formed by m slots and picking an hash
function from a universal classH . Assume that we insert in T a dictionary S of n = Θ(m) keys, the
expected length of the longest chain is O(log n

log log n).

Proof Let h be an hash function picked uniformly at random fromH , and let Q(k) be the proba-
bility that exactly k keys of S are hashed by h to a particular slot of the table T . Given the universality
of h, the probability that a key is assigned to a fixed slot is ≤ 1

m . There are
(

n
k

)
ways to choose k keys

from S , so the probability that a slot gets k keys is:

Q(k) =

(
n
k

) (
1
m

)k (
m − 1

m

)n−k

<
ek

kk

where the last inequality derives from Stirling’s formula k! > (k/e)k. We observe that there exists
a constant c < 1 such that, fixed m ≥ 3 and k0 = c log m/ log log m, it holds Q(k0) < 1/m3.

Let us now introduce M as the length of the longest chain in T , and the random variable N(i)
denoting the number of keys that hash to slot i. Then we can write

P(M = k) = P(∃i : N(i) = k and N(j) ≤ k for j , i)
≤ P(∃i : N(i) = k) ≤ m Q(k)

where the two last inequalities come, the first one, from the fact that probabilities are ≤ 1, and the
second one, from the union bound applied to the m possible slots in T .

If k ≥ k0, we can pick c large enough such that k0 > 3 > e. In this case e/k < 1, and so (e/k)k

decreases as k increases, tending to 0. Thus, we have Q(k) < (e/k)k ≤ (e/k0)k0 < 1/m3, which
implies again that P(M = k) < 1/m2.
We are ready to evaluate the expectation of M:

E[M] =

n∑

k=0

k × P(M = k) =

k0∑

k=0

k × P(M = k) +

n∑

k=k0+1

k × P(M = k) (8.1)

≤
k0∑

k=0

k × P(M = k) +

n∑

k=k0+1

n × P(M = k) (8.2)

≤ k0

k0∑

k=0

P(M = k) + n
n∑

k=k0+1

P(M = k) (8.3)

= k0 × P(M ≤ k0) + n × P(M > k0) (8.4)

We note that P(M ≤ k0) ≤ 1 and

Pr(M > k0) =

n∑

k=k0+1

P(M = k) <
n∑

k=k0+1

(1/m2) < n(1/n2) = 1/n.

By combining together all these inequalities we can conclude that E[M] ≤ k0 + n(1/n) = k0 + 1 =

O(log m/ log log m), which is the thesis since we assumed m = Θ(n).

Two observations are in order at this point. The condition on m = Θ(n) can be easily guaranteed
by applying the doubling method to the table T , as we showed in Theorem 8.2. The bound on the

The Dictionary Problem 8-9

maximum chain length is on average, but it can be turned into worst case via a simple argument.
We start by picking a random hash function h ∈ H , hash every key of S into T , and see whether the
condition on the length of the longest chain is at most twice the expected length log m/ log log m.
If so, we use T for the subsequent search operations, otherwise we pick a new function h and re-
insert all items in T . A constant number of trials suffice to satisfy that bound2, thus taking O(n)
construction time in expectation.

d

FIGURE 8.4: Example of d-left hashing with four subtables, four hash functions, and each table
entry consisting of a bucket of a 4 slots.

Surprisingly enough, this result can be further improved by using two or more, say d, hash func-
tions and d sub-tables T1,T2, ...,Td of the same size m/d, for a total space occupancy equal to the
classic single hash table T . Each table Ti is indexed by a different hash function hi ranging in
{0, 1, . . . ,m/d − 1}. The specialty of this scheme resides in the implementation of the procedure
Insert(k): it tests the loading of the d slots Ti[hi(k)], and inserts k in the sparsest one. In the case
of a tie, about slots’ loading, the algorithm chooses the leftmost table, i.e. the one with minimum
index i. For this reason this algorithmic scheme is also known as d-left hashing. The implementa-
tion of Search(k) follows consequently, we need to search all d lists Ti[hi(k)] because we do not
know which were their loadings when k was inserted, if any. The time cost for Insert(k) is O(d)
time, the time cost of Search(k) is given by the total length of the d searched lists. We can upper
bound this length by d times the length of the longest list in T which, surprisingly, can be proved to
be O(log log n), when d = 2, and it is log log n

log d + O(1) for larger d > 2. This result has to be compared

against the bound O(log n
log log n) obtained for the case of a single hash function in Theorem 8.3. So, by

just using one more hash function, we can get an exponential reduction in the search time: this sur-
prising result is also known in the literature as the power of two choices, exactly because choosing
between two slots the sparsest one allows to reduce exponentially the longest list.

As a corollary we notice that this result can be used to design a better hash table which does not
use chaining-lists to manage collisions, thus saving the space of pointers and increasing locality of
reference (hence less cache/IO misses). The idea is to allocate small and fixed-size buckets per each
slot, as it is illustrated in Figure 8.4. We can use two hash functions and buckets of size c log log n,
for some small c > 1. The important implication of this result is that even for just two hash functions
there is a large reduction in the maximum list length, and thus search time.

8.3.1 Do universal hash functions exist?

2Just use the Markov bound to state that the longest list longer than twice the average may occur with probability ≤ 1/2.

8-10 Paolo Ferragina

The answer is positive and, surprisingly enough, universal hash functions can be easily constructed
as we will show in this section for three classes of them. We assume, without loss of generality,
that the table size m is a prime number and keys are integers represented as bit strings of log2 |U |
bits.3 We let r =

log2 |U |
log2 m and assume that this is an integer. We decompose each key k in r parts, of

log2 m bits each, so k = [k0, k1, ...kr−1]. Clearly each part ki is an integer smaller than m, because it
is represented in log2 m bits. We do the same for a generic integer a = [a0, a1, ..., ar−1] ∈ [0, |U | − 1]
used as the parameter that defines the universal class of hash functions H as follows: ha(k) =∑r−1

i=0 aiki mod m. The size ofH is |U |, because we have one function per value of a.

THEOREM 8.4 The class H that contains the following hash functions: ha(k) =
∑r−1

i=0 aiki

mod m, where m is prime and a is a positive integer smaller than |U |, is universal.

Proof Suppose that x and y are two distinct keys which differ, hence, on at least one bit. For
simplicity of exposition, we assume that a differing bit falls into the first part, so x0 , y0. According
to Definition 8.1, we need to count how many hash functions make these two keys collide; or
equivalently, how many a do exist for which ha(x) = ha(y). Since x0 , y0, and we operate in
arithmetic modulo a prime (i.e. m), the inverse (x0 − y0)−1 must exist and it is an integer in the range
[1, |U | − 1], and so we can write:

ha(x) = ha(y)⇔
r−1∑

i=0

aixi ≡
r−1∑

i=0

aiyi (mod m)

⇔ a0(x0 − y0) ≡ −
r−1∑

i=1

ai(xi − yi) (mod m)

⇔ a0 ≡
−

r−1∑

i=1

ai(xi − yi)

 (x0 − y0)−1 (mod m)

The last equation actually shows that, whatever is the choice for [a1, a2, ..., ar−1] (and they are
mr−1), there exists only one choice for a0 (the one specified in the last line above) which causes x
and y to collide. As a consequence, there are mr−1 = |U |/m = |H|/m choices for [a1, a2, ..., ar−1]
that cause x and y to collide. So the Definition 8.1 of Universal Hash class is satisfied.

It is possible to turn the previous definition holding for any table size m, thus not only for prime
values. The key idea is to make a double modular computation by means of a large prime p > |U |,
and a generic integer m � |U | equal to the size of the hash table we wish to set up. We can
then define an hash function parameterized in two values a ≥ 1 and b ≥ 0: ha,b(k) = ((ak +

b) mod p) mod m, and then define the familyHp,m =
⋃

a>0,b≥0{ha,b}. It can be shown thatHp,m is a
universal class of hash functions.

The above two definitions require r multiplications and r modulo operations. There are indeed
other universal hashing which are faster to be computed because they rely only on operations in-
volving power-of-two integers. As an example take |U | = 2h, m = 2l < |U | and a be an odd integer
smaller than |U |. Define the class Hh,l that contains the following hash functions: ha(k) = (ak

3This is possible by pre-padding the key with 0, thus preserving its integer value.

The Dictionary Problem 8-11

mod 2h) div 2h−l. This class contains 2h−1 distinct functions because a is odd and smaller than
|U | = 2h. The following theorem presents the most important property of this class:

THEOREM 8.5 The classHh,l = { ha(k) = (ak mod 2h) div 2h−l}, with |U | = 2h and m = 2l <
|U | and a odd integer smaller than 2h, is 2-universal because for any two distinct keys x and y, it is

P(ha(x) = ha(y)) ≤ 1
2l−1 =

2
m

.

Proof Without loss of generality let x > y and define A as the set of possible values for a (i.e. a
odd integer smaller than 2h = |U |). If there is a collision ha(x) = ha(y), then we have:

ax mod 2h div 2h−l − ay mod 2h div 2h−l = 0
|ax mod 2h div 2h−l − ay mod 2h div 2h−l| < 1

|ax mod 2h − ay mod 2h| < 2h−l

|a(x − y) mod 2h| < 2h−l

Set z = x − y > 0 (given that keys are distinct and x > y) and z < |U | = 2h, it is z . 0(mod 2h)
and az . 0(mod 2h) because a is odd, so we can write:

az mod 2h ∈ {1, ..., 2h−l − 1} ∪ {2h − 2h−l + 1, ..., 2h − 1} (8.5)

In order to estimate the number of a ∈ A that satisfy this condition, we write z as z′2s with z′ odd
and 0 ≤ s < h. The odd numbers a = 1, 3, 7, ..., 2h − 1 create a mapping a 7→ az′ mod 2h that is a
permutation of A because z′ is odd. So, if we have the set {a2s | a ∈ A}, a possible permutation is so
defined: a2s 7→ az′2s mod 2h = az mod 2h. Thus, the number of a ∈ A that satisfy Eqn. 8.5 is the
same as the number of a ∈ A that satisfy:

a2s mod 2h ∈ {1, ..., 2h−l − 1} ∪ {2h − 2h−l + 1, ..., 2h − 1}

Now, a2s mod 2h is the number represented by the h − s least significant bits of a, followed by
s zeros. For example:

• If we take a = 7 , s = 1 and h = 3:
7 ∗ 21 mod 23 is in binary 1112 ∗ 102 mod 10002 that is equal to 11102 mod 10002 =

1102. The result is represented by the h − s = 3 − 1 = 2 least significant bits of a,
followed by s = 1 zeros.

• If we take a = 7 , s = 2 and h = 3:
7∗22 mod 23 is in binary 1112∗1002 mod 10002 that is equal to 111002 mod 10002 =

1002. The result is represented by the h−s = 3−2 = 1 least significant bits of a, followed
by s = 2 zeros.

• If we take a = 5 , s = 2 and h = 3:
5∗22 mod 23 is in binary 1012∗1002 mod 10002 that is equal to 101002 mod 10002 =

1002. The result is represented by the h−s = 3−2 = 1 least significant bits of a, followed
by s = 2 zeros.

So if s ≥ h − l there are no values of a that satisfy Eqn. 8.5, while for smaller s, the number of
a ∈ A satisfying that equation is at most 2h−l. Consequently the probability of randomly choosing
such a is at most 2h−l/2h−1 = 1/2l−1. Finally, the universality of Hh,l follows immediately because

1
2l−1 <

1
m .

8-12 Paolo Ferragina

(a) Term t h1(t) h2(t) h(t) (b) x g(x)
body 1 6 0 0 0
cat 7 2 1 1 5
dog 5 7 2 2 0
flower 4 6 3 3 7
house 1 10 4 4 8
mouse 0 1 5 5 1
sun 8 11 6 6 4
tree 11 9 7 7 1
zoo 5 3 8 8 0

9 1
10 8
11 6

TABLE 8.1

An example of an OPMPHF for a dictionary S of n = 9 strings which are in alphabetic order. Column h(t)
reports the lexicographic rank of each key; h is minimal because its values are in {0, . . . , n − 1} and is

built upon three functions: (a) two random hash functions h1(t) and h2(t), for t ∈ S ; (b) a properly

derived function g(x), for x ∈ {0, 1, . . . ,m′ − 1}. Here m′ = 13 > 9 = n.

8.4 Perfect hashing, minimal, ordered!

The most known algorithmic scheme in the context of hashing is probably that of hashing with
chaining, which sets m = Θ(n) in order to guarantee an average constant-time search; but that
optimal time-bound is on average, as most students forget. This forgetfulness is not erroneous in
absolute terms, because do indeed exist variants of hash tables that offer a constant-time worst-case
bound, thus making hashing a competitive alternative to tree-based data structures and the de facto
choice in practice. A crucial concept in this respect is perfect hashing, namely, a hash function
which avoids collisions among the keys to be hashed (i.e. the keys of the dictionary to be indexed).
Formally speaking,

DEFINITION 8.3 A hash function h : U → {0, 1, . . . ,m− 1} is said to be perfect with respect
to a dictionary S of keys if, and only if, for any pair of distinct keys k′, k′′ ∈ S , it is h(k′) , h(k′′).

An obvious counting argument shows that it must be m ≥ |S | = n in order to make perfect-hashing
possible. In the case that m = n, i.e. the minimum possible value, the perfect hash function is named
minimal (shortly MPHF). A hash table T using an MPHF h guarantees O(1) worst-case search time as
well as no waste of storage space, because it has the size of the dictionary S (i.e. m = n) and keys
can be directly stored in the table slots. Perfect hashing is thus a sort of “perfect” variant of direct-
address tables (see Section 8.1), in the sense that it achieves constant search time (like those tables),
but optimal linear space (unlike those tables).

A (minimal) perfect hash function is said to be order preserving (shortly OP(MP)HF) iff, ∀ki <
k j ∈ S , it is h(ki) < h(k j). Clearly, if h is also minimal, and thus m = n; then h(k) returns the rank
of the key in the ordered dictionary S . It goes without saying that, the property OP(MP)HF strictly
depends onto the dictionary S upon which h has been built: by changing S we could destroy this
property, so it is difficult, even if not impossible, to maintain this property under a dynamic scenario.
In the rest of this section we will confine ourselves to the case of static dictionaries, and thus a fixed
dictionary S .

The design of h is based upon three auxiliary functions h1, h2 and g, which are defined as follows:

• h1 and h2 are two universal hash functions from strings to {0, 1, . . . ,m′ − 1} picked ran-
domly from a universal class (see Section 8.3). They are not necessarily perfect, and

The Dictionary Problem 8-13

so they might induce collisions among S ’s keys. The choice of m′ impacts onto the
efficiency of the construction, typically it is taken m′ = cn, where c > 1, so spanning a
range which is larger than the number of keys.

• g is a function that maps integers in the range {0, . . . ,m′ − 1} to integers in the range
{0, . . . , n − 1}. This mapping cannot be perfect, given that m′ ≥ n, and so some output
values could be repeated. The function g is designed in a way that it properly combines
the values of h1 and h2 in order to derive the OP(MP)HF h:

h(t) = (g(h1(t)) + g(h2(t))) mod n

The construction of g is obtained via an elegant randomized algorithm which deploys
paths in acyclic random graphs (see below).

Examples for these three functions are given in the corresponding columns of Table 8.1. Although
the values of h1 and h2 are randomly generated, the values of g are derived by a proper algorithm
whose goal is to guarantee that the formula for h(t) maps a string t ∈ S to its lexicographic rank in
S . It is clear that the evaluation of h(t) takes constant time: we need to perform accesses to arrays h1
and h2 and g, plus two sums and one modular operation. The total required space is O(m′+n) = O(n)
whenever m′ = cn. It remains to discuss the choice of c, which impacts onto the efficiency of the
randomized construction of g and onto the overall space occupancy. It is suggested to take c > 2,

which leads to obtain a successful construction in
√

m′
m′−2n trials. This means about two trials by

setting c = 3 (see [5]).

THEOREM 8.6 An OPMPHF for a dictionary S of n keys can be constructed in O(n) average
time. The hash function can be evaluated in O(1) time and uses O(n) space (i.e. O(n log n) bits);
both time and space bounds are worst case and optimal.

Before digging into the technical details of this solution, let us make an important observation
which highlights the power of OPMPHF. It is clear that we could assign the rank to each string by
deploying a trie data structure (see Theorem 9.7), but this would incur two main limitations: (i) rank
assignment would need a trie search operation which would incur Θ(s) I/Os, rather than O(1); (ii)
space occupancy would be linear in the total dictionary length, rather than in the total dictionary
cardinality. The reason is that, the OPMPHF’s machinery does not need the string storage thus
allowing to pay space proportional to the number of strings rather than their length; but on the other
hand, OPMPHF does not allow to compute the rank of strings not in the dictionary, an operation
which is instead supported by tries via the so called lexicographic search (see Chapter 9).

We are left with detailing the algorithm that computes the function g, which will be actually
implemented as an array of m′ positions storing values bounded by n (see above). So g-array will
occupy a total of O(m′ log2 n) bits. This array must have a quite peculiar feature: its entries have to
be defined in a way that the computation

h(t) = (g(h1(t)) + g(h2(t))) mod n

returns the rank of term t in S . Surprisingly enough, the computation of g is quite simple and
consists of building an undirected graph G = (V, E) with m′ nodes labeled {0, 1, . . . ,m′ − 1} (the
same range as the co-domain of h1 and h2, and the domain of g) and n edges (as many as the keys
in the dictionary) defined according to (h1(t), h2(t)) labeled with the desired value h(t), for each
dictionary string t ∈ S . It is evident that the topology of G depends only on h1 and h2, and it is

8-14 Paolo Ferragina

0
1

2

3

4

5
6

7

8

9

10

11 5

4

0

3
8

1

2

7

6

FIGURE 8.5: Graph corresponding to the dictionary of strings S and to the two functions h1 and h2
of Table 8.1. We do not show node 12 because this value does not occur in the co-domain of h1, h2.

exactly what it is called a random graph.4

Figure 8.5 shows an example of graph G constructed according to the setting of Table 8.1. Take
the string t = body for which h1(t) = 1 and h2(t) = 6. The lexicographic rank of body in the
dictionary S is h(t) = 0 (it is the first string), which is then the value labeling edge (1, 6). We have
to derive g(t) so that 0 must be turn to be equal to (g(1) + g(6)) mod 9 . Of course there are some
correct values for entries g(1) and g(6) (e.g. g(1) = 0 and g(6) = 0), but these values should be
correct for all terms t whose edges are incident onto the nodes 1 and 6. Because these edges refer
to terms whose g’s computation depends on g(1) or g(6). In this respect, the structure of G is useful
to drive the instantiation of g’s values, as detailed by the algorithm LabelAcyclicGraph(G).

The key algorithmic idea is that, if the graph originated by h1 and h2 is acyclic, then it can be
decomposed into paths. If we assume that the first node, say v0, of every path takes value 0, as indeed
we execute LabelFrom(v0, 0) in LabelAcyclicGraph(G), then all other nodes vi subsequently
traversed in this path will have value undef for g(vi) and thus this entry can be easily set by solving
the following equation with respect to g(vi):

h(vi−1, vi) = (g(vi−1) + g(vi)) mod n

which actually means to compute:

g(vi) = (h(vi−1, vi) − g(vi−1)) mod n

This is exactly what the algorithm LabelFrom(v, c) does. It is natural at this point to ask whether
these algorithms always find a good assignment to function g or not. It is not difficult to convince
ourselves that they return a solution only if the input graph G is acyclic, otherwise they stop. In this
latter case, we have to rebuild the graph G, and thus the hash functions h1 and h2 by drawing them
from the universal class.

What is the likelihood of building an acyclic graph? This question is quite relevant since the
technique is useful only if this probability of success is large enough to need few rebuilding steps.

4The reader should be careful that the role of letters n and m′ is exchanged here with respect to the traditional graph
notation in which n refers to number of nodes and m′ refers to number of edges.

The Dictionary Problem 8-15

Algorithm 8.1 Procedure LabelAcyclicGraph(G)
1: for v ∈ V do
2: g[v] = undef

3: end for
4: for v ∈ V do
5: if g[v] = undef then
6: LabelFrom(v, 0)
7: end if
8: end for

Algorithm 8.2 Procedure LabelFrom(v, c)
1: if g[v] , undef then
2: if g[v] , c then
3: return - the graph is cyclic; STOP
4: end if
5: end if
6: g[v] = c
7: for u ∈ Adj[v] do
8: LabelFrom(u, h(v, u) − g[v] mod n)
9: end for

According to Random Graph Theory [5], if m′ ≤ 2n this probability is almost equal to 0; otherwise,

if m′ > 2n then it is about
√

m′−2n
m′ , as we mentioned above. This means that the average number of

graphs we will need to build before finding an acyclic one is:
√

m′
m′−2n ; which is a constant number

if we take m′ = Θ(n). So, on average, the algorithm LabelAcyclicGraph(G) builds Θ(1) graphs
of m′ + n = Θ(n) nodes and edges, and thus it takes Θ(n) time to execute those computations. Space
usage is m′ = Θ(n).

In order to reduce the space requirements, we could resort multi-graphs (i.e. graphs with multiple
edges between a pair of nodes) and thus use three hash functions, instead of two:

h (t) = (g (h1 (t)) + g (h2 (t)) + g (h3 (t))) mod n

We conclude this section by a running example that executes LabelAcyclicGraph(G) on the
graph in Figure 8.5.

1. Select node 0, set g(0) = 0 and start to visit its neighbors, which in this case is just the
node 1.

2. Set g(1) = (h(0, 1) − g(0))mod9 = (5 − 0)mod9 = 5.
3. Take the unvisited neighbors of 1: 6 and 10, and visit them recursively.
4. Select node 6, set g(6) = (h(1, 6) − g(1))mod9 = (0 − 5)mod9 = 4.
5. Take the unvisited neighbors of 6: 4 and 10, the latter is already in the list of nodes to be

explored.
6. Select node 10, set g(10) = (h(1, 10) − g(1))mod9 = (4 − 5)mod9 = 8.
7. No unvisited neighbors of 10 do exist.
8. Select node 4, set g(4) = (h(4, 6) − g(6))mod9 = (3 − 4)mod9 = 8.
9. No unvisited neighbors of 4 do exist.

8-16 Paolo Ferragina

10. No node is left in the list of nodes to be explored.
11. Select a new starting node, for example 2, set g(2) = 0, and select its unvisited neighbor

7.
12. Set g(7) = (h(2, 7) − g(2))mod9 = (1 − 0)mod9 = 1, and select its unvisited neighbor 5.
13. Set g(5) = (h(7, 5) − g(7))mod9 = (2 − 1)mod9 = 1, and select its unvisited neighbor 3.
14. Set g(3) = (h(3, 5) − g(5))mod9 = (8 − 1)mod9 = 7.
15. No node is left in the list of nodes to be explored.
16. Select a new starting node, for example 8, set g(8) = 0, and select its unvisited neighbor

11.
17. Set g(11) = (h(8, 11) − g(8))mod9 = (6 − 0)mod9 = 6, and select its unvisited neighbor

9.
18. Set g(9) = (h(11, 9) − g(11))mod9 = (7 − 6)mod9 = 1.
19. No node is left in the list of nodes to be explored.
20. Since all other nodes are isolated, their g’s value is set to 0;

It goes without saying that, if S undergoes some insertions, we possibly have to rebuild h(t).
Therefore, all of this works for a static dictionary S .

8.5 A simple perfect hash table

If ordering and minimality (i.e. h(t) < n) is not required, then the design of a (static) perfect
hash function is simpler. The key idea is to use a two-level hashing scheme with universal hashing
functions at each level. The first level is essentially hashing with chaining, where the n keys are
hashed into m slots using a universal hash function h; but, unlike chaining, every entry T [j] points
to a secondary hash table T j which is addressed by another specific universal hash function h j.
By choosing h j carefully, we can guarantee that there are no collisions at this secondary level. This
way, the search for a key k will consist of two table accesses: one at T according to h, and one at
some Ti according to hi, given that i = h(k). For a total of O(1) time complexity in the worst case.

The question now is to guarantee that: (i) hash functions h j are perfect and thus elicit no collisions
among the keys mapped by h into T [j], and (ii) the total space required by table T and all sub-tables
T j is the optimal O(n). The following theorem is crucial for the following arguments.

THEOREM 8.7 If we store q keys in a hash table of size w = q2 using a universal hash
function, then the expected number of collisions among those keys is less than 1/2. Consequently,
the probability to have a collision is less than 1/2.

Proof In a set of q elements there are
(

q
2

)
< q2/2 pairs of keys that may collide; if we choose the

function h from a universal class, we have that each pair collides with probability 1/w. If we set
w = q2 the expected number of collisions is

(
q
2

)
1
w < q2/(2q2) = 1

2 . The probability to have at least
one collision can be upper bounded by using the Markov inequality (i.e. P(X ≥ tE[X]) ≤ 1/t), with
X expressing the number of collisions and by setting t = 2.

We use this theorem in two ways: we will guarantee (i) above by setting the size m j of hash table
T j as n2

j (the square of the number of keys hashed to T [j]); we will guarantee (ii) above by setting
m = n for the size of table T . The former setting ensures that every hash function h j is perfect,

The Dictionary Problem 8-17

by just two re-samples on average; the latter setting ensures that the total space required by the
sub-tables is O(n) as the following theorem formally proves.

THEOREM 8.8 If we store n keys in a hash table of size m = n using a universal hash function
h, then the expected size of all sub-tables T j is less than 2n: in formula, E[

∑m−1
j=0 n2

j] < 2n where
n j is the number of keys hashing to slot j and the average is over the choices of h in the universal
class.

Proof Let us consider the following identity: a2 = a + 2
(

a
2

)
which is true for any integer a > 0.

We have:

E
[m−1∑

j=0

n2
j

]
= E

[m−1∑

j=0

(n j + 2
(
n j

2

)
)
]

= E
[m−1∑

j=0

n j

]
+ 2E

[m−1∑

j=0

(
n j

2

)]

= n + 2E
[m−1∑

j=0

(
n j

2

)]

The former term comes from the fact that
∑m−1

j=0 n j equals the total number of items hashed in the
secondary level, and thus it is the total number n of dictionary keys. For the latter term we notice
that

(
n j
2

)
accounts for the number of collisions among the n j keys mapped to T [j], so that

∑m−1
j=0

(
n j
2

)

equals the number of collisions induced by the primary-level hash function h. By repeating the
argument adopted in the proof of Theorem 8.7 and using m = n, the expected value of this sum is at
most

(
n
2

)
1
m =

n(n−1)
2m = n−1

2 . Summing these two terms we derive that the total space required by this
two-level hashing scheme is bounded by n + 2 n−1

2 = 2n − 1.

It is important to observe that every hash function h j is independent on the others, so that if
it generates some collisions among the n j keys mapped to T [j], it can be re-generated without
influencing the other mappings. Analogously if at the first level h generates more than zn collisions,
for some large constant z, then we can re-generate h. These theorems ensure that the average
number of re-generations is a small constant per hash function. In the following subsections we
detail insertion and searching with perfect hashing.

Create a perfect hash table

In order to create a perfect hash table from a dictionary S of n keys we proceed as indicated in the
pseudocode of Figure 8.3. Theorem 8.8 ensures that the probability to extract a good function from
the family Hp,m is at least 1/2, so we have to repeat the extraction process (at the first level) an
average number of 2 times to guarantee a successful extraction, which actually means L < 2n. At
the second level Theorem 8.7 and the setting m j = n2

j ensure that the probability to have a collision
in table T j because of the hash function h j is lower than 1/2. So, again, we need on average two
extractions for h j to construct a perfect hash table T j.

Searching keys with perfect hashing

Searching for a key k in a perfect hash table T takes just two memory accesses, as indicated in the
pseudocode of Figure 8.4.

8-18 Paolo Ferragina

Algorithm 8.3 Creating a Perfect Hash Table
1: Choose a universal hash function h from the family Hp,m;
2: for j = 0, 1, . . . ,m − 1 do
3: n j = 0, S j = ∅;
4: end for
5: for k ∈ S do
6: j = h(k);
7: Add k to set S j;
8: n j = n j + 1;
9: end for

10: Compute L =
∑m−1

j=0 (n j)2;
11: if L ≥ 2n then
12: Repeat the algorithm from Step 1;
13: end if
14: for j = 0, 1, . . . ,m − 1 do
15: Construct table T j of size m j = (n j)2;
16: Choose hash function h j from class Hp,m j ;
17: for k ∈ S j do
18: i = h j(k);
19: if T j[i] , NULL then
20: Destroy T j and repeat from step 15;
21: end if
22: T j[i] = k;
23: end for
24: end for

With reference to Figure 8.6, let us consider the successful search for the key 98 ∈ S . It is
h(98) = ((2 × 98 + 42) mod 101) mod 11 = 3. Since T3 has size m3 = 4, we apply the second-level
hash function h3(98) = ((4 × 98 + 42) mod 101) mod 4 = 2. Given that T3(2) = 98, we have found
the searched key.

Let us now consider the unsuccessful search for the key k = 8 < S . Since it is h(8) = ((2 ×
8 + 42) mod 101) mod 11 = 3, we have to look again at the table T3 and compute h3(8) = ((4 ×
8 + 42) mod 101) mod 4 = 2. Given that T3(2) = 19, we conclude that the key k = 8 is not in the
dictionary.

8.6 Cuckoo hashing

When the dictionary is dynamic a different hashing scheme has to be devised, an efficient and
elegant solution is the so called cuckoo hashing: it achieves constant time in updates, on average,
and constant time in searches, in the worst case. The only drawback of this approach is that it
makes use of two hash functions that are O(log n)-independent (new results in the literature have
significantly relaxed this requirement [1] but we stick on the original scheme for its simplicity). In
pills, cuckoo hashing combines the multiple-choice approach of d-left hashing with the ability to
move elements. In its simplest form, cuckoo hashing consists of two hash functions h1 and h2 and
one table T of size m. Any key k is stored either at T [h1(k)] or at T [h2(k)], so that searching and
deleting operations are trivial: we need to look for k in both those entries, and eventually remove it.
Inserting a key is a little bit more tricky in that it can trigger a cascade of key moves in the table.
Suppose a new key k has to be inserted in the dictionary, according to the Cuckoo scheme it has to

The Dictionary Problem 8-19

0

1

2

3

4

5

6

7

8

9

10

1 0 0 1 T0

1 0 0 69 T2

4 4 42 19 98 T3

4 3 42 14 3 T4

4 4 42 50 72 T8

1 0 0 79 T9

T m j a j b j

FIGURE 8.6: Creating a perfect hash table over the dictionary S = {98, 19, 14, 50, 1, 72, 79, 3, 69},
with h(k) = ((2k + 42) mod 101) mod 11. Notice that L = 1 + 1 + 4 + 4 + 4 + 1 = 15 < 2 × 9
and, at the second level, we use the same hash function changing only the table size for the modulo
computation. There no collision occur.

Algorithm 8.4 Procedure Search(k) in a Perfect Hash Table T
1: Let h and h j be the universal hash functions defining T ;
2: Compute j = h(k);
3: if T j is empty then
4: Return false; // k < S
5: end if
6: Compute i = h j(k);
7: if T j[i] = NULL then
8: Return false; // k < S
9: end if

10: if T j[i] , k then
11: Return false; // k < S
12: end if
13: Return true; // k ∈ S

be inserted either at position h1(k) or at position h2(k). If one of these locations in T is empty (if
both are, h1(k) is chosen), the key is stored at that position and the insertion process is completed.
Otherwise, both entries are occupied by other keys, so that we have to create room for k by evicting
one of the two keys stored in those two table entries. Typically, the key y stored in T [h1(k)] is
evicted and replaced with k. Then, y plays the role of k and the insertion process is repeated.

There is a warning to take into account at this point. The key y was stored in T [h1(k)], so that
T [hi(y)] = T [h1(k)] for either i = 1 or i = 2. This means that if both positions T [h1(y)] and T [h2(y)]
are occupied, the key to be evicted cannot be chosen from the entry that was storing T [h1(k)] because
it is k, so this would induce a trivial infinite cycle of evictions over this entry between keys k and y.
The algorithm therefore is careful to always avoid to evict the previously inserted key. Nevertheless
cycles may arise (e.g. consider the trivial case in which {h1(k), h2(k)} = {h1(y), h2(y)}) and they can
be of arbitrary length, so that the algorithm must be careful in defining an efficient escape condition
which detects those situations, in which case it re-samples the two hash functions and re-hashes all
dictionary keys. The key property, proved in Theorem 8.9, will be to show that cycles occurs with

8-20 Paolo Ferragina

bounded probability, so that the O(n) cost of re-hashing can be amortized, by charging O(1) time
per insertion (Corollary 8.4).

A C B H P W

FIGURE 8.7: Graphical representation of cuckoo hashing.

In order to analyze this situation it is useful to introduce the so called cuckoo graph (see Figure
8.7), whose nodes are entries of table T and edges represent dictionary keys by connecting the two
table entries where these keys can be stored. Edges are directed to keep into account where a key is
stored (source), and where a key could be alternatively stored (destination). This way the cascade
of evictions triggered by key k traverses the nodes (table entries) laying on a directed path that starts
from either node (entry) h1(k) or node h2(k). Let us call this path the bucket of k. The bucket reminds
the list associated to entry T [h(k)] in hashing with chaining (Section 8.2), but it might have a more
complicated structure because the cuckoo graph can have cycles, and thus this path can form loops
as it occurs for the cycle formed by keys W and H.

For a more detailed example of insertion process, let us consider again the cuckoo graph depicted
in Figure 8.7. Suppose to insert key D into our table, and assume that h1(D) = 4 and h2(D) = 1, so
that D evicts either A or B (Figure 8.8). We put D in table entry 1, thereby evicting A which tries to
be stored in entry 4 (according to the directed edge). In turn, A evicts B, stored in 4, which is moved
to the last location of the table as its possible destination. Since such a location is free, B goes there
and the insertion process is successful and completed. Let us now consider the insertion of key F,
and assume two cases: h1(F) = 2 and h2(F) = 5 (Figure 8.9.a), or h1(F) = 4 and h2(F) = 5 (Figure
8.9.b). In the former case the insertion is successful: F causes C to be evicted, which in turn finds the
third location empty. It is interesting to observe that, even if we check first h2(F), then the insertion
is still successful: F causes H to be evicted, which causes W to be evicted, which in turn causes again
F to be evicted. We found a cycle which nevertheless does not induces an infinite loop, in fact in this
case the eviction of F leads to check its second possible location, namely h1(F) = 2, which evicts C
that is then stored in the third location (currently empty). Consequently the existence of a cycle does
not imply an unsuccessful search; said this, in the following, we will compute the probability of the
existence of a cycle as an upper bound to the probability of an unsuccessful search. Conversely,
the case of an unsuccessful insertion occurs in Figure 8.9.b where there are two cycles F-H and
A-B which gets glued together by the insertion of the key F. In this case the keys flow from one
cycle to the other without stopping. As a consequence, the insertion algorithm must be designed in
order to check whether the traversal of the cuckoo graph ended up in an infinite loop: this is done
approximately by bounding the number of eviction steps.

8.6.1 An analysis

Querying and deleting a key k takes constant time, only two table entries have to be checked. The
case of insertion is more complicated because it has necessarily to take into account the formation
of paths in the (random) cuckoo graph. In the following we consider an undirected cuckoo graph,
namely one in which edges are not oriented, and observe that a key y is in the bucket of another key
x only if there is a path between one of the two positions (nodes) of x and one of the two positions
(nodes) of y in the cuckoo graph. This relaxation allows to ease the bounding of the probability of

The Dictionary Problem 8-21

A C B H P W

D

h1 h2

D C A H P W B

FIGURE 8.8: Inserting the key D: (left) the two entry options, (right) the final configuration for the
table. Notice that the edges associated to the moved keys, namely A and B, are colored and they
have to be swapped in order to reflect the final positioning of these two keys.

D C A H P W B
F C W H

F

h1 h2

D C A H P W B

F

h1 h2

FIGURE 8.9: Inserting the key F: (left) successful insertion, (right) unsuccessful insertion.

the existence of these paths (recall that m is the table size and n is the dictionary size):

THEOREM 8.9 For any entries i and j and any constant c > 1, if m ≥ 2cn, then the probability
that in the undirected cuckoo graph there exists a shortest path from i to j of length L ≥ 1 is at most
c−L/m.

Proof We proceed by induction on the path length L. The base case L = 1 corresponds to the
existence of the undirected edge (i, j); now, every key can generate that edge with probability no
more than ≤ 2/m2, because edge is undirected and h1(k) and h2(k) are uniformly random choices
among the m table entries. Summing over all n dictionary keys, and recalling that m ≥ 2cn, we get
the bound

∑
k∈S 2/m2 = 2n/m2 ≤ c−1/m.

For the inductive step we must bound the probability that there exists a path of length L > 1, but
no path of length less than L connects i to j (or vice versa). This occurs only if, for some table entry
h, the following two conditions hold:

• there is a shortest path of length L − 1 from i to z (that clearly does not go through j);
• there is an edge from z to j.

By the inductive hypothesis, the probability that the first condition is true is bounded by c−(L−1)/m =

c−L+1/m. The probability of the second condition has been already computed and it is at most
c−1/m = 1/cm. So the probability that there exists such a path (passing through z) is (1/cm) ∗
(c−L+1/m) = c−L/m2. Summing over all m possibilities for the table entry z, we get that the proba-
bility of a path of length L between i and j is at most c−L/m.

In other words, this Theorem states that if the number m of nodes in the cuckoo graph is suffi-
ciently large compared to the number n of edges (i.e. m ≥ 2cn), there is a low probability that any

8-22 Paolo Ferragina

two nodes i and j are connected by a path, thus fall in the same bucket, and hence participate in a
cascade of evictions. Very significant is the case of a constant-length path L = O(1), for which the
probability of occurrence is O(1/m). This means that, even for this restricted case, the probability
of a large bucket is small and thus the probability of a not-constant number of evictions is small. We
can relate this probability to the collision probability in hashing with chaining. We have therefore
proved the following:

THEOREM 8.10 For any two distinct keys x and y, the probability that x hashes to the same
bucket of y is O(1/m).

Proof If x and y are in the same bucket, then there is a path of some length L between one node
in {h1(x), h2(x)} and one node in {h1(y), h2(y)}. By Theorem 8.9, this occurs with probability at most
4
∑∞

L=1 c−L/m = 4
c−1/m = O(1/m), as desired.

What about rehashing? How often do we have to rebuild table T? Let us consider a sequence of
operations involving εn insertions, where ε is a small constant, e.g. ε = 0.1, and assume that the
table size is sufficiently large to satisfy the conditions imposed in the previous theorems, namely
m ≥ 2cn + 2c(εn) = 2cn(1 + ε). Let S ′ be the final dictionary in which all εn insertions have been
performed. Clearly, there is a re-hashing of T only if some key insertion induced an infinite loop in
the cuckoo graph. In order to bound this probability we consider the final graph in which all keys S ′

have been inserted, and thus all cycles induced by their insertions are present. This graph consists
of m nodes and n(1 + ε) keys. Since we assumed m ≥ 2cn(1 + ε), according to the Theorem 8.9, any
given position (node) is involved in a cycle (of any length) if it is involved in a path (of any length)
that starts and end at that position: the probability is at most

∑∞
L=1 c−L/m. Thus, the probability

that there is a cycle of any length involving any table entry can be bounded by summing over all m
table entries: namely, m

∑∞
L=1 c−L/m = 1

c−1 . As we observed previously, this is an upper bound to
the probability of an unsuccessful insertion given that the presence of a cycle does not necessarily
imply an infinite loop for an insertion.

COROLLARY 8.3 By setting c = 3, and taking a cuckoo table of size m ≥ 6n(1 + ε), the
probability for the existence of a cycle in the cuckoo graph of the final dictionary S ′, consisting of
n(1 + ε) keys, is at most 1/2.

Therefore a constant number of re-hashes are enough to ensure the insertion of εn keys in a
dictionary of size n. Given that the time for one rehashing is O(n) (we just need to compute two
hashes per key), the expected time for all rehashing is O(n), which is O(1/ε) per insertion (according
to the amortized time complexity).

COROLLARY 8.4 By setting c = 3, and taking a cuckoo table of size m ≥ 6n(1 + ε), the cost
for inserting εn keys in a dictionary of size n by cuckoo hashing is constant expected amortized.
Namely, expected with respect to the random selection of the two universal hash functions driving
the cuckoo hashing, and amortized over the Θ(n) insertions.

In order to make this algorithm work for every n and ε, we can adopt the same idea sketched for
hashing with chaining and called global rebuilding technique. Whenever the size of the dictionary
becomes too small compared to the size of the hash table, a new, smaller hash table is created;
conversely, if the hash table fills up to its capacity, a new, larger hash table is created. To make this

The Dictionary Problem 8-23

work efficiently, the size of the hash table is increased or decreased by a constant factor (larger than
1), e.g. doubled or halved.

The cost of rehashing can be further reduced by using a very small amount (i.e. constant) of
extra-space, called a stash. Once a failure situation is detected during the insertion of a key k (i.e. k
incurs in a loop), then this key is stored in the stash (without rehashing). This reduces the rehashing
probability to Θ(1/ns+1), where s is the size of the stash. The choice of parameter s is related to
some structural properties of the cuckoo graph and of the universal hash functions, which are too
involved to be commented here (for details see [1] and refs therein).

8.7 Bloom filters

There are situations in which the universe of keys is very large and thus every key is long enough
to take a lot of space to be stored. Sometimes it could even be the case that the storage of table
pointers, taking (n+m) log n bits, is much smaller than the storage of the keys, taking n log2 |U | bits.
An example is given by the dictionary of URLs managed by crawlers in search engines; maintaining
this dictionary in internal memory is crucial to ensure the fast operations over those URLs required
by crawlers. However URLs are thousands of characters long, so that the size of the indexable dic-
tionary in internal memory could be pretty much limited if whole URLs should have to be stored.
And, in fact, crawlers do not use neither cuckoo hashing nor hashing with chaining but, rather, em-
ploy a simple and randomised, yet efficient, data structure named Bloom filter. The crucial property
of Bloom filters is that keys are not explicitly stored, only a small fingerprint of them is, and this in-
duces the data structure to make a one-side error in its answers to membership queries whenever the
queried key is not in the currently indexed dictionary. The elegant solution proposed by Bloom fil-
ters is that those errors can be controlled, and indeed their probability decreases exponentially with
the size of the fingerprints of the dictionary keys. Practically speaking tens of bits (hence, few bytes)
per fingerprint are enough to guarantee tiny error probabilities5 and succinct space occupancy, thus
making this solution much appealing in a big-data context. It is useful at this point recall the Bloom
filter principle: “Wherever a list or set is used, and space is a consideration, a Bloom filter should
be considered. When using a Bloom filter, consider the potential effects of false positives”.

Let S = {x1, x2, ..., xn} be a set of n keys and B a bit vector of length m. Initially, all bits in B
are set to 0. Suppose we have r universal hash functions hi : U −→ {0, ...,m − 1}, for i = 1, ..., r.
As anticipated above, every key k is not represented explicitly in B but, rather, it is fingerprinted by
setting r bits of B to 1 as follows: B[hi(k)] = 1, ∀ 1 ≤ i ≤ r. Therefore, inserting a key in a Bloom
filter requires O(r) time, and sets at most r bits (possibly some hashes may collide, this is called
standard Bloom Filter). For searching, we claim that a key y is in S if B[hi(y)] = 1, ∀ 1 ≤ i ≤ r.
Searching costs O(r), as well as inserting. In the example of Figure 8.10, we can assert that y < S ,
since three bits are set to 1 but the last checked bit B[h4(y)] is zero.

Clearly, if y ∈ S the Bloom filter correctly detects this; but it might be the case that y < S and
nonetheless all r bits checked are 1 because of the setting due to other hashes and keys. This is called
false positive error, because it induces the Bloom filter to return a positive but erroneous answer to
a membership query. It is therefore natural to ask for the probability of a false-positive error, which
can be proved to be bounded above by a surprisingly simple formula.

The probability that the insertion of a key k ∈ S has left null a bit-entry B[j] equals the probability

that the r independent hash functions hi(k) returned an entry different of j, which is
(

m−1
m

)r
≈ e−

r
m .

5One could object that, errors anyway might occur. But programmers counteract by admitting that these errors can be
made smallers than hardware/network errors in data centers or PCs. So they can be neglected!

8-24 Paolo Ferragina

1 0 1 0 1 1 0.

y

. . .

B

y < S

FIGURE 8.10: Searching key y in a Bloom filter.

After the insertion of all n dictionary keys, the probability that B[j] is still null can be then bounded

by p0 ≈
(
e−

r
m

)n
= e−

rn
m by assuming independencies among those hash functions.6 Hence the

probability of a false-positive error (or, equivalently, the false positive rate) is the probability that
all r bits checked for a key not in the current dictionary are set to 1, that is:

perr = (1 − p0)r ≈
(
1 − e−

rn
m

)r

Not surprisingly the error probability depends on the three parameters that define the Bloom
filter’s structure: the number r of hash functions, the number n of dictionary keys, and the number
m of bits in the binary array B. It’s interesting to notice that the fraction f = m/n can be read as the
average number of bits per dictionary key allocated in B, hence the fingerprint size f . The larger is
f the smaller is the error probability perr, but the larger is the space allocated for B. We can optimize
perr according to m and n, by computing the first-order derivative and equalling it to zero: this gets
r = m

n ln 2. It is interesting to observe that for this value of r the probability a bit in B gets null value
is p0 = 1/2; which actually means that the array is half filled by 1s and half by 0s. And indeed this
result could not be different: a larger r induces more 1s in B and thus a larger probability of positive
errors, a lower r induces more 0s in B and thus a larger probability of correct answers: the correct
choice of r falls in the middle! For this value of r = m

n ln 2, we have perr = (0.6185)m/n which
decreases exponentially with the fingerprint size f = m/n. Figure 8.11 reports the false positive rate
as a function of the number r of hashes for a Bloom-filter designed to use m = 32n bits of space,
hence a fingerprint of f = 32 bits per key. By using 22 hash functions we can minimize the false
positive rate to less than 1.E − 6. However, we also note that adding one more hash function does
not significantly decreases the error rate when r ≥ 10.

It is natural now to derive the size m of the B-array whenever r is fixed to its optimal value m
n ln 2,

and n is the number of current keys in the dictionary. We obtain different values of perr depending on
the choice of m. For example, if m = n then perr = 0.6185, if m = 2n then perr = 0.38, and if m = 5n
we have perr = 0.09. In practice m = cn is a good choice, and for c > 10 the error rate is interestingly
small and useful for practical applications. Figure 8.2 compares the performance of hashing (with
chaining) to that of Bloom filters, assuming that the number r of used hash functions is the one
which minimizes the false-positive error rate. In hashing with chaining, we need Θ(n(log n + log u))
bits to store the pointers in the chaining lists, and Θ(m log n) is the space occupancy of the table, in
bits. Conversely the Bloom filter does not need to store keys and thus it incurs only in the cost of
storing the bit array m = f n, where f is pretty small in practice as we observed above.

As a final remark we point out that they do exist other versions of the Bloom Filter, the most
notable ones are the so called classic Bloom Filter, in which it is assumed that the r bits set to one

6A more precise analysis is possible, but much involved and without changing the final result, so that we prefer to stick
on this simpler approach.

The Dictionary Problem 8-25

FIGURE 8.11: Plotting perr as a function of the number of hashes.

are all distinct, and the partitioned Bloom Filter, in which the distinctness of the set bits is achieved
by dividing the array B in r parts and setting one bit each. In [3] it is provided a detailed probabilistic
analysis of classic and standard Bloom Filters: the overall result is that the average number of set
bits is the same as well as very similar is the false-match probability, the difference concerns with
the variance of set bits which is slightly larger in the case of the classic data structure. However,
this does not impact significantly in the overall error performance in practice.

Hash Tables Bloom Filters

build time Θ(n) Θ(n)
space in bits Θ(n (log n + log |U |)) m
search time O(1) (m/n) ln 2

probability of error 0 (0.6185)m/n

TABLE 8.2 Hashing vs Bloom filter,

where n is the number of keys, U is the key universe (so log |U | denotes the length of each key, in bits),

and m denotes the size of the binary array storing a Bloom Filter. We assumed a Hash Table of size O(n).

8.7.1 A lower bound on space

The question is how small can be the bit array B in order to guarantee a given error rate ε for a
dictionary of n keys drawn from a universe U of size u. This lower bound will allow us to prove
that space-wise Bloom filters are within a factor of log2 e ≈ 1.44 of the asymptotic lower bound.

The proof proceeds as follows. Let us represent any data structure solving the membership query
on a dictionary X ⊆ U with those time/error bounds with a m-bit string F(X). This data structure
must work for every possible subset of n elements of U, they are

(
u
n

)
. We say that an m-bit string s

accepts a key x if s = F(X) for some X containing x, otherwise we say that s rejects x. Now, let us
consider a specific dictionary X of n elements. Any string s that is used to represent X must accept
each one of the n elements of X, since no false negatives are admitted, but it may also accept at most
ε(u − n) other elements of the universe, thus guaranteeing a false positive rate smaller than ε. Each
string s therefore accepts at most n + ε(u− n) elements, and can thus be used to represent any of the(

n+ε(u−n)
n

)
subsets of size n of these elements, but it cannot be used to represent any other set. Since

we are interested into data structures of m bits, they are 2m, and we are asking ourselves whether
they can represent all the

(
u
n

)
possible dictionaries of U of n keys. Hence, we must have:

8-26 Paolo Ferragina

2m ×
(

n+ε(u−n)
n

)
≥

(
u
n

)

or, equivalently:

m ≥ log2

(
u
n

)
/
(

n+ε(u−n)
n

)
≥ log2

(
u
n

)
/
(
εu
n

)
≥ log2 ε

−n = n log2(1/ε)

where we used the inequalities (a
b)b ≤

(
a
b

)
≤ (ae

b)b and the fact that in pratice it is u � n. If we
consider a Bloom filter with the same configuration— namely, error rate ε and space occupancy m
bits—, then we have ε = (1/2)r ≥ (1/2)m ln 2/n by setting r to the optimal number of hash functions.
After some algebraic manipulations, we find that:

m ≥ n log2(1/ε)
ln 2 ≈ 1.44 n log2(1/ε)

This means that Bloom filters are asymptotically optimal in space, the constant factor is 1.44 more
than the minimum possible.

8.7.2 Compressed Bloom filters

In many Web applications, the Bloom filter is not just an object that resides in memory, but it is
a data structure that must be transferred between proxies. In this context it is worth to investigate
whether Bloom filters can be compressed to save bandwidth and transfer time [4]. Suppose that we
optimize the false positive rate of the Bloom filter under the constraint that the number of bits to be
sent after compression is z ≤ m. As compression tool we can use Arithmetic coding (see Chapter
12), which well approximates the entropy of the string to be compressed: here simply expressed as
−(p(0) log2 p(0)+p(1) log2 p(1)) where p(b) is the frequency of bit b in the input string. Surprisingly
enough it turns out that using a larger, but sparser, Bloom filter can yield the same false positive rate
with a smaller number of transmitted bits. Said in other words, one can transmit the same number of
bits but reduce the false positive rate. An example is given in Table 8.3, where the goal is to obtain
small false positive rates by using less than 16 transmitted bits per element. Without compression,
the optimal number of hash functions is 11, and the false positive rate is 0.000459. By making a
sparse Bloom filter using 48 bits per element but only 3 hash functions, one can compress the result
down to less than 16 bits per item (with high probability) and decrease the false positive rate by
roughly a factor of 2.

Array bits per element m/n 16 28 48
Transmission bits per element z/n 16 15,846 15,829

Hash functions k 11 4 3
False positive probability f 0,000459 0,000314 0,000222

TABLE 8.3 Using at

most sixteen bits per element after compression, a bigger but sparser Bloom filter can reduce the false

positive rate.

Compressing a Bloom filter has benefits: (i) it uses a smaller number of hash functions, so that the
lookups are more efficient; (ii) it may reduce the false positive rate for a desired compressed size, or
reduce the transmited size for a fixed false positive rate. However the size m of the uncompressed
Bloom filter increases the memory usage at running time, and comes at the computational cost
of compressing/decompressing it. Nevertheless, some sophisticate approaches are possible which
allow to access directly the compressed data without incurring in their decompression. An example
was given by the FM-index in Chapter 14, which could built over the bit-array B.

The Dictionary Problem 8-27

8.7.3 Spectral Bloom filters

A spectral bloom filter (SBF) is an extension of the original Bloom filter to multi-sets, thus allowing
the storage of multiplicities of elements, provided that they are below a given threshold (a spectrum
indeed). SBF supports queries on the multiplicities of a key with a small error probability over its
estimate, using memory only slightly larger than that of the original Bloom filter. SBF supports also
insertions and deletions over the data set.

Let S be a multi-set consisting of n distinct keys from U and let fx be the multiplicity of the
element x ∈ S . In a SBF the bit vector B is replaced by an array of counters C[0,m − 1], where C[i]
is the sum of fx-values for those elements x ∈ S mapping to position i. For every element x, we add
the value fx to the counters C[h1(x)],C[h2(x)], ...,C[hr(x)]. Due to possible conflicts among hashes
for different elements, the C[i]s provide approximated values, specifically upper bounds (given that
fx > 0.

The multi-set S can be dynamic. When inserting a new item s, its frequency fs increases by one,
so that we increase by one the counters C[h1(s)],C[h2(s)], . . . ,C[hr(s)]; deletion consists symmet-
rically in decreasing those counters. In order to search for the frequency of element x, we simply
return the minimum value mx = mini C[hi(x)]. Of course, mx is a biased estimator for fx. In partic-
ular, since all fx ≤ C[hi] for all i, the case in which the estimate is wrong (i.e. mx < fx) corresponds
to the event “all counters C[hi(x)] have a collision”, which in turn corresponds to a “false positive”
event in the classical Bloom filter. So, the probability of error in a SBF is the error rate probability
for a Bloom filter with the same set of parameters m, n, r.

8.7.4 A simple application

Bloom filters can be used to approximate the intersection of two sets, say A and B, stored in two
machines MA and MB. We wish to compute A ∩ B distributively, by exchanging a small number of
bits. Typical applications of the problem are data replication check and distributed search engines.
The problem can be efficiently solved by using Bloom filters BF(A) and BF(B) stored in MA and
MB, respectively. The algorithmic idea to compute A ∩ B is as follows:

1. MA sends BF(A) to MB, using ropt = (mAln2)/|A| hash functions and a bit-array mA =

Θ(|A|);
2. MB checks the existence of elements B into A by deploying BF(A) and sends back

explicitly the set of found elements, say Q. Note that, in general, Q ⊇ A ∩ B because of
false positives;

3. MA computes Q ∩ A, and returns it.

Since Q contains |A ∩ B| keys plus the number of false positives (elements belonging only to A),
we can conclude that |Q| = |A ∩ B| + |B|ε where ε = 0.6185mA/|A| is the error rate for that design
of BF(A). Since we need log |U | bits to represent each key, the total number of exchanged bits is
Θ(|A|) + (|A ∩ B| + |B|0.6185mA/|A|) log |U | which is much smaller than |A| log |U | the number of bits
to be exchanged by using a plain algorithm that sends the whole A’s set to MB.

References

[1] Martin Aumüller, Martin Dietzfelbinger, and Philipp Woelfel. Explicit and Efficient

Hash Families Suffice for Cuckoo Hashing with a Stash. In Proceedings of European

Symposium on Algorithms (ESA), Lecture Notes in Computer Science 7501, Springer,

108–120, 2012.

[2] Andrei Z. Broder and Michael Mitzenmacher. Survey: Network Applications of Bloom

Filters: A Survey. Internet Mathematics, 1(4): 485-509, 2003.

8-28 Paolo Ferragina

[3] Fabio Grandi. On the analysis of Bloom Filters. Information Processing Letters, 129:

35-39, 2018.

[4] Michael Mitzenmacher. Compressed bloom filters. IEEE/ACM Transactions on Networks,
10(5): 604-612, 2002.

[5] Ian H. Witten, Alistair Moffat and Timothy C. Bell. Managing Gigabytes: Compressing

and Indexing Documents and Images, Second Edition. Morgan Kaufmann, 1999.

9
Searching Strings by Prefix

9.1 Array of string pointers . 9-1
Contiguous allocation of strings • Front Coding

9.2 Interpolation search . 9-5
9.3 Locality-preserving front coding . 9-8
9.4 Compacted Trie . 9-10
9.5 Patricia Trie . 9-12
9.6 Managing Huge Dictionaries∞ . 9-15

String B-Tree • Packing Trees on Disk

This problem is experiencing renewed interest in the algorithmic community because of new appli-
cations spurring from Web search-engines. Think to the auto-completion feature currently offered
by major search engines Google, Bing and Yahoo, in their search bars: It is a prefix search executed
on-the-fly over millions of strings, using the query pattern typed by the user as the string to search.
The dictionary typically consists of the most recent and the most frequent queries issued by other
users. This problem is made challenging by the size of the dictionary and by the time constraints
imposed by the patience of the users. In this chapter we will describe many different solutions to
this problem of increasing sophistication and efficiency both in time, space and I/O complexities.

The prefix-search problem. Given a dictionary D consisting of n strings of total length N,
drawn from an alphabet of size σ, the problem consists of preprocessingD in order to retrieve
(or just count) the strings ofD that have P as a prefix.

We mention two other typical string queries which are the exact search and the substring search
within the dictionary strings inD. The former is best addressed via hashing because of its simplicity
and practical speed; Chapter 8 has already detailed several hashing solutions. The latter problem is
more sophisticated and finds application in computational genomics and asian search engines, just
to cite a few. It consists of finding all positions where the query-pattern P occurs as a substring
of the dictionary strings. Surprisingly enough, it does exist a simple algorithmic reduction from
substring search to prefix search over the set of all suffixes of the dictionary strings. This reduction
will be commented in Chapter 10 where the Suffix Array and the Suffix Tree data structures will be
introduced. As a result, we can conclude that the prefix search is the backbone of other important
search problems on strings, so the data structures introduced in this chapter offer applications which
go far beyond the simple ones discussed below.

9.1 Array of string pointers

We start with a simple, common solution to the prefix-search problem which consists of an array
of pointers to strings stored in arbitrary locations on disk. Let us call A[1, n] the array of pointers,

c© Paolo Ferragina, 2009-2020 9-1

9-2 Paolo Ferragina

which are indirectly sorted according to the strings pointed to by its entries. We assume that each
pointer takes w bytes of memory, typically 4 bytes (32 bits) or 8 bytes (64 bits). Several other
representations of pointers are possible, as e.g. variable-length representations, but this discussion
is deferred to Chapter 11, where we will deal with the efficient encoding of integers.

Figure 9.1 provides a running example in which the dictionary strings are stored in an array S ,
according to an arbitrary order.

A = 128 500 637 120 36 226 20

t
20

o
21

t
36

e
37

d
38

t
120

e
121

a
122

a
128

t
226

e
227

n
228

i
500

i
637

n
638

n
639

S =

FIGURE 9.1: The array S of strings and the array A of (indirectly) sorted pointers to S ’s strings.

There are two crucial properties that the (sorted) array A satisfies:

• all dictionary strings prefixed by P occur contiguously if lexicographically sorted. So
their pointers occupy a subarray, say A[l, r], which may be possibly empty if P does not
prefix any dictionary string.

• the string P is lexicographically located between A[l − 1] and A[l].

Since the prefix search returns either the number of dictionary strings prefixed by P, hence the
value r − l + 1, or visualizes these strings, the key problem is to identify the two extremes l and r
efficiently. To this aim, we reduce the prefix search problem to the lexicographic search of a pattern
Q inD: namely, the search of the lexicographic position of Q amongD’s strings. The formation of
Q is simple: Q is either the pattern P or the pattern P#, where # is larger than any other alphabet
character. It is not difficult to convince yourself that Q = P will precede the string A[l] (see above),
whereas Q = P# will follow the string A[r]. This means actually that two lexicographic searches
for patterns of length no more than p + 1 are enough to solve the prefix-search problem.

The lexicographic search can be implemented by means of an (indirect) binary search over the
array A. It consists of O(log n) steps, each one requiring a string comparison between Q and the
string pointed by the entry tested in A. The comparison is lexicographic and thus takes O(p) time
and O(p/B) I/Os, because it may require in the worst case the scan of all Θ(p) characters of Q.
The poor time and I/O-complexities derive from the indirection, which forces no locality in the
memory/string accesses of the binary search. The inefficiency is even more evident if we wish to
retrieve all nocc strings prefixed by P, and not just count them. After that the range A[l, r] has been
identified, each string visualization elicits at least one I/O because contiguity in A does not imply
contiguity of the pointed strings in S .

THEOREM 9.1 The complexity of a prefix search over the array of string pointers is O(p log n)
time and O(p

B log n) I/Os, the total space is N + (1 + w)n bytes. Retrieving the nocc strings prefixed
by P needs Ω(nocc) I/Os.

Proof Time and I/O complexities derive from the previous observations. For the space occu-
pancy, A needs n pointers, each taking a memory word w, and all dictionary strings occupy N bytes
plus one-byte delimiter for each of them (commonly \0 in C).

Searching Strings by Prefix 9-3

The bound Ω(nocc) may be a major bottleneck if the number of returned strings is large, as it
typically occurs in queries that use the prefix search as a preliminary step to select a candidate set of
answers that have then to be refined via a proper post-filtering process. An example is the solution to
the problem of searching with wild-cards which involves the presence in P of many special symbols
*. The wild-card * matches any substring. In this case if P = α∗β∗· · · , where α, β, . . . are un-empty
strings, then we can implement the wild-card search by first performing a prefix-search for α in D
and then checking brute-forcedly whether P matches the returned strings given the presence of the
wild-cards. Of course this approach may be very expensive, especially when α is not a selective
prefix and thus many dictionary strings are returned as candidate matches. Nevertheless this puts
in evidence how much slow may be in a disk environment a wild-card query if solved with a trivial
approach.

9.1.1 Contiguous allocation of strings

A simple trick to circumvent some of the previous limitations is to store the dictionary strings sorted
lexicographically and contiguously on disk. This way (pointers) contiguity in A reflects into (string)
contiguity in S . This has two main advantages:

• when the binary search is confined to few strings, they will be closely stored both in A
and S , so probably they have been buffered by the system in internal memory (speed);

• some compression can be applied to contiguous strings in S , because they typically share
some prefix (space).

Given that S is stored on disk, we can deploy the first observation by blocking strings into groups
of B characters each and then store a pointer to the first string of each group in A. The sampled
strings are denoted by DB ⊆ D, and their number nB is upper bounded by N

B because we pick at
most one string per block. Since A has been squeezed to index at most nB ≤ n strings, the search
over A must be changed in order to reflect the two-level structure given by the array A and the blocks
of strings in S . So the idea is to decompose the lexicographic search for Q in a two-stages process:
in the first stage, we search for the lexicographic position of Q within the sampled strings ofDB; in
the second stage, this position is deployed to identify the block of strings where the lexicographic
position of Q lies in, and then the strings of this block are scanned and compared with Q for prefix
match. We recall that, in order to implement the prefix search, we have to repeat the above process
for the two strings P and P#, so we have proved the following:

THEOREM 9.2 Prefix search over D takes O(p
B log N

B) I/Os. Retrieving the strings prefixed
by P needs Nocc

B I/Os, where Nocc is their length. The total space is N + (1 + w)nB bytes.

Proof Once the block of strings A[i, j] prefixed by P has been identified, we can report all of
them in O(Nocc

B) I/Os; scanning the contiguous portion of S that contains those strings. The space
occupancy comes from the observation that pointers are stored only for the nB sampled strings.

Typically strings are shorter than B, so N
B ≤ n, hence this solution is faster than the previous one,

in addition it can be effectively combined with the technique called Front-Coding compression to
further lowering the space and I/O-complexities.

9.1.2 Front Coding

9-4 Paolo Ferragina

Given a sequence of sorted strings is probable that adjacent strings share a common prefix. If ` is
the number of shared characters, then we can substitute them with a proper variable-length binary
encoding of ` thus saving some bits with respect to the classic fixed-size encoding based on 4- or
8-bytes. A following chapter will detail some of those encoders, here we introduce a simple one to
satisfy the curiosity of the reader. The encoder pads the binary representation of ` with 0 until an
integer number of bytes is used. The first two bits of the padding (if any, otherwise one more byte is
added), are used to encode the number of bytes used for the encoding.1 This encoding is prefix-free
and thus guarantees unique decoding properties; its byte-alignment also ensures speed in current
processors.

More efficient encoders are available, anyway this simple proposal ensures to replace the initial
Θ(` log2 σ) bits, representing ` characters of the shared prefix, with O(log `) bits of the integer
encoding, so resulting advantageous in space. Obviously its final impact depends on the amount of
shared characters which, in the case of a dictionary of URLs, can be up to 70%.

Front coding is a delta-compression algorithm, which can be easily defined in an incremental
way: given a sequence of strings (s1, . . . , sn), it encodes the string si using the couple (`i, ŝi), where
`i is the length of the longest common prefix between si and its predecessor si−1 (0 if i = 1) and
ŝi = si[`i + 1, |si|] is the “remaining suffix” of the string si. As an example consider the dictionary
D = { alcatraz, alcool, alcyone, anacleto, ananas, aster, astral, astronomy };
its front-coded representation is (0, alcatraz), (3, ool), (3, yone), (1, nacleto), (3, nas), (1, ster),
(3, ral), (4, onomy).

Decoding a string a pair (`, ŝ) is symmetric, we have to copy ` characters from the previous string
in the sequence and then append the remaining suffix ŝ. This takes O(|s|) optimal time and O(1 +

|s|
B)

I/Os, provided that the preceding string is available. In general, the reconstruction of a string si may
require to scan back the input sequence up to the first string s1, which is available in its entirety. So
we may possibly need to scan (ŝ1, `1), . . . , (ŝi−1, `i−1) and reconstruct s1, . . . , si−1 in order to decode
(`i, ŝi). Therefore, the time cost to decode si might be much higher than the optimal O(|si|) cost.2

To overcome this drawback, it is typical to apply front-coding to block of strings thus resorting
the two-level scheme we introduced in the previous subsection. The idea is to restart the front-
coding at the beginning of every block, so the first string of each block is stored uncompressed.
This has two immediate advantages onto the prefix-search problem: (1) these uncompressed strings
are the ones participating in the binary-search process and thus they do not need to be decompressed
when compared with Q; (2) each block is compressed individually and thus the scan of its strings
for searching Q can be combined with the decompression of these strings without incurring in any
slowdown. We call this storage scheme “Front-coding with bucketing”, and shortly denote it by
FCB. Figure 9.2 provides a running example in which the strings “alcatraz”, “alcyone”, “ananas”,
and “astral” are stored explicitly because they are the first of each block.

As a positive side-effect, this approach reduces the number of sampled strings because it can
potentially increase the number of strings stuffed in one disk page: we start from s1 and we front-
compress the strings of D in order; whenever the compression of a string si overflows the current
block, it starts a new block where it is stored uncompressed. The number of sampled strings lowers
from about N

B to about FCB(D)
B strings, where FCB(D) is the space required by FCB to store all the

dictionary strings. This impacts positively onto the number of I/Os needed for a prefix search in a
obvious manner, given that we execute a binary search over the sampled strings. However space
occupancy increases with respect to FC(D) because FCB(D) forces the first string of each block to

1We are assuming that ` can be binary encoded in 30 bits, namely ` < 230.
2A smarter solution would be to reconstruct only the first ` characters of the previous strings s1, s2, . . . , si−1 because
these are the ones interesting for si’s reconstruction.

Searching Strings by Prefix 9-5

A

〈0, alcatraz〉, 〈3, ool〉 〈0, alcyone〉, 〈1, nacleto〉 〈0, ananas〉, 〈1, ster〉 〈0, astral〉, 〈4, onomy〉

FIGURE 9.2: Two-level indexing of the set of strings D = { alcatraz, alcool, alcyone,
anacleto, ananas, aster, astral, astronomy} are compressed with FCB, where we as-
sumed that each page is able to store two strings.

be stored uncompressed; nonetheless, we expect that this increase is negligible because B� 1.

THEOREM 9.3 Prefix search over D takes O(p
B log FCB(D)

B) I/Os. Retrieving the strings pre-
fixed by P needs O(FCB(Docc)

B) I/Os, whereDocc ⊆ D is the set of strings in the answer set.

So, in general, compressing the strings is a good idea because it lowers the space required for stor-
ing the strings, and it lowers the number of I/Os. However we must observe that FC-compression
might increase the time complexity of the scan of a block from O(B) to O(B2) because of the de-
compression of that block. In fact, take the sequence of strings (a, aa, aaa, . . .) which is front coded
as (0, a), (1, a), (2, a), (3, a), In one disk page we can stuff Θ(B) such pairs, which represent
Θ(B) strings whose total length is

∑B
i=0 Θ(i) = Θ(B2) characters. Despite these pathological cases,

in practice the space reduction consists of a constant factor so the time increase incurred by a block
scan is negligible.

Overall this approach introduces a time/space trade-off driven by the block size B. As far as
time is concerned we can observe that the longer is B, the better is the compression ratio but the
slower is a prefix search because of a longer scan-phase; conversely, the shorter is B, the faster is
the scan-phase but the worse is the compression ratio because of a larger number of fully-copied
strings. As far as space is concerned, the longer is B, the smaller is the number of copied strings and
thus the smaller is the storage space in internal memory needed to index their pointers; conversely,
the shorter is B, the larger is the number of pointers thus making probably impossible to fit them in
internal memory.

In order to overcome this trade-off we decouple search and compression issues as follows. We
notice that the proposed data structure consists of two levels: the “upper” level contains references
to the sampled strings DB, the “lower” level contains the strings themselves stored in a block-wise
fashion. The choice of the algorithms and data structures used in the two levels are “orthogonal” to
each other, and thus can be decided independently. It goes without saying that this 2-level scheme
for searching-and-storing a dictionary of strings is suitable to be used in a hierarchy of two memory
levels, such as the cache and the internal memory. This is typical in Web search, where D is the
dictionary of terms to be searched by users and disk-accesses have to be avoided in order to support
each search overD in few millisecs.

In the next three sections we propose three improvements to the 2-level solution above, two of
them regard the first level of the sampled strings, one concerns with the compressed storage of
all dictionary strings. Actually, these proposals have an interest in themselves and thus the reader
should not confine their use to the one described in these notes.

9.2 Interpolation search

9-6 Paolo Ferragina

Until now, we have used binary search over the array A of string pointers. But if DB satisfies some
statistical properties, there are searching schemes which support faster searches, such as the well
known interpolation search. In what follows we describe a variant of classic interpolation search
which offers some interesting additional properties (details in [3]). For simplicity of presentation
we describe the algorithm in terms of a dictionary of integers, knowing that if items are strings, we
can still look at them as integers in base σ. So for the prefix-search problem we can pad logically
all strings at their end, thus getting to the same length, by using a character that we assume to be
smaller than any other alphabet character. Lexicographic order among strings is turned in classic
ordering of integers, so that the search for P and P# can be turned into a search for two proper
integers.

So without loss of generality, assume that DB is an array of integers X[1,m] = x1 . . . xm with
xi < xi+1 and m = nB. We evenly subdivide the range [x1, xm] into m bins B1, . . . , Bm (so we
consider as many bins as integers in X), each bin representing a contiguous range of integers having
length b = xm−x1+1

m . Specifically Bi = [x1 + (i − 1)b, x1 + ib). In order to guarantee the constant-time
access to these bins we need to keep an additional array, say I[1,m], such that I[i] points to the first
and last item of Bi in X.

Figure 9.3 reports an example where m = 12, x1 = 1 and x12 = 36 and thus the bin length is
b = 3.

1 2 3 8 9 17 19 20 28 30 32 36

B1 B3 B6 B7 B10 B11 B12

FIGURE 9.3: An example of use of interpolation search over an itemset of size 12. The bins are
separated by bars; some bins, such as B4 and B8, are empty.

The algorithm searches for an integer y in two steps. In the first step it calculates j, the index
of the candidate bin B j where y could occur: j = b y−x1

b c + 1. In the second step, it determines
via I[j] the sub-array of X which stores B j and it does a binary search over it for y, thus taking
O(log |Bi|) = O(log b) time. The value of b depends on the magnitude of the integers present in the
indexed dictionary. Surprisingly enough, we can get a better bound which takes into account the
distribution of the integers of X in the range [x1, xm].

THEOREM 9.4 We can search for an integer in a dictionary of size m taking O(log ∆) time
in the worst case, where ∆ is the ratio between the maximum and the minimum gap between two
consecutive integers of the input dictionary. The extra space is O(m).

Proof Correctness is immediate. For the time complexity, we observe that the maximum of a
series of integers is at least as large as their mean. Here we take as those integers the gaps xi − xi−1,
and write:

max
i=2...m

(xi − xi−1) ≥
∑m

i=2 xi − xi−1

m − 1
≥ xm − x1 + 1

m
= b (9.1)

The last inequality comes from the following arithmetic property: a′
a′′ ≥ a′+1

a′′+1 whenever a′ ≥ a′′,
which can be easily proved by solving it.

Searching Strings by Prefix 9-7

Another useful observation concerns with the maximum number of integers that can belong to
any bin. Since integers of X are spaced apart by s = mini=2,...,m(xi − xi−1) units, every bin contains
no more than b/s integers.

Recalling the definition of ∆, and the two previous observations, we can thus write:

|Bi| ≤ b
s
≤ maxi=2...m(xi − xi−1)

mini=2,...,m(xi − xi−1)
= ∆

.
So the theorem follows due to the binary search performed within Bi. Space occupancy is optimal

and equal to O(m) because of the arrays X[1,m] and I[1,m].

We note the following interesting properties of the proposed algorithm:

• The algorithm is oblivious to the value of ∆, although its complexity can be written in
terms of this value.

• The worst-case search time is O(log m), when the whole X ends up in a single bin, and
thus the precise bound should be O(log min{∆,m}). So it cannot be worst than the binary
search.

• The space occupancy is O(m) which is optimal asymptotically; however, it has to be
noticed that binary search is in-place, whereas interpolation search needs the extra array
I[1,m].

• The algorithm reproduces the O(log log m) time performance of classic interpolation
search on data drawn independently from the uniform distribution, as shown in the fol-
lowing lemma. We observe that, uniform distribution of the X’s integers is uncommon
in practice, nevertheless we can artificially enforce it by selecting a random permutation
π : U −→ U and shuffling X according to π before building the proposed data struc-
ture. Care must be taken at query time since we search not y but its permuted image
π(y) in π(X). This way the query performance proved below holds with high probability
whichever is the indexed set X. For the choice of π we refer the reader to [6].

LEMMA 9.1 If the m integers are drawn uniformly at random from [1,U], the proposed algo-
rithm takes O(lg lg m) time with high probability.

Proof Say integers are uniformly distributed over [0,U − 1]. As in bucket sort, every bucket Bi

contains O(1) integers on average. But we wish to obtain bounds with high probability. So let us
assume to partition the integers in r = m

2 log m ranges. We have the probability 1/r that an integer
belongs to a given range. The probability that a given range does not contain any integer among
the m ones, is (1 − 1

r)m = (1 − 2 log m
m)m = O(e−2 log m) = O(1/m2). So, by the union bound and the

fact that r < m, the probability that at least one of the r ranges remains empty is O((1/m2) ∗ r) =

O((1/m2) ∗ m) = O(1/m).
Hence, with high probability, every range contains at least one integer and thus the maximum

distance between two adjacent integers must be smaller than twice the range’s length: namely
maxi(xi − xi−1) ≤ 2U/r = O(U log m

m).
Let us now take r′ = Θ(m log m) ranges, similarly as above we can prove that every adjacent pair

of ranges contains at most one integer with high probability. Therefore if a range contains an integer,
its two adjacent ranges (on the left and on the right) are empty with high probability. Thus we can
lower bound the minimum gap with the length of one range: mini(xi − xi−1) ≥ U/r′ = Θ(U

m log m).
Taking the ratio between the minimum and the maximum gap, we get the desired ∆ = O(log2 m).

9-8 Paolo Ferragina

If this algorithm is applied to our string context, and strings are uniformly distributed, the number
of I/Os required to prefix-search P in the dictionary D is O(p

B log log N
B). This is an exponential

reduction in the search time performance according to the dictionary length.

9.3 Locality-preserving front coding

This is an elegant variant of front coding which provides a controlled trade-off between space oc-
cupancy and time to decode one string [2]. The key idea is simple, and thus easily implementable,
but proving its guaranteed bounds is challenging. We can state the underlying algorithmic idea as
follows: a string is front-coded only if its decoding time is proportional to its length, otherwise it
is written uncompressed. The outcome in time complexity is clear: we compress only if decoding
is optimal. But what appears surprising is that, even if we concentrated on the time-optimality of
decoding, its “constant of proportionality” controls also the space occupancy of the compressed
strings. It seems magic, indeed it is!

S ′ S

copiedcopied

C|S |
S ′ S

front-codedcopied

C|S |

FIGURE 9.4: The two cases occurring in LPFC. Red rectangles are copied strings, green rectangles
are front-coded strings.

Formally, suppose that we have front-coded the first i−1 strings (s1, . . . , si−1) into the compressed
sequence F = (0, ŝ1), (`2, ŝ2), . . . , (`i−1, ŝi−1). We want to compress si so we scan backward at most
c|si| characters of F to check whether these characters are enough to reconstruct si. This actually
means that an uncompressed string is included in those characters, because we have available the
first character for si. If so, we front-compress si into (`i, ŝi); otherwise si is copied uncompressed
in F outputting the pair (0, si). The key difficulty here is to show that the strings which are left
uncompressed, and were instead compressed by the classic front-coding scheme, have a length that
can be controlled by means of the parameter c as the following theorem shows:

THEOREM 9.5 Locality-preserving front coding takes at most (1 + ε)FC(D) space, and
supports the decoding of any dictionary string si in O(|si |

εB) optimal I/Os.

Proof We call any uncompressed string s, a copied string, and denote the c|s| characters explored
during the backward check as the left extent of s. Notice that if s is a copied string, there can be
no copied string preceding s and beginning in its left extent (otherwise it would have been front-
coded). Moreover, the copied string that precedes S may end within s’s left extent. For the sake of
presentation we call FC-characters the ones belonging to the output suffix ŝ of a front-coded string
s.

Clearly the space occupied by the front-coded strings is upper bounded by FC(D). We wish to
show that the space occupied by the copied strings, which were possibly compressed by the classic
front-coding but are left uncompressed here, sums up to ε FC(D), where ε is a parameter depending
on c and to be determined below.

We consider two cases for the copied strings depending on the amount of FC-characters that lie

Searching Strings by Prefix 9-9

between two consecutive occurrences of them. The first case is called uncrowded and occurs when
that number of FC-characters is at least c|s|

2 ; the second case is called crowded, and occurs when
that number of FC-characters is at most c|s|

2 . Figure 9.5 provides an example which clearly shows
that if the copied string s is crowded then |s′| ≥ c|s|/2. In fact, s′ starts before the left extent of
s but ends within the last c|s|/2 characters of that extent. Since the extent is c|s| characters long,
the above observation follows. If s is uncrowded, then it is preceded by at least c|s|/2 characters of
front-coded strings (FC-characters).

S ′ S

crowded

C|S |

C|S |/2

S ′ S
C|S |

C|S |/2

FIGURE 9.5: The two cases occurring in LPFC. The green rectangles denote the front-coded strings,
and thus their FC-characters, the red rectangles denote the two consecutive copied strings.

We are now ready to bound the total length of copied strings. We partition them into chains
composed by one uncrowded copied-string followed by the maximal sequence of crowded copied-
strings. In what follows we prove that the total number of characters in each chain is propor-
tional to the length of its first copied-string, namely the uncrowded one. Precisely, consider the
chain w1w2 · · ·wx of consecutive copied strings, where w1 is uncrowded and the following wis are
crowded. Take any crowded wi. By the observation above, we have that |wi−1| ≥ c|wi|/2 or, equiv-
alently, |wi| ≤ 2|wi−1|/c = · · · = (2/c)i−1|w1|. So if c > 2 the crowded copied strings shrink by a
constant factor. We have

∑
i |wi| = |w1|+∑

i>1 |wi| ≤ |w1|+∑
i>1(2/c)i−1|w1| = |w1| ∑i≥0(2/c)i < c|w1 |

c−2 .

Finally, since w1 is uncrowded, it is preceded by at least c|w1|/2 FC-characters (see above). The
total number of these FC-characters is bounded by FC(D), so we can upper bound the total length
of the uncrowded strings by (2/c)FC(D). By plugging this into the previous bound on the total
length of the chains, we get c

c−2 × 2FC(D)
c = 2

c−2 FC(D). The theorem follows by setting ε = 2
c−2 .

So locality-preserving front coding (shortly LPFC) is a compressed storage scheme for strings
that can substitute their plain storage without introducing any asymptotic slowdown in the accesses
to the compressed strings. In this sense it can be considered as a sort of space booster for any string
indexing technique.

The two-level indexing data-structure described in the previous sections can benefit of LPFC as
follows. We can use A to point to the copied strings of LPFC (which are uncompressed). This way
the buckets delimited by these strings have variable length, but any string can be decompressed in
optimal time and I/Os (cfr. previous observation about the Θ(B2) size of a bucket in classic FCB).
So the bounds are the ones stated in Theorem 9.3 but without the pathological cases commented
next to its proof. This way the scanning of a bucket, identified by the binary-search step takes O(1)
I/O and time proportional to the returned strings, and hence it is optimal.

The remaining question is therefore how to speed-up the search over the array A. We foresee
two main limitations: (i) the binary-search step has time complexity depending on N or n, (ii) if
the pointed strings do not fit within the internal-memory space allocated by the programmer, or
available in cache, then the binary-search step incurs many I/Os, and this might be expensive. In the
next sections we propose a trie-based approach that takes full-advantage of LPFC by overcoming
these limitations, resulting efficient in time, I/Os and space.

9-10 Paolo Ferragina

9.4 Compacted Trie

We already talked about tries in Chapter 7, here we dig further into their properties as efficient
data structures for string searching. In our context, the trie is used for the indexing of the sampled
strings DB in internal memory. This induces a speed up in the first stage of the prefix search from
O(log(N/B)) to O(p) time, thus resulting surprisingly independent of the dictionary size. The reason
is the power of the RAM model which allows to manage and address memory-cells of O(log N) bits
in constant time.

s1 1 1

2 2 2

s2 s3 s4 s5 3

s6 s7

a
i

t

n e o

n v a d n

s y

(a)

s1 2 1

s2 s3 2 2

s4 s5 s6 s7

a
in t

n v e on

a d s y

(b)

FIGURE 9.6: An example of uncompacted trie (a) and compacted trie (b) for n = 7 strings. The
integer showed in each internal node u denotes the length of the string spelled out by u. In the
case of uncompacted tries they are useless because they correspond to u’s depth. Edge labels in
compacted tries are substrings of variable length but they can be represented in O(1) space with
triples of integers: e.g. on could be encoded as 〈6, 2, 3〉, since the 6-th string tons includes on from
position 2 to position 3.

A trie is a multi-way tree whose edges are labeled by characters of the indexed strings. An internal
node u is associated with a string s[u] which is indeed a prefix of a dictionary string. String s[u] is
obtained by concatenating the characters found on the downward path that connects the trie’s root
with the node u. A leaf is associated with a dictionary string. All leaves which descend from a node
u are prefixed by s[u]. The trie has n leaves and at most N nodes, one per string character.3 Figure
9.6 provides an illustrative example of a trie built over 6 strings. This form of trie is commonly
called uncompacted because it can have unary paths, such as the one leading to string inn.4

If we want to check if a string P prefixes some dictionary string, we have just to check if there is
a downward path spelling out P. All leaves descending from the reached node provide the correct
answer to our prefix search. So tries do not need the reduction to the lexicographic search operation,
introduced for the binary-search approach.

A big issue is how to efficiently find the “edge to follow” during the downward traversal of the

3We say “at most” because some paths (prefixes) can be shared among several strings.
4The trie cannot index strings which are one the prefix of the other. In fact the former string would end up into an
internal node. To avoid this case, each string is extended with a special character which is not present in the alphabet and
is typically denoted by $.

Searching Strings by Prefix 9-11

trie, because this impacts onto the overall efficiency of the pattern search. The efficiency of this step
hinges on a proper storage of the edges (and their labeling characters) outgoing from a node. The
simplest data structure that does the job is the linked list. Its space requirement is optimal, namely
proportional to the number of outgoing edges, but it incurs in a O(σ) cost per traversed node. The
result would be a prefix search taking O(p σ) time in the worst case, which is too much for large
alphabets. If we store the branching characters (and their edges) into a sorted array, then we could
binary search it taking O(logσ) time per node. A faster approach consists of using a full-sized array
of σ entries, the un-empty entries (namely the ones for which the pointer in not null) are the entries
corresponding to the existing branching characters. In this case the time to branch out of a node
is O(1) and thus O(p) time is the cost for searching the pattern Q. But the space occupancy of the
trie grows up to O(Nσ), which may be unacceptably high for large alphabets. The best approach
consists of resorting a perfect hash table, which stores just the existing branching characters and
their associated pointers. This guarantees O(1) branching time in the worst-case and optimal space
occupancy, thus combining the best of the two previous solutions. For details about perfect hashes
we refer the reader to Chapter 8.

THEOREM 9.6 The uncompacted trie solves the prefix-search problem in O(p+nocc) time and
O(p + nocc/B) I/Os, where nocc is the number of strings prefixed by P. The retrieval of those strings
prefixed by P takes O(Nocc) time, and it takes O(Nocc/B) I/Os provided that leaves and strings are
stored contiguously and alphabetically sorted on disk. The trie consists of at most N nodes, exactly
n leaves, and thus takes O(N) space. The retrieval of the result strings takes O(Nocc) time and
O(Nocc/B) I/Os, where Nocc is the total length of the retrieved strings.

Proof Let u be the node such that s[u] = P. All strings descending from u are prefixed by P,
and they can be visualized by visiting the subtree rooted in u. The I/O-complexity of the traversal is
still O(p) because of the jumps among trie nodes. The retrieval of the nocc leaves descending from
the node spelling Q takes optimal O(nocc/B) I/Os because we can assume that trie leaves are stored
contiguously from left-to-right on disk. Notice that we have identified the strings (leaves) prefixed
by Q but, in order to display them, we still need to retrieve them, this takes additional O(Nocc/B)
I/Os provided that the indexed strings are stored contiguously on disk. This is O(nocc/B) I/Os if we
are interested only in the string pointers/IDs, provided that every internal node keeps a pointer to its
leftmost descending leaf and all leaves are stored contiguously on disk. (These are the main reasons
for keeping the pointers in the leaves of the uncompacted trie, which anyway stores the strings in
its edges, and thus could allow to retrieve them but with more I/Os because of the difficulty to pack
arbitrary trees on disk.)

A Trie can be wasteful in space if there are long strings with a short common prefix: this would
induce a significant number of unary nodes. We can save space by contracting the unary paths into
one single edge. This way edge labels become (possibly long) sub-strings rather than characters, and
the resulting trie is named compacted. Figure 9.7 (left) shows an example of compacted trie. It is
evident that each edge-label is a substring of a dictionary string, say s[i, j], so it can be represented
via a triple 〈s, i, j〉 (see also Figure 9.6). Given that each node is at least binary, the number of
internal nodes and edges is O(n). So the total space required by a compacted trie is O(n) too.

Prefix searching is implemented similarly as done for uncompacted tries. The difference is that it
alternates character-branches out of internal nodes, and sub-string matches with edge labels. If the
edges spurring from the internal nodes are again implemented with perfect hash tables, we get:

THEOREM 9.7 The compacted trie solves the prefix-search problem in O(p + nocc) time and

9-12 Paolo Ferragina

O(p + nocc/B) I/Os, where nocc is the number of strings prefixed by P. The retrieval of those strings
prefixed by P takes O(Nocc) time, and and it takes O(Nocc/B) I/Os provided that leaves and strings
are stored contiguously and alphabetically sorted on disk. The compacted trie consists of O(n)
nodes, and thus its storage takes O(n) space. It goes without saying that the trie needs also the
storage of the dictionary strings to resolve its edge labels, hence additional N space.

At this point an attentive reader can realize that the compacted trie can be used also to search
for the lexicographic position of a string Q among the indexed strings. It is enough to percolate
a downward path spelling Q as much as possible until a mismatch character is encountered. This
character can then be deployed to determine the lexicographic position of Q, depending on whether
the percolation stopped in the middle of an edge or in a trie node. So the compacted trie is an
interesting substitute for the array A in our two-level indexing structure and could be used to support
the search for the candidate bucket where the string Q occurs in, taking O(p) time in the worst case.
Since each traversed edge can induce one I/O, to fetch its labeling substring to be compared with the
corresponding one in Q, we point out that this approach is efficient if the trie and its indexed strings
can be fit in internal memory. Otherwise it presents two main drawbacks: the linear dependance
of the I/Os on the pattern length p, and the space dependance on the block-size B (influencing the
sampling) and the length of the sampled strings.

The Patricia Trie solves the former problem, whereas its combination with the LPFC solves both
of them.

9.5 Patricia Trie

A Patricia Trie built on a string dictionary is a compacted Trie in which the edge labels consist
just of their initial single characters, and the internal nodes are labeled with integers denoting the
lengths of the associated strings. Figure 9.7 illustrates how to convert a Compacted Trie (left) into a
Patricia Trie (right).

0

3 4

5 6 6

6 6 4 7 7 7 8

aba bcbc

ba

c

ba

a b a b a

bb

ba

a
b
a
a
b
a

a
b
a
a
b
b

a
b
a
c

b
c
b
c
a
b
a

b
c
b
c
a
b
b

b
c
b
c
b
b
a

b
c
b
c
b
b
b
a

(a)

0

3 4

5 6 6

6 6 4 7 7 7 8

a b

a

c

a

a b a b a

b

b

a
b
a
a
b
a

a
b
a
a
b
b

a
b
a
c

b
c
b
c
a
b
a

b
c
b
c
a
b
b

b
c
b
c
b
b
a

b
c
b
c
b
b
b
a

(b)

FIGURE 9.7: An example of Compacted Trie (a) and the corresponding Patricia Trie (b).

Even if the Patricia Trie strips out some information from the Compacted Trie, it is still able

Searching Strings by Prefix 9-13

to support the search for the lexicographic position of a pattern P among a (sorted) sequence of
strings, with the significant advantage (discussed below) that this search needs to access only one
single string, and hence execute typically one I/O instead of the p I/Os potentially incurred by the
edge-resolution step in compacted tries. This algorithm is called blind search in the literature [4].
It is a little bit more complicated than the prefix-search in classic tries, because of the presence of
only one character per edge label, and in fact it consists of three stages:

• Trace a downward path in the Patricia Trie to locate a leaf l which points to an inter-
esting string of the indexed dictionary. This string does not necessarily identify P’s
lexicographic position in the dictionary (which is our goal), but it provides enough in-
formation to find that position in the second stage. The retrieval of the interesting leaf l
is done by traversing the Patricia Trie from the root and comparing the characters of P
with the single characters which label the traversed edges until either a leaf is reached
or no further branching is possible. In this last case, we choose l to be any descendant
leaf from the last traversed node.

• Compare P against the string pointed by leaf l, in order to determine their longest com-
mon prefix. Let ` be the length of this shared prefix, then it is possible to prove that (see
[4]) the leaf l stores one of the strings indexed by the Patricia Trie that shares the longest
common prefix with P. Call s this pointed string. The length ` and the two mismatch
characters P[` + 1] and s[` + 1] are then used to find the lexicographic position of P
among the strings stored in the Patricia Trie.

• First the Patricia trie is traversed upward from l to determine the edge e = (u, v) where
the mismatch character s[` + 1] lies; this is easy because each node on the upward path
stores an integer that denotes the length of the corresponding prefix of s, so that we have
|s[u]| < ` ≤ |s[v]|. If s[` + 1] is a branching character (i.e. ` = |s[u]|), then we determine
the lexicographic position of P[` + 1] among the branching characters of node u. Say
this is the i-th child of u, the lexicographic position of P is therefore to the immediate
left of the subtree descending from this child. Otherwise (i.e. ` > |s[u]|), the character
s[` + 1] lies within e, so the lexicographic position of P is to the immediate right of the
subtree descending from e, if P[` + 1] > s[` + 1], otherwise it is to the immediate left of
that subtree.

A running example is illustrated in Figure 9.8.
In order to understand why the algorithm is correct, let us take the path spelling out the string

P[1, `]. We have two cases, either we reached an internal node u such that |s[u]| = ` or we are in
the middle of an edge (u, v), where |s[u]| < ` < |s[v]|. In the former case, all strings descending
from u are the ones in the dictionary which share ` characters with the pattern, and this is the lcp.
The correct lexicographic position therefore falls among them or is adjacent to them, and thus it
can be found by looking at the branching characters of the edges outgoing from the node u. This is
correctly done also by the blind search that surely stops at u, computes ` and finally determines the
correct position of P by comparing u’s branching characters against P[` + 1].

In the latter case the blind search reaches v by skipping the mismatch character on (u, v), and
possibly goes further down in the trie because of the possible match between branching characters
and further characters of P. Eventually a leaf descending from v is taken, and thus ` is computed
correctly given that all leaves descending from v share ` characters with P. So the backward traversal
executed in the second stage of the Blind search reaches correctly the edge (u, v), which is above
the selected leaf. There we deploy the mismatch character which allows to choose the correct
lexicographic position of P which is either to the left of the leaves descending from v or to their
right. Indeed all those leaves share |s[v]| > ` characters, and thus P falls adjacent to them, either

9-14 Paolo Ferragina

0

3 4

5 6 6

6 6 4 7 7 7 8

a

a

c

a

a b a b a

b

b

b

a
b
a
a
b
a

a
b
a
a
b
b

a
b
a
c

b
c
b
c
a
b
a

b
c
b
c
a
b
b

b
c
b
c
b
b
a

b
c
b
c
b
b
b
a

P = bcbabcba

correct
position

leaf l

(a)

0

3 4

5 6 6

6 6 4 7 7 7 8

a bcbc

a

c

a b

a b a b a b

a
b
a
a
b
a

a
b
a
a
b
b

a
b
a
c

b
c
b
c
a
b
a

b
c
b
c
a
b
b

b
c
b
c
b
b
a

b
c
b
c
b
b
b
a

P = bcbabcba

correct
position

hit-node

common
prefix

mismatch

(b)

FIGURE 9.8: An example of the first (a) and second (b) stages of the blind search for P in a
dictionary of 7 strings.

to their left or to their right. The choice depends on the comparison between the two characters
P[` + 1] and s[` + 1].

The blind search has excellent performance:

THEOREM 9.8 A Patricia trie takes O(n) space, hence O(1) space per indexed string (in-
dependent, therefore, of its length). The blind search for a pattern P[1, p] requires O(p) time to
traverse the trie’s structure (downward and upward), and O(p/B) I/Os to compare the single string
(possibly residing on disk) identified by the blind search. It returns the lexicographic position of P
among the indexed strings. By searching for P and P#, as done in suffix arrays, the blind search
determines the range of indexed strings prefixed by P, if any.

This theorem states that if n < M then we can index in internal memory the whole dictionary,
and thus build the Patricia trie over all dictionary strings and stuff it in the internal memory of our
computer. The dictionary strings are stored on disk. The prefix search for a pattern P takes in O(p)
time and O(p/B) I/Os. The total required space is the one needed to store the strings, and thus it is
O(N).

If we wish to compress the dictionary strings, then we need to resort front-coding. More precisely,
we combine the Patricia Trie and LPFC as follows. We fit in the internal memory the Patricia trie of
the dictionaryD, and store on disk the locality-preserving front coding of the dictionary strings. The
two traversals of the Patricia trie take O(p) time and no I/Os (Theorem 9.8), because use information
stored in the Patricia trie and thus available in internal memory. Conversely the computation of the
lcp takes O(|s|/B + p/B) I/Os, because it needs to decode from its LPFC-representation (Theorem
9.5) the string s selected by the blind search and it also needs to compare s against P to compute
their lcp. These information allow to identify the lexicographic position of P among the leaves of

Searching Strings by Prefix 9-15

the Patricia trie.

THEOREM 9.9 The data structure composed of the Patricia Trie as the index in internal
memory (“upper level”) and the LPFC for storing the strings on disk (“lower level”) requires O(n)
space in memory and O((1 + ε)FC(D)) space on disk. Furthermore, a prefix search for P requires
O(p

B +
|s|
Bε) I/Os, where s is the “interesting string” determined in the first stage of the Blind search.

The retrieval of the prefixed strings takes O((1+ε)FC(Docc)
B) I/Os, whereDocc ⊆ D is the set of returned

strings.

In the case that n = Ω(M), we cannot index in the internal-memory Patricia trie the whole dic-
tionary, so we have to resort the bucketing strategy over the strings stored on disk and index in the
Patricia trie only a sample of them. If N/B = O(M) we can index in internal memory the first string
of every bucket and thus be able to prefix-search P within the bounds stated in Theorem 9.9, by
adding just one I/O due to the scanning of the bucket (i.e. disk page) containing the lexicographic
position of P. The previous condition can be rewritten as N = O(MB) which is pretty reasonable in
practice, given the current values of M ≈ 4Gb and B ≈ 32Kb, which make MB ≈ 128Tb.

9.6 Managing Huge Dictionaries∞

The final question we address in this lecture is: What if N = Ω(MB)? In this case the Patricia trie
is too big to be fit in the internal memory of our computer. We can think to store the trie on disk
without taking much care on the layout of its nodes among the disk pages. Unfortunately a pattern
search could take Ω(p) I/Os in the two traversals performed by the Blind search. Alternatively, we
could incrementally grow a root page and repeatedly add some node not already packed into that
page, where the choice of that node might be driven by various criteria that either depend on some
access probability or on the node’s depth. When the root page contains B nodes, it is written onto
disk and the algorithm recursively lays out the rest of the tree. Surprisingly enough, the obtained
packing is far from optimality of a factor Ω(log B

log log B), but it is surely within a factor O(log B) from
the optimal [1].

In what follows we describe two distinct optimal approaches to solve the prefix-search over dic-
tionaries of huge size: the first solution is based on a data structure, called the String B-Tree [4],
which boils down to a B-tree in which the routing table of each node is a Patricia tree; the second
solution consists of applying proper disk layouts of trees onto the Patricia trie built over the entire
dictionary.

9.6.1 String B-Tree

The key idea consists of dividing the big Patricia trie into a set of smaller Patricia tries, each fitting
into one disk page. And then linking together all of them in a B-Tree structure. Below we outline a
constructive definition of the String B-Tree, for details on this structure and the supported operations
we refer the interested reader to the cited literature.

The dictionary strings are stored on disk contiguously and ordered. The pointers to these strings
are partitioned into a set of smaller, equally sized chunks D1, . . . ,Dm, each including Θ(B) strings
independently of their length. This way, we can index each chunk Di with a Patricia Trie that fits
into one disk page and embed it into a leaf of the B-Tree. In order to search for P among those set
of nodes, we take from each partition Di its first and last (lexicographically speaking) strings si f

and sil, defining the setD1 =
{
s1 f , s1l, . . . , sm f , sml

}
.

Recall that the prefix search for P boils down to the lexicographic search of a pattern Q, properly
defined from P. If we search Q withinD1, we can discover one of the following three cases:

9-16 Paolo Ferragina

1. Q falls before the first or after the last string ofD, if Q < s1 f or Q > sml.
2. Q falls among the strings of some Di, and indeed it is si f < Q < sil. So the search is

continued in the Patricia trie that indexesDi;
3. Q falls between two chunks, say Di and Di+1, and indeed it is sil < Q < s(i+1) f . So

we found Q’s lexicographic position in the whole D, namely it is between these two
adjacent chunks.

In order to establish which of the three cases occurs, we need to search efficiently in D1 for the
lexicographic position of Q. Now, if D1 is small and can be fit in memory, we can build on it a
Patricia trie ad we are done. Otherwise we repeat the partition process on D1 to build a smaller
set D2, in which we sample, as before, two strings every B, so that |D2| = 2|D1 |

B . We continue this
partitioning process for k steps, until it is |Dk | = O(B) and thus we can fit the Patricia trie built on
Dk within one disk page5.

We notice that each disk page gets an even number of strings when partitioning D1, . . . ,Dk, and
to each pair

(
si f , sil

)
we associate a pointer to the block of strings which they delimit in the lower

level of this partitioning process. The final result of the process is then a B-Tree over string pointers.
The arity of the tree is Θ(B), because we index Θ(B) strings in each single node. The nodes of the
String B-Tree are then stored on disk. The following Figure 9.9 provides an illustrative example for
a String B-tree built over 7 strings.

56 20 64 31

56 5 10 20 64 60 24 31

56 1 35 5 10 45 68 20 64 52 48 60 24 41 31

level
1

2

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

65 66 67 68 69 70 71 72

a i d a t o m a t t e n u a t e c a r p a t e n t z o

o a t l a s s u n b y f i t d o g a c e l i d c

o d b y e . . .

FIGURE 9.9: An example of an String B-tree on built on the suffixes of the strings in D =

{’ace’, ’aid’, ’atlas’, ’atom’, ’attenuate’, ’by’, ’bye’, ’car’, ’cod’, ’dog’, ’fit’, ’lid’, ’patent’, ’sun’, ’zoo’}.
The strings are stored in the B-tree leaves by means of their logical pointers 56, 1, 35, 5, 10, . . .,
31. Notice that strings are not sorted on disk, nevertheless sorting improves their I/O-scanning, and
indeed our theorems assume an orderedD on disk.

A (prefix) search for the string P in a String B-Tree is simply the traversal of the B-Tree, which

5Actually, we could stop as soon as
∣∣∣Dk

∣∣∣ = O(M), but we prefer the former to get a standard B-Tree structure.

Searching Strings by Prefix 9-17

executes at each node a lexicographic search of the proper pattern Q in the Patricia trie of that node.
This search discovers one of the three cases mentioned above, in particular:

• case 1 can only happen on the root node;
• case 2 implies that we have to follow the node pointer associated to the identified parti-

tion.
• case 3 has found the lexicographic position of Q in the dictionaryD, so the search in the

B-tree stops.

The I/O complexity of the data structure just defined is pretty good: since the arity of the B-Tree
is Θ(B), we have Θ(logB n) levels, so a search traverses Θ(logB n) nodes. Since on each node we
need to load the node’s page into memory and perform a Blind search over its Patricia trie, we pay
O(1 +

p
B) I/Os, and thus O(p

B logB n) I/Os for the overall prefix search of P in the dictionaryD.

THEOREM 9.10 A prefix search in the String B-Tree built over the dictionary D takes
O(p

B logB n + Nocc
B) I/Os, where Nocc is the total length of the dictionary strings which are prefixed by

P. The data structure occupies O(N
B) disk pages and, indeed, strings are stored uncompressed on

disk.

This result is good but not yet optimal. The issue that we have to resolve to reach optimality is
pattern rescanning: each time we do a Blind search, we compare Q and one of the strings stored
in the currently visited B-Tree node starting from their first character. However, as we go down
in the string B-tree we can capitalize on the characters of Q that we have already compared in the
upper levels of the B-tree, and thus avoid the rescanning of these characters during the subsequent
lcp-computations. So if f characters have been already matched in Q during some previous lcp-
computation, the next lcp-computation can compare Q with a dictionary string starting from their
(f + 1)-th character. The pro of this approach is that I/Os turn to be optimal, the cons is that strings
have to be stored uncompressed in order to support the efficient access to that (f + 1)-th character.
Working out all the details [4], one can show that:

THEOREM 9.11 A prefix search in the String B-Tree built over the dictionary D takes
O(p+Nocc

B + logB n) optimal I/Os, where Nocc is the total length of the dictionary strings which are
prefixed by P. The data structure occupies O(N

B) disk pages and, indeed, strings are stored uncom-
pressed on disk.

If we want to store the strings compressed on disk, we cannot just plug LPFC in the approach
illustrated above, because the decoding of LPFC works only on full strings, and thus it does not
support the efficient skip of some characters without wholly decoding the compared string. [2]
discusses a sophisticated solution to this problem which gets the I/O-bounds in Theorem 9.11 but
in the cache-oblivious model and guaranteeing LPFC-compressed space. We refer the interested
reader to that paper for details.

9.6.2 Packing Trees on Disk

We point out that the advantage of finding a good layout for unbalanced trees among disk pages
(of size B) may be unexpectedly large, and therefore, must not be underestimated when designing
solutions that have to manage large trees on disk. In fact, while balanced trees save a factor O(log B)
when mapped to disk (pack B-node balanced subtrees per page), the mapping of unbalanced trees
grows with non uniformity and approaches, in the extreme case of a linear-height tree, a saving
factor of Θ(B) over a naı̈ve memory layout.

9-18 Paolo Ferragina

This problem is also known in the literature as the Tree Packing problem. Its goal is to find an
allocation of tree nodes among the disk pages in such a way that the number of I/Os executed for a
pattern search is minimized. Minimization may involve either the total number of loaded pages in
internal memory (i.e. page faults) , or the number of distinct visited pages (i.e. working-set size).
This way we model two extreme situations: the case of a one-page internal memory (i.e. a small
buffer), or the case of an unbounded internal memory (i.e. an unbounded buffer). Surprisingly, the
optimal solution to the tree packing problem is independent of the available buffer size because no
disk page is visited twice when page faults are minimized or the working set is minimum. Moreover,
the optimal solution shows a nice decomposability property: the optimal tree packing forms in turn
a tree of disk pages. These two facts allow to restrict our attention to the page-fault minimization
problem, and to the design of recursive approaches to the optimal tree decomposition among the
disk pages.

In the rest of this section we present two solutions of increasing sophistication and addressing
two different scenarios: one in which the goal is to minimize the maximum number of page faults
executed during a downward root-to-leaf traversal; the other in which the goal is to minimize the
average number of page faults by assuming an access distribution to the tree leaves, and thus to
the possible tree traversals. We briefly mention that both solutions assume that B is known; the
literature actually offers cache-oblivious solutions to the tree packing problem, but they are too
much sophisticated to be reported in these notes. For details we refer the reader to [1, 5].

Min-Max Algorithm. This solution operates greedily and bottom up over the tree to be packed with
the goal of minimizing the maximum number of page faults executed during a downward traversal
which starts from the root of the tree. The tree is assumed to be binary, this is not a restriction
for Patricia Tries because it is enough to encode the alphabet characters with binary strings. The
algorithm assigns every leaf to its own disk page and the height of this page is set to 1. Working
upward, Algorithm 9.1 is applied to each processed node until the root of the tree is reached.

Algorithm 9.1 Min-Max Algorithm over binary trees (general step).
Let u be the currently visited node;
if If both children of u have the same page height d then

if If the total number of nodes in both children’s pages is < B then
Merge the two disk pages and add u;
Set the height of this new page to d;

else
Close off the pages of u’s children;
Create a new page for u and set its height to d + 1;

end if
else

Close off the page of u’s child with the smaller height;
If possible, merge the page of the other child with u and leave its height unchanged;
Otherwise, create a new page for u with height d + 1 and close off the child’s page;

end if

The final packing may induce a poor page-fill ratio, nonetheless several changes can alleviate this
problem in real situations:

1. When a page is closed off, scan its children pages from the smallest to the largest and
check whether they can be merged with their parent.

Searching Strings by Prefix 9-19

2. Design logical disk pages and pack many of them into one physical disk page; possibly
ignore physical page boundaries when placing logical pages onto disk.

THEOREM 9.12 The Min-Max Algorithm provides a disk-packing of a tree of n nodes and
height H such that every root-to-leaf path traverses less than 1 + d H√

B
e + d2logBne pages.

Distribution-aware Packing. We assume that it is known an access distribution to the Patricia
trie leaves. Since this distribution is often skewed towards some leaves, that are then accessed
more frequently than others, the Min-Max algorithm may be significantly inefficient. The following
algorithm is based on a Dynamic-Programming scheme, and optimizes the expected number of I/Os
incurred by any traversal of a root-to-leaf path.

We denote by τ this optimal tree packing (from tree nodes to disk pages), so τ(u) denotes the
disk page to which the tree node u is mapped. Let w(f) be the probability to access a leaf f , we
derive a distribution over all other nodes u of the tree by summing up the access probabilities of its
descending leaves. We can assume that the tree root r is always mapped to a fixed page τ(r) = R.
Consider now the set V of tree nodes that descend from R’s nodes but are not themselves in R. We
observe that the optimal packing τ induces a tree of disk pages and consequently, if τ is optimal for
the current tree T , then τ is optimal for all subtrees Tv rooted in v ∈ V .

This result allows to state a recursive computation for τ that first determines which nodes reside
in R, and then continues recursively with all subtrees Tv for which v ∈ V . Dynamic programming
provides an efficient implementation of this idea, based on the following definition: An i-confined
packing of a tree T is a packing in which the page R contains exactly i nodes (clearly i ≤ B). Now,
in the optimal packing τ, the root page R will contain i∗ nodes from the left subtree Tle f t(r) and
(B − i∗ − 1) nodes from the right subtree Tright(r), for some i∗. The consequence is that τ is both
an optimal i∗-confined packing for Tle f t(r) and an optimal (B − i∗ − 1)-confined packing for Tright(r).
This property is at the basis of the Dynamic-Programming rule which computes A[v, i], for a generic
node v and integer i ≤ B, as the cost of an optimal i-confined packing of the subtree Tv. In the paper
[5] the authors showed that A[v, i], for i > 1, can be computed as the access probability w(v) plus
the minimum among the following three quantities:

1. A[le f t(v), i − 1] + w(right(v)) + A[right(v), B]
2. w(le f t(v)) + A[le f t(v), B] + A[right(v), i − 1]
3. min1≤ j<i−1{A[le f t(v), j] + A[right(v), i − j − 1]}

Rule (1) accounts for the (unbalanced) case in which the i-confined packing is obtained by storing
i − 1 nodes from Tle f t(v) into the v’s page; Rule (2) is the symmetric of Rule (1); whereas Rule (3)
accounts for the case in which j nodes from Tle f t(v) and i − j − 1 nodes from Tright(v) are stored
into the page of v to form the optimal i-confined packing of Tv. The special case i = 1 is given by
A[v, 1] = w(Tv) + A[le f t(v), B] + A[right(v), B].

Algorithm 9.2 deploys these rules to compute the optimal tree packing in O(nB2) time and O(nB)
space.

THEOREM 9.13 An optimal packing for a f -ary tree of n nodes can be computed in O(nB2 log f)
time and O(B log n) space. The packing maps the tree into at most 2b n

B c disk pages. Optimality is
with respect to the expected number of I/Os incurred by any root-to-leaf traversal.

References

9-20 Paolo Ferragina

Algorithm 9.2 Distribution-aware packing of trees on disk.
Initialize A[v, i] = w(v), for all leaves v and integers i ≤ B;
while there exist an unmarked node v do

mark v;
update A[v, 1] = w(v) + A[le f t(v), B] + A[right(v), B];
for i = 2 to B do

update A[v, i] according to the dyn-prog rule specified in the text.
end for

end while

[1] Stefan Alstrup, Michael A. Bender, Erik D. Demaine, Martin Farach-Colton, Jan I.

Munro, Theis Rauhe, and M. Thorup. Efficient Tree Layout in a Multilevel Memory
Hierarchy, 2003. Personal Communication, corrected version of a paper appeared in

the European Symposium on Algorithms 2002.

[2] Michael A. Bender, Martin Farach-Colton, and Bradley C. Kuszmaul. Cache-oblivious

string B-trees. In Procs ACM Symposium on Principles of Database Systems, pages 223–

242, 2006.

[3] Erik D. Demaine, Thouis Jones, and Mihai Pătraşcu. Interpolation search for non-

independent data. In Procs ACM-SIAM Symposium on Discrete algorithms, pages 529–

530, 2004.

[4] Paolo Ferragina and Roberto Grossi. The String B-tree: a new data structure for string

search in external memory and its applications. Journal of the ACM, 46(2):236–280,

1999.

[5] Joseph Gil and Alon Itai. How to pack trees. Journal of Algorithms, 32(2):108–132,

1999.

[6] Michael Luby, Charles Rackoff. How to construct pseudorandom permutations from

pseudorandom functions. SIAM Journal on Computing, 17, 373–386, 1988.

10
Searching Strings by Substring

10.1 Notation and terminology . 10-1
10.2 The Suffix Array . 10-2

The substring-search problem • The LCP-array and its
construction∞ • Suffix-array construction

10.3 The Suffix Tree . 10-16
The substring-search problem • Construction from
Suffix Arrays and vice versa • McCreight’s algorithm∞

10.4 Some interesting problems . 10-23
Approximate pattern matching • Text Compression •

Text Mining

In this lecture we will be interested in solving the following problem, known as full-text searching
or substring searching.

The substring-search problem. Given a text string T [1, n], drawn from an alphabet of size
σ, retrieve (or just count) all text positions where a query pattern P[1, p] occurs as a substring
of T .

It is evident that this problem can be solved by brute-forcedly comparing P against every substring
of T , thus taking O(np) time in the worst case. But it is equivalently evident that this scan-based
approach is unacceptably slow when applied to massive text collections subject to a massive number
of queries, which is the scenario involving genomic databases or search engines. This suggests the
usage of a so called indexing data structure which is built over T before that searches start. A setup
cost is required for this construction, but this cost is amortized over the subsequent pattern searches,
thus resulting convenient in a quasi-static environment in which T is changed very rarely.

In this lecture we will describe two main approaches to substring searching, one based on arrays
and another one based on trees, that mimic what we have done for the prefix-search problem. The
two approaches hinge on the use of two fundamental data structures: the suffix array (shortly SA)
and the suffix tree (shortly ST). We will describe in much detail those data structures because their
use goes far beyond the context of full-text search.

10.1 Notation and terminology

We assume that text T ends with a special character T [n] = $, which is smaller than any other
alphabet character. This ensures that text suffixes are prefix-free and thus no one is a prefix of
another suffix. We use suffi to denote the i-th suffix of text T , namely the substring T [i, n]. The
following observation is crucial:

If P = T [i, i + p − 1], then the pattern occurs at text position i and thus we can state that P is
a prefix of the i-th text suffix, namely P is a prefix of the string suffi.

c© Paolo Ferragina, 2009-2020 10-1

10-2 Paolo Ferragina

As an example, if P =“siss” and T =“mississippi$”, then P occurs at text position 4 and indeed
it prefixes the suffix suff4 = T [4, 12] =“sissippi$”. For simplicity of exposition, and for historical
reasons, we will use this text as running example; nevertheless we point out that a text may be an
arbitrary sequence of characters, hence not necessarily a single word.

Given the above observation, we can form with all text suffixes the dictionary SUF(T) and state
that searching for P as a substring of T boils down to searching for P as a prefix of some string in
SUF(T). In addition, since there is a bijective correspondence among the text suffixes prefixed by P
and the pattern occurrences in T , then

1. the suffixes prefixed by P occur contiguously into the lexicographically sorted SUF(T),
2. the lexicographic position of P in SUF(T) immediately precedes the block of suffixes

prefixed by P.

An attentive reader may have noticed that these are the properties we deployed to efficiently sup-
port prefix searches. And indeed the solutions known in the literature for efficiently solving the
substring-search problem hinge either on array-based data structures (i.e. the Suffix Array) or on
trie-based data structures (i.e. the Suffix Tree). So the use of these data structures in pattern search-
ing is pretty immediate. What is challenging is the efficient construction of these data structures and
their mapping onto disk to achieve efficient I/O-performance. These will be the main issues dealt
with in this lecture.

Text suffixes Indexes
mississippi$ 1
ississippi$ 2
ssissippi$ 3
sissippi$ 4
issippi$ 5
ssippi$ 6
sippi$ 7
ippi$ 8
ppi$ 9
pi$ 10
i$ 11
$ 12

Sorted Suffixes SA Lcp
$ 12 0
i$ 11 1
ippi$ 8 1
issippi$ 5 4
ississippi$ 2 0
mississippi$ 1 0
pi$ 10 1
ppi$ 9 0
sippi$ 7 2
sissippi$ 4 1
ssippi$ 6 3
ssissippi$ 3 -

FIGURE 10.1: SA and lcp array for the string T =“mississippi$”.

10.2 The Suffix Array

The suffix array for a text T is the array of pointers to all text suffixes ordered lexicographically.
We use the notation SA(T) to denote the suffix array built over T , or just SA if the indexed text is
clear from the context. Because of the lexicographic ordering, SA[i] is the i-th smallest text suffix,
so we have that suffSA[1] < suffSA[2] < · · · < suffSA[n], where < is the lexicographical order between
strings. For space reasons, each suffix is represented by its starting position in T (i.e. an integer).
SA consists of n integers in the range [1, n] and hence it occupies O(n log n) bits.

Searching Strings by Substring 10-3

Another useful concept is the longest common prefix between two consecutive suffixes suffSA[i]
and suffSA[i+1]. We use lcp to denote the array of integers representing the lengths of those lcps.
Array lcp consists of n − 1 entries containing values smaller than n. There is an optimal and non
obvious linear-time algorithm to build the lcp-array which will be detailed in Section 10.2.3. The
interest in lcp rests in its usefulness to design efficient/optimal algorithms to solve various search
and mining problems over strings.

10.2.1 The substring-search problem

We observed that this problem can be reduced to a prefix search over the string dictionary SUF(T),
so it can be solved by means of a binary search for P over the array of text suffixes ordered lexi-
cographically, hence SA(T). Figure 10.1 shows the pseudo-code which coincides with the classic
binary-search algorithm specialized to compare strings rather than numbers.

Algorithm 10.1 SubstringSearch(P, SA(T))
1: L = 1, R = n;
2: while (L , R) do
3: M = b(L + R)/2c;
4: if (strncmp(P, suffM , p) > 0) then
5: L = M + 1;
6: else
7: R = M;
8: end if
9: end while

10: if (strncmp(P, suffL, p) = 0) then
11: return L;
12: else
13: return −1;
14: end if

A binary search in SA requires O(log n) string comparisons, each taking O(p) time in the worst
case.

LEMMA 10.1 Given the text T [1, n] and its suffix array, we can count the occurrences of a
pattern P[1, p] in the text taking O(p log n) time and O(log n) memory accesses in the worst case.
Retrieving the positions of these occ occurrences takes additional O(occ) time. The total required
space is n(log n + logσ) bits, where the first term accounts for the suffix array and the second term
for the text.

Figure 10.2 shows a running example, which highlights an interesting property: the comparison
between P and suffM does not need to start from their initial character. In fact one could exploit
the lexicographic sorting of the suffixes and skip the characters comparisons that have already been
carried out in previous iterations. This can be done with the help of three arrays:

• the lcp[1, n − 1] array;
• two other arrays Llcp[1, n − 1] and Rlcp[1, n − 1] which are defined for every triple

(L,M,R) that may arise in the inner loop of a binary search. We define Llcp[M] =

10-4 Paolo Ferragina

lcp(suffSA[L], suffSA[M]) and Rlcp[M] = lcp(suffSA[M], suffSA[R]), namely Llcp[M] ac-
counts for the prefix shared by the leftmost suffix suffSA[L] and the middle suffix suffSA[M]
of the range currently explored by the binary search; Rlcp[M] accounts for the prefix
shared by the rightmost suffix suffSA[R] and the middle suffix suffSA[M] of that range.

=⇒ $

| i$

| ippi$

| issippi$

| ississippi$

| → mississippi$

| pi$

| ppi$

| sippi$

| sissippi$

| ssippi$

=⇒ ssissippi$
Step (1)

$

i$

ippi$

issippi$

ississippi$

mississippi$

=⇒ pi$

| ppi$

| sippi$

| → sissippi$

| ssippi$

=⇒ ssissippi$
Step (2)

$

i$

ippi$

issippi$

ississippi$

mississippi$

pi$

ppi$

sippi$

sissippi$

=⇒ ssippi$

=⇒ ssissippi$
Step (3)

$

i$

ippi$

issippi$

ississippi$

mississippi$

pi$

ppi$

sippi$

sissippi$

=⇒ ssippi$

ssissippi$
Step (4)

FIGURE 10.2: Binary search steps for the lexicographic position of the pattern P =“ssi” in “mis-
sissippi$”.

We notice that each triple (L,M,R) is uniquely identified by its midpoint M because the execution
of a binary search defines actually a hierarchical partition of the array SA into smaller and smaller
sub-arrays delimited by (L,R) and thus centered in M. Hence we have O(n) triples overall, and these
three arrays occupy O(n) space in total.

We can build arrays Llcp and Rlcp in linear time by exploiting two different approaches. We
can deploy the observation that the lcp[i, j] between the two suffixes suffSA[i] and suffSA[j] can be
computed as the minimum of a range of lcp-values, namely lcp[i, j] = mink=i,..., j−1 lcp[k]. By
associativity of the min we can split the computation as lcp[i, j] = min{lcp[i, k], lcp[k, j]} where
k is any index in the range [i, j], so in particular we can set lcp[L,R] = min{lcp[L,M], lcp[M,R]}.
This implies that the arrays Llcp and Rlcp can be computed via a bottom-up traversal of the triplets
(L,M,R) in O(n) time. Another way to deploy the previous observation is to compute lcp[i, j] on-
the-fly via a Range-Minimum Data structure built over the array lcp (see Section 10.4.1). All of
these approaches take O(n) time and space, and thus they are optimal.

We are left with showing how the binary search can be speeded up by using these arrays. Consider
a binary-search iteration on the sub-array SA[L,R], and let M be the midpoint of this range (hence
M = (L + R)/2). A lexicographic comparison between P and suffSA[M] has to be made in order
to choose the next search-range between SA[L,M] and SA[M,R]. The goal is to compare P and
suffSA[M] without starting necessarily from their first character, but taking advantage of the previous
binary-search steps in order to infer, hopefully in constant time, their lexicographic comparison.

Surprisingly enough this is possible and requires to know, in addition to Llcp and Rlcp, the values
l = lcp(P, suffSA[L]) and r = lcp(P, suffSA[R]) which denote the number of characters the pattern P
shares with the strings at the extremes of the range currently explored by the binary search. At the
first step, in which L = 1 and R = n, these two values can be computed in O(p) time by comparing
character-by-character the involved strings. At a generic step, we assume that l and r are known

Searching Strings by Substring 10-5

inductively, and show below how the binary-search step can preserve their knowledge after that we
move onto SA[L,M] or SA[M,R].

So let us detail the implementation of a generic binary-search step. We know that P lies between
suffSA[L] and suffSA[R], so P surely shares lcp[L,R] characters with these suffixes given that any string
(and specifically, all suffixes) in this range must share this number of characters (given that they are
lexicographically sorted). Therefore the two values l and r are larger (or equal) than lcp[L,R], as
well as it is larger (or equal) to this value also the number of characters m that the pattern P shares
with suffSA[M]. We could then take advantage of this last inequality to compare P with suffSA[M]
starting from their (lcp[L,R] + 1)-th character. But actually we can do better because we know r
and l, and these values can be significantly larger than lcp[L,R], thus more characters of P have
been already involved in previous comparisons and so they are known.

We distinguish three main cases by assuming that l ≥ r (the other case r > l is symmetric),
and aim at not re-scanning the characters of P that have been already seen (namely characters in
P[1, l]). We define our algorithm in such a way that the order between P and suffSA[M] can be inferred
either comparing characters in P[l + 1, n], or comparing the values l and Llcp[M] (which give us
information about P[1, l]).

• If l < Llcp[M], then P is greater that suffSA[M] and we can set m = l. In fact, by induction,
P > suffSA[L] and their mismatch character lies at position l+1. By definition of Llcp[M]
and the hypothesis, we have that suffSA[L] shares more than l characters with suffSA[M].
So the mismatch between P and suffSA[M] is the same as it is between P and suffSA[L],
hence their comparison gives the same answer— i.e. P > suffSA[M]— and the search can
thus continue in the subrange SA[M,R]. We remark that this case does not induce any
character comparison.

• If l > Llcp[M], this case is similar as the previous one. We can conclude that P is smaller
than suffSA[M] and it is m = Llcp[M]. So the search continues in the subrange SA[L,M],
without additional character comparisons.

• If l = Llcp[M], then P shares l characters with suffSA[L] and suffSA[M]. So the comparison
between P and suffSA[M] can start from their (l+1)-th character. Eventually we determine
m and their lexicographic order. Here some character comparisons are executed, but the
knowledge about P’s characters advanced too.

It is clear that every binary-search step either advances the comparison of P’s characters, or it
does not compare any character but halves the range [L,R]. The first case can occur at most p times,
the second case can occur O(log n) times. We have therefore proved the following.

LEMMA 10.2 Given the three arrays lcp, Llcp and Rlcp built over a text T [1, n], we can count
the occurrences of a pattern P[1, p] in the text taking O(p + log n) time in the worst case. Retrieving
the positions of these occ occurrences takes additional O(occ) time. The total required space is
O(n).

Proof We remind that searching for all strings having the pattern P as a prefix requires two
lexicographic searches: one for P and the other for P#, where # is a special character larger than
any other alphabet character. So O(p + log n) character comparisons are enough to delimit the range
SA[i, j] of suffixes having P as a prefix. It is then easy to count the pattern occurrences in constant
time, as occ = j − i + 1, or print all of them in O(occ) time.

10.2.2 The LCP-array and its construction∞

10-6 Paolo Ferragina

Surprisingly enough the longest common prefix array lcp[1, n − 1] can be derived from the input
string T and its suffix array SA[1, n] in optimal linear time.1 This time bound cannot be obtained by
the simple approach that compares character-by-character the n− 1 contiguous pairs of text suffixes
in SA; as this takes Θ(n2) time in the worst case. The optimal O(n) time needs to avoid the re-
scanning of the text characters, so some property of the input text has to be proved and deployed
in the design of an algorithm that achieves this complexity. This is exactly what Kasai et al did in
2001 [8], their algorithm is elegant, deceptively simple, and optimal in time and space.

Sorted Suffixes SA SA positions
abcdef... j − 1 p − 1
abchi... i − 1 p
. . .
. . .
. . .
bcdef... j
. . .
. . .
. . .
bch... k q − 1
bchi... i q

FIGURE 10.3: Relation between suffixes and lcp values in the Kasai’s algorithm. Suffixes are
shown only with their starting characters, the rest is indicated with ... for simplicity.

For the sake of presentation we will refer to Figure 10.3 which illustrates clearly the main algo-
rithmic idea. Let us concentrate on two consecutive suffixes in the text T , say suffi−1 and suffi, which
occur at positions p and q in the suffix array SA. And assume that we know inductively the value
of lcp[p − 1], storing the longest common prefix between SA[p − 1] = suff j−1 and the next suffix
SA[p] = suffi−1 in the lexicographic order. Our goal is to show that lcp[q − 1] storing the longest
common prefix between suffix SA[q − 1] = suffk and the next ordered suffix SA[q] = suffi, which
interests us, can be computed without re-scanning these suffixes from their first character but can
start where the comparison between SA[p − 1] and SA[p] ended. This will ensure that re-scanning
of text characters is avoided, precisely it is avoided the re-scanning of suffi−1, and as a result we will
get a linear time complexity.

We need the following property that we already mentioned when dealing with prefix search, and
that we restate here in the context of suffix arrays.

FACT 10.1 For any position x < y it holds lcp(suffSA[y−1], suffSA[y]) ≥ lcp(suffSA[x], suffSA[y]).

Proof This property derives from the observation that suffixes in SA are ordered lexicographi-
cally, so that, as we go farther from SA[y] we reduce the length of the shared prefix.

1Recall that lcp[i] = lcp(suffS A[i], suffS A[i+1]) for i < n.

Searching Strings by Substring 10-7

Let us now refer to Figure 10.3, concentrate on the pair of suffixes suff j−1 and suffi−1, and take their
next suffixes suff j and suffi in T . There are two possible cases: Either they share some characters
in their prefix, i.e. lcp[p − 1] > 0, or they do not. In the former case we can conclude that, since
lexicographically suff j−1 < suffi−1, the next suffixes preserve that lexicographic order, so suff j < suffi
and moreover lcp(suff j, suffi) = lcp[p − 1] − 1. In fact, the first shared character is dropped, given
the step ahead from j − 1 (resp. i − 1) to j (resp. i) in the starting positions of the suffixes, but
the next lcp[p − 1] − 1 shared characters (possibly none) remain, as well as remain their mismatch
characters that drives the lexicographic order. In the Figure above, we have lcp[p − 1] = 3 and the
shared prefix is abc, so when we consider the next suffixes their lcp is bc of length 2, their order is
preserved (as indeed suff j occurs before suffi), and now they lie not adjacent in SA.

FACT 10.2 If lcp(suffSA[y−1], suffSA[y]) > 0 then:

lcp(suffSA[y−1]+1, suffSA[y]+1) = lcp(suffSA[y−1], suffSA[y]) − 1

By Fact 10.1 and Fact 10.2, we can conclude the key property deployed by Kasai’s algorithm:
lcp[q−1] ≥ max{lcp[p−1]−1, 0}. This algorithmically shows that the computation of lcp[q−1]
can take full advantage of what we compared for the computation of lcp[p − 1]. By adding to
this the fact that we are processing the text suffixes rightward, we can conclude that the characters
involved in the suffix comparisons move themselves rightward and, since re-scanning is avoided,
their total number is O(n). A sketch of the Kasai’s algorithm is shown in Figure 10.2, where we
make use of the inverse suffix array, denoted by SA−1, which returns for every suffix its position in
SA. Referring to Figure 10.3, we have that SA−1[i] = q.

Algorithm 10.2 LCP-Build(char *T , int n, char **SA)
1: h = 0;
2: for (i = 1; i ≤ n, i++) do
3: q = SA−1[i];
4: if (q > 1) then
5: k = SA[q − 1];
6: if (h > 0) then
7: h − −;
8: end if
9: while (T [k + h] == T [i + h]) do

10: h++;
11: end while
12: lcp[q − 1] = h;
13: end if
14: end for

Step 4 checks whether suffq occupies the first position of the suffix array, in which case the lcp
with the previous suffix is undefined. The for-loop then scans the text suffixes suffi from left to right,
and for each of them it first retrieves the position of suffi in SA, namely i = SA[q], and its preceding
suffix in SA, namely k = SA[q − 1]. Then it extends their longest common prefix starting from
the offset h determined for suffi−1 via character-by-character comparison. This is the algorithmic
application of the above observations.

As far as the time complexity is concerned, we notice that h is decreased at most n times (once
per iteration of the for-loop), and it cannot move outside T (within each iteration of the for-loop),

10-8 Paolo Ferragina

so h ≤ n. This implies that h can be increased at most 2n times and this is the upper bound to the
number of character comparisons executed by the Kasai’s algorithm. The total time complexity is
therefore O(n).

We conclude this section by noticing that an I/O-efficient algorithm to compute the lcp-array is
still missing in the literature, some heuristics are known to reduce the number of I/Os incurred by
the above computation but an optimal O(n/B) I/O-bound is yet to come, if possible.

10.2.3 Suffix-array construction

Given that the suffix array is a sorted sequence of items, the most intuitive way to construct SA is
to use an efficient comparison-based sorting algorithm and specialize the comparison-function in
such a way that it computes the lexicographic order between strings. Algorithm 10.3 implements
this idea in C-style using the built-in procedure qsort as sorter and a properly-defined subroutine
Suffix cmp for comparing suffixes:

Suffix cmp(char ∗∗p, char ∗∗q){ return strcmp(∗p, ∗q) };

Notice that the suffix array is initialized with the pointers to the real starting positions in memory
of the suffixes to be sorted, and not the integer offsets from 1 to n as stated in the formal description
of SA of the previous pages. The reason is that in this way Suffix cmp does not need to know T ’s
position in memory (which would have needed a global parameter) because its actual parameters
passed during an invocation provide the starting positions in memory of the suffixes to be compared.
Moreover, the suffix array SA has indexes starting from 0 as it is typical of C-language.

Algorithm 10.3 Comparison Based Construction(char *T , int n, char **SA)
1: for (i = 0; i < n; i ++) do
2: SA[i] = T + i;
3: end for
4: qsort(SA, n, sizeof(char *), Suffix cmp);

A major drawback of this simple approach is that it is not I/O-efficient for two main reasons: the
optimal number O(n log n) of comparisons involves now variable-length strings which may consists
of up to Θ(n) characters; locality in SA does not translate into locality in suffix comparisons because
of the fact that sorting permutes the string pointers rather than their pointed strings. Both these
issues elicit I/Os, and turn this simple algorithm into a slow one.

THEOREM 10.1 In the worst case the use of a comparison-based sorter to construct the suffix
array of a given string T [1, n] requires O((n

B)n log n) I/Os, and O(n log n) bits of working space.

In Section 10.2.3 we describe a Divide-and-Conquer algorithm— the Skew algorithm proposed
by Kärkkäinen and Sanders [7]— which is elegant, easy to code, and flexible enough to achieve
the optimal I/O-bound in various models of computations. In Section 10.2.3 we describe another
algorithm— the Scan-based algorithm proposed by BaezaYates, Gonnet and Sniders [6]— which is
also simple, but incurs in a larger number of I/Os; we nonetheless introduce this algorithm because
it offers the positive feature of processing the input data in passes (streaming-like) thus forces pre-
fetching, allows compression and hence it turns to be suitable for slow disks.

Searching Strings by Substring 10-9

The Skew Algorithm

In 2003 Kärkkäinen and Sanders [7] showed that the problem of constructing suffix-arrays can
be reduced to the problem of sorting a set of triplets whose components are integers in the range
[1,O(n)]. Surprisingly this reduction takes linear time and space thus turning the complexity of
suffix-array construction into the complexity of sorting atomic items, a problem about which we
discussed deeply in the previous chapters and for which we know optimal algorithms for hierarchical
memories and multiple disks. More than this, since the items to be sorted are integers bounded in
value by O(n), the sorting of the triplets takes O(n) time in the RAM model, so this is the optimal
time complexity of suffix-array construction in RAM. Really impressive!

This algorithm is named Skew in the literature, and it works in every model of computation for
which an efficient sorting primitive is available: disk, distributed, parallel. The algorithm hinges on
a divide&conquer approach that executes a 2

3 : 1
3 split, crucial to make the final merge-step easy to

implement. Previous approaches used the more natural 1
2 : 1

2 split (such as [2]) but were forced to
use a more sophisticated merge-step which needed the use of the suffix-tree data structure.

For the sake of presentation we use T [1, n] = t1t2 . . . tn to denote the input string and we assume
that the characters are drawn from an integer alphabet of size σ = O(n). Otherwise we can sort
the characters of T and rename them with integers in O(n), taking overall O(n logσ) time in the
worst-case. So T is a text of integers, taking Θ(log n) bits each; this will be the case for all texts
created during the suffix-array construction process. Furthermore we assume that tn = $, a special
symbol smaller than any other alphabet character, and logically pad T with an infinite number of
occurrences of $.

Given this notation, we can sketch the three main steps of the Skew algorithm:

Step 1. Construct the suffix array SA2,0 limited to the suffixes starting at positions P2,0 = {i :
i mod 3 = 2, or i mod 3 = 0}:
• Build a special string T 2,0 of length (2/3)n which compactly encodes all suffixes

of T starting at positions P2,0.

• Build recursively the suffix-array SA′ of T 2,0.

• Derive the suffix-array SA2,0 from SA′.

Step 2 Construct the suffix array SA1 of the remaining suffixes starting at positions P1 = {i :
i mod 3 = 1}:
• For every i ∈ P1, represent suffix T [i, n] with a pair 〈T [i], pos(i + 1)〉, where it is

i + 1 ∈ P2,0.

• Assume to have pre-computed the array pos[i + 1] which provides the position of
the (i + 1)-th text suffix T [i + 1, n] in SA2,0.

• Radix-sort the above O(n) pairs.

Step 3. Merge the two suffix arrays into one:

• This is done by deploying the decomposition 2
3 : 1

3 which ensures a constant-time
lexicographic comparison between any pair of suffixes (see details below).

The execution of the algorithm is illustrated over the input string T [1, 12] =“mississippi$” whose
suffix array is SA = (12, 11, 8, 5, 2, 1, 10, 9, 7, 4, 6, 3). In this example we have: P2,0 = {2, 3, 5, 6, 8, 9, 11, 12}
and P1 = {1, 4, 7, 10}.

Step 1. The first step is the most involved one and constitutes the backbone of the entire recursive
process. It lexicographically sorts the suffixes starting at the text positions P2,0. The resulting

10-10 Paolo Ferragina

array is denoted by SA2,0 and represents a sampled version of the final suffix array SA because it is
restricted to the suffixes starting at positions P2,0.

To efficiently obtain SA2,0, we reduce the problem to the construction of the suffix array for a
string T 2,0 of length about 2n

3 . This text consists of “characters” which are integers smaller than
≈ 2n

3 . Since we are again in the presence of a text of integers, of length proportionally smaller than
n, we can construct its suffix array by invoking recursively the construction procedure.

The key difficulty is how to define T 2,0 so that its suffix array may be used to derive easily
SA2,0, namely the sorted sequence of text suffixes starting at positions in P2,0. The elegant solution
consists of considering the two text suffixes T [2, n] and T [3, n], pad them with the special symbol
$ in order to have multiple-of-three length, and then decompose the resulting strings into triplets of
characters T [2, ·] = [t2, t3, t4][t5, t6, t7][t8, t9, t10] . . . and T [3, ·] = [t3, t4, t5][t6, t7, t8][t9, t10, t11]
The dot expresses the fact that we are considering the smallest integer, larger than n, that allows
those strings to have length which is a multiple of three.
With reference to the previous example, we have:

T [2, ·] = [i s s]
2

[i s s]
5

[i p p]
8

[i $ $]
11

T [3, ·] = [s s i]
3

[s s i]
6

[p p i]
9

[$ $ $]
12

We then construct the string R = T [2, ·] • T [3, ·], and thus we obtain:

R = [i s s]
2

[i s s]
5

[i p p]
8

[i $ $]
11

[s s i]
3

[s s i]
6

[p p i]
9

[$ $ $]
12

The key property on which the first step of the Skew algorithm hinges on, is the following:

Property 1 Every suffix T [i, n] starting at a position i ∈ P2,0, can be put in correspondence with a
suffix of R consisting of an integral sequence of triplets. Specifically, if i mod 3 = 0 then the text
suffix coincides exactly with a suffix of R; if i mod 3 = 2, then the text suffix prefixes a suffix of R
which nevertheless terminates with special symbol $.

The correctness of this property can be inferred easily by observing that any suffix T [i, n] starting
at a position in P2,0 is clearly a suffix of either T [2, ·] or T [3, ·], given that i > 0, and i mod 3 is either
0 or 2. Moreover, since i ∈ P2,0, it has the form i = 3 + 3k or i = 2 + 3k, for some k ≥ 0, and thus
T [i, n] occurs within R aligned to the beginning of some triplet.

By the previous running example, take i = 6 = 0 mod 3, the suffix T [6, 12] = ssippi$ occurs
at the second triplet of T [3, ·], which is the sixth triplet of R. Similarly, take i = 8 = 2 mod 3, the
suffix T [8, 12] = ippi$ occurs at the third triplet of T [2, ·], which is the third triplet of R. Notice
that, even if T [8, 12] is not a full suffix of R, we have that T [8, 12] ends with two $s, which will
constitute sort of end-delimiters.

The final operation is then to encode those triplets via integers, and thus squeeze R into a string
T 2,0 of 2n

3 integer-symbols, thus realizing the reduction in length we were aiming for above. This
encoding must be implemented in a way that the lexicographic comparison between two triplets can
be obtained by comparing those integers. In the literature this is called lexicographic naming and
can be easily obtained by radix sorting the triplets in R and associating to each distinct triplet its
rank in the lexicographic order. Since we have O(n) triplets, each consisting of symbols in a range
[0, n], their radix sort takes O(n) time.

In our example, the sorted triplets are labeled with the following ranks:

[$ $ $] [i $ $] [i p p] [i s s] [i s s] [p p i] [s s i] [s s i] sorted triplets
0 1 2 3 3 4 5 5 sorted ranks

R = [i s s] [i s s] [i p p] [i $ $] [[s s i] [s s i] [p p i] [$ $ $] triplets
3 3 2 1 5 5 4 0 T 2,0 (string of ranks)

Searching Strings by Substring 10-11

As a result of the naming of the triplets in R, we get the new text T 2,0 = 33215540 whose length
is 2n

3 . The crucial observation here is that we have a text T 2,0 which is again a text of integers as T ,
taking O(log n) bits per integer (as before), but T 2,0 has length shorter than T , so that we can invoke
recursively the suffix-array construction procedure over it.

It is evident from the discussion above that, since the ranks are assigned in the same order as the
lexicographic order of their triplets, the lexicographic comparison between suffixes of R (aligned to
the triplets) equals the lexicographic comparison between suffixes of T 2,0.

Here Property 1 comes into play, because it defines a bijection between suffixes of R aligned to
triplet beginnings, hence suffixes of T 2,0, with text suffixes starting in P2,0. This correspondence is
then deployed to derive SA2,0 from the suffix array of T 2,0.

In our running example T 2,0 = 33215540, the suffix-array construction algorithm is applied re-
cursively thus deriving the suffix-array (8, 4, 3, 2, 1, 7, 6, 5). We can turn this suffix array into SA2,0

by turning the positions in T 2,0 into positions in T . This can be done via simple arithmetic oper-
ations, given the layout of the triplets inT 2,0, and obtains in our running example the suffix array
SA2,0 = (12, 11, 8, 5, 2, 9, 6, 3).

Before concluding the description of step 1, we add two notes. The first one is that, if all symbols
in T 2,0 are different, then we do not need to recurse because suffixes can be sorted by looking just at
their first characters. The second observation is for programmers that should be careful in turning
the suffix-positions in T 2,0 into the suffix positions in T to get the final SA2,0, because they must take
into account the layout of the triplets of R.

Step 2. Once the suffix array SA2,0 has been built (recursively), it is possible to sort lexicographically
the remaining suffixes of T , namely the ones starting at the text positions i mod 3 = 1, in a simple
way. We decompose a suffix T [i, n] as composed by its first character T [i] and its remaining suffix
T [i + 1, n]. Since i ∈ P1, the next position i + 1 ∈ P2,0, and thus the suffix T [i + 1, n] occurs
in SA2,0. We can then encode the suffix T [i, n] with a pair of integers 〈T [i], pos(i + 1)〉, where
pos(i + 1) denotes the lexicographic rank in SA2,0 of the suffix T [i + 1, n]. If i + 1 = n + 1 then we set
pos(n + 1) = 0 given that the character $ is assumed to be smaller than any other alphabet character.

Given this observation, two text suffixes starting at positions in P1 can then be compared in
constant time by comparing their corresponding pairs. Therefore SA1 can be computed in O(n) time
by radix-sorting the O(n) pairs encoding its suffixes.

In our example, this boils down to radix-sort the pairs:

Pairs/suffixes: 〈m, 4〉 〈s, 3〉 〈s, 2〉 〈p, 1〉
1 4 7 10 starting positions in P1

Sorted pairs/suffixes: 〈m, 4〉 < 〈p, 1〉 < 〈s, 2〉 < 〈s, 3〉
1 10 7 4 SA1

Step 3. The final step merges the two sorted arrays SA1 and SA2,0 in linear O(n) time by resorting
an interesting observation which motivates the split 2

3 : 1
3 . Let us take two suffixes T [i, n] ∈ SA1

and T [j, n] ∈ SA2,0, which we wish to lexicographically compare for implementing the merge-step.
They belong to two different suffix arrays so we have no lexicographic relation known for them, and
we cannot compare them character-by-character because this would incur in a very high cost. We
deploy a decomposition idea similar to the one exploited in Step 2 above, which consists of looking
at a suffix as composed by one or two characters plus the lexicographic rank of its remaining suffix.
This decomposition becomes effective if the remaining suffixes of the compared ones lie in the same
suffix array, so that their rank is enough to get their order in constant time. Elegantly enough this
is possible with the split 2

3 : 1
3 , but it could not be possible with the split 1

2 : 1
2 . This observation is

implemented as follows:

10-12 Paolo Ferragina

1. if j mod 3 = 2 then we compare T [j, n] = T [j]T [j+1, n] against T [i, n] = T [i]T [i+1, n].
Both suffixes T [j + 1, n] and T [i + 1, n] occur in SA2,0 (given that their starting positions
are congruent 0 or 2 mod 3, respectively), so we can derive the above lexicographic com-
parison by comparing the pairs 〈T [i], pos(i+1)〉 and 〈T [j], pos(j+1)〉. This comparison
takes O(1) time, provided that the array pos is available.2

2. if j mod 3 = 0 then we compare T [j, n] = T [j]T [j + 1]T [j + 2, n] against T [i, n] =

T [i]T [i + 1]T [i + 2, n]. Both the suffixes T [j + 2, n] and T [i + 2, n] occur in SA2,0 (given
that their starting positions are congruent 0 or 2 mod 3, respectively), so we can derive
the above lexicographic comparison by comparing the triples 〈T [i],T [i + 1], pos(i + 2)〉
and 〈T [j],T [j+1], pos(j+2)〉. This comparison takes O(1) time, provided that the array
pos is available.

In our running example we have that T [8, 11] < T [10, 11], and in fact 〈i, 5〉 < 〈p, 1〉. Also we
have that T [7, 11] < T [6, 11] and in fact 〈s, i, 5〉 < 〈s, s, 2〉. In the following figure we depict all
possible pairs of triples which may be involved in a comparison, where (??) and (???) denote the
pairs for rule 1 and 2 above, respectively. Conversely (?) denotes the starting position in T of the
suffix. Notice that, since we do not know which suffix of SA2,0 will be compared with a suffix of SA1

during the merging process, for each of the latter suffixes we need to compute both representations
(??) and (???), hence as a pair and as a triplet.3

SA1 SA2,0

1 10 7 4 12 11 8 5 2 9 6 3 (?)
〈m, 4〉 〈p, 1〉 〈s, 2〉 〈s, 3〉 〈i, 0〉 〈i, 5〉 〈i, 6〉 〈i, 7〉 (??)
〈m, i, 7〉 〈p, i, 0〉 〈s, i, 5〉 〈s, i, 6〉 〈$, $,−1〉 〈p, p, 1〉 〈s, s, 2〉 〈s, s, 3〉 (???)

At the end of the merge step we obtain the final suffix array: SA = (12, 11, 8, 5, 2, 1, 10, 9, 7, 4, 6, 3).
From the discussion above it is clear that every step can be implemented via the sorting or the

scanning of a set of n atomic items, which are possibly triplets of integers, taking each triplet
O(log n) bits, so one memory word. Therefore the proposed method can be seen as a algorithmic
reduction of the suffix-array construction problem to the classic problem of sorting n-items. This
problem has been solved optimally in several models of computation, for the case of the two-level
memory model see Chapter 5.

For what concerns the RAM model, the time complexity of the Skew algorithm can be modeled
by the recurrence T (n) = T (2n

3) + O(n), because Steps 2 and 3 cost O(n) and the recursive call is
executed over the string T 2,0 whose length is (2/3)n. This recurrence has solution T (n) = O(n),
which is clearly optimal. For what concerns the two-level memory model, the Skew algorithm can
be implemented in O(n

B logM/B
n
M) I/Os, that is the I/O-complexity of sorting n atomic items.

THEOREM 10.2 The Skew algorithm builds the suffix array of a text string T [1, n] in O(S ort(n))
I/Os and O(n/B) disk pages. If the alphabet Σ has size polynomial in n, the CPU time is O(n).

The Scan-based Algorithm∞

Before the introduction of the Skew algorithm, the best known disk-based algorithm was the one
proposed by Baeza-Yates, Gonnet and Sniders in 1992 [6]. It is also a divide&conquer algorithm
whose divide step is strongly unbalanced, thus it executes a quadratic number of suffix comparisons

2Of course, the array pos can be derived from SA2,0 in linear time, since it is its inverse.
3Recall that pos(n) = 0, and for the sake of the lexicographic order, we can set pos(j) = −1, for all j > n.

Searching Strings by Substring 10-13

which induce a cubic time complexity. Nevertheless the algorithm is fast in practice because it
processes the data into passes thus deploying the high throughput of modern disks.

Let ` < 1 be a positive constant, properly fixed to build the suffix array of a text piece of m = `M
characters in internal memory. Then assume that the text T [1, n] is logically divided into pieces of
m characters each, numbered rightward: namely T = T1T2 · · · Tn/m where Th = T [hm + 1, (h + 1)m]
for h = 0, 1, The algorithm computes incrementally the suffix array of T in Θ(n/M) stages,
rather than the logarithmic number of stages of the Skew algorithm. At the beginning of stage h,
we assume to have on disk the array SAh that contains the sorted sequence of the first hm suffixes
of T . Initially h = 0 and thus SA0 is the empty array. In the generic h-th stage, the algorithm loads
the next text piece T h+1 in internal memory, builds SA′ as the sorted sequence of suffixes starting in
T h+1, and then computes the new SAh+1 by merging the two sorted sequences SAh and SA′.

There are two main issues when detailing this algorithmic idea in a running code: how to effi-
ciently construct SA′, since its suffixes start in T h+1 but may extend outside that block of characters
up to the end of T ; and how to efficiently merge the two sorted sequences SAh and SA′, since they
involve suffixes whose length may be up to Θ(n) characters. For the first issue the algorithm does
not implement any special trick, it just compares pairs of suffixes character-by-character in O(n)
time and O(n/B) I/Os. This means that over the total execution of the O(n/M) stages, the algorithm
takes O(n

B
n
m m log m) = O(n2

B log m) I/Os to construct SA′.
For the second issue, we note that the merge between SA′ with SAh is executed in a smart way by

resorting the use of an auxiliary array C[1,m + 1] which counts in C[j] the number of suffixes of
SAh that are lexicographically greater than the SA′[j−1]-th text suffix and smaller than the SA′[j]-th
text suffix. Two special cases occur if j = 1,m + 1: in the former case we assume that SA′[0] is
the empty suffix, in the latter case we assume that SA′[m + 1] is a special suffix larger than any
string. Since SAh is longer and longer, we process it streaming-like by devising a method that scans
rightward the text T (from its beginning) and then searches each of its suffixes by binary-search in
SA′. If the lexicographic position of the searched suffix is j, then the entry C[j] is incremented. The
binary search may involve a part of a suffix which lies outside the block T h+1 currently in internal
memory, thus taking O(n/B) I/Os per binary-search step. Over all the n/M stages, this binary search
takes O(

∑n/m−1
h=0

n
B (hm) log m) = O(n3

MB log M) I/Os.
Array C is then exploited in the next substep to quickly merge the two arrays SA′ (residing in

internal memory) and SAh (residing on disk): C[j] indicates how many consecutive suffixes of SAh

lexicographically lie after SA′[j−1] and before SA′[j]. Hence a disk scan of SAh suffices to perform
the merging process in O(n/B) I/Os.

THEOREM 10.3 The Scan-based algorithm builds the suffix array of a text string T [1, n] in
O(n3

MB log M) I/Os and O(n/B) disk pages.

Since the worst-case number of total I/Os is cubic, a purely theoretical analysis would classify
this algorithm as not interesting. However, in practical situations it is very reasonable to assume that
each suffix comparison finds in internal memory all the characters used to compare the two involved
suffixes. And indeed the practical behavior of this algorithm is better described by the formula
O(n2

MB) I/Os. Additionally, all I/Os in this analysis are sequential and the actual number of random
seeks is only O(n/M) (i.e., at most a constant number per stage). Consequently, the algorithm takes
fully advantage of the large bandwidth of modern disks and of the high speed of current CPUs.
As a final notice we remark that the suffix arrays SAh and the text T are scanned sequentially, so
some form of compression can be adopted to reduce the I/O-volume and thus further speed-up the
underlying algorithm.

Before detailing a significant improvement to the previous approach, let us concentrate on the
same running example used in the previous section to sketch the Skew algorithm.

10-14 Paolo Ferragina

1 2 3 4 5 6 7 8 9 10 11 12
T [1, 12] = m i s s i s s i p p i $

Suppose that m = 3 and that, at the beginning of stage h = 1, the algorithm has already pro-
cessed the text block T 0 = T [1, 3] = mis and thus stored on disk the array SA1 = (2, 1, 3)
which corresponds to the lexicographic order of the text suffixes which start in that block: namely,
mississippi$, ississippi$ and ssissippi$. During the stage h = 1, the algorithm loads in
internal memory the next block T 1 = T [4, 6] = sis and lexicographically sorts the text suffixes
which start in positions [4, 6] and extend to the end of T , see figure 10.4.

Text suffixes sissippi$ issippi$ ssippi$

⇓
Lexicographic ordering

⇓
Sorted suffixes issippi$ sissippi$ ssippi$

SA′ 5 4 6

FIGURE 10.4: Stage 1, step 1, of the Scan-based algorithm.

The figure shows that the comparison between the text suffixes: T [4, 12] = sissippi$ and
T [6, 12] = ssippi$ involves characters that lie outside the text piece T [4, 6] loaded in internal
memory, so that their comparison induces some I/Os.

The final step merges SA1 = (2, 1, 3) with SA′ = (5, 4, 6), in order to compute SA2. This step
uses the information of the counter array C. In this specific running example, see Figure 10.5, it
is C[1] = 2 because two suffixes T [1, 12] = mississippi$ and T [2, 12] = ississippi$ are
between the SA′[0]-th suffix issippi$ and the SA′[1]-th suffix sissippi$.

Suffix Arrays SA′ = [5, 4, 6] SA1 = [2, 1, 3]︸ ︷︷ ︸
Merge via C ⇓ C=[0,2,0,1]

SA2 = [5, 2, 1, 4, 6, 3]

FIGURE 10.5: Stage 1, step 3, of the Scan-based algorithm

The second stage is summarized in Figure 10.6 where the text substring T 2 = T [7, 9] = sip is
loaded in memory and the suffix array SA′ for the suffixes starting at positions [7, 9] is built. Then,
the suffix array SA′ is merged with the suffix array SA2 residing on disk and containing the suffixes
which start in T [1, 6].

The third and last stage is summarized in Figure 10.7 where the substring T 3 = T [10, 12] = pi$
is loaded in memory and the suffix array SA′ for the suffixes starting at positions [10, 12] is built.
Then, the suffix array SA′ is merged with the suffix array on disk SA3 containing the suffixes which
start in T [1, 9].

The performance of this algorithm can be improved via a simple observation [4]. Assume that,
at the beginning of stage h, in addition to the SAh we have on disk a bit array, called gth, such that

Searching Strings by Substring 10-15

Stage 2:

(1) Load into internal memory T 2 = T [7, 9] = sip.

(2) Build SA′ for the suffixes starting in [7, 9]:
Text suffixes sippi$ ippi$ ppi$

⇓
Lexicographic ordering

⇓
Sorted suffixes ippi$ ppi$ sippi$

SA′ 8 9 7

(3) Merge SA′ with SA2 exploiting C:

Suffix Arrays SA′ = [8, 9, 7] SA2 = [5, 2, 1, 4, 6, 3]︸ ︷︷ ︸
Merge via C ⇓ C=[0,3,0,3]

SA3 = [8, 5, 2, 1, 9, 7, 4, 6, 3]

FIGURE 10.6: Stage 2 of the Scan-based algorithm.

gth[i] = 1 if and only if the suffix T [(hm + 1) + i, n] is Greater Than the suffix T [(hm + 1), n]. The
computation of gt can occur efficiently, but this technicality is left to the original paper [4] and not
detailed here.

During the h-th stage the algorithm loads into internal memory the substring t[1, 2m] = T hT h+1

(so this is double in size with respect to the previous proposal) and the binary array gth+1[1,m − 1]
(so it refers to the second block of text loaded in internal memory). The key observation is that
we can build SA′ by deploying the two arrays above without performing any I/Os, other than the
ones needed to load t[1, 2m] and gth+1[1,m − 1]. This seems surprising, but it descends from the
fact that any two text suffixes starting at positions i and j within T h, with i < j, can be compared
lexicographically by looking first at their characters in the substring t, namely at the strings t[i,m]
and t[j, j + m − i]. These two strings have the same length and are completely in t[1, 2m], hence in
internal memory. If these strings differ, their order is determined and we are done; otherwise, the
order between these two suffixes is determined by the order of the remaining suffixes starting at the
characters t[m + 1] and t[j + m − i + 1]. This order is given by the bit stored in gth+1[j − i], also
available in internal memory.

This argument shows that the two arrays t and gth+1 contain all the information we need to build
SAh+1 working in internal memory, and thus without performing any I/Os.

THEOREM 10.4 The new variant of the Scan-based algorithm builds the suffix array of a
string T [1, n] in O(n2

MB) I/Os and O(n/B) disk pages.

As an example consider stage h = 1 and thus load in memory the text substring t = T hT h+1 =

T [4, 9] = sis sip and the array gt2 = (1, 0). Now consider the positions i = 1 and j = 3 in t, we can
compare the text suffixes starting at these positions by first taking the substrings t[1, 3] = T [4, 6] =

sis with t[3, 5] = T [6, 9] ssi. The strings are different so we obtain their order without accessing

10-16 Paolo Ferragina

Stage 3:

(1) Load into internal memory T 3 = T [10, 12] = pi$.

(2) Build SA′ for the suffixes starting in [10, 12]:
Text suffixes pi$ i$ $

⇓
Lexicographic ordering

⇓
Sorted suffixes $ i$ pi$

SA′ 12 11 10

(3) Merge SA′ with SA3 exploiting C:

Suffix Arrays SA′ = [12, 11, 10] SA3 = [8, 5, 2, 1, 9, 7, 4, 6, 3]︸ ︷︷ ︸
Merge via C ⇓ C=[0,0,4,5]

SA4 = [12, 11, 8, 5, 2, 1, 10, 9, 7, 4, 6, 3]

FIGURE 10.7: Stage 3 of the Scan-based algorithm.

the disk. Now consider the positions i = 3 and j = 4 in t, they would not be taken into account by
the algorithm since the block has size 3, but let us consider them for the sake of explanation. We
can compare the text suffixes starting at these positions by first taking the substrings t[3, 3] = s with
t[4, 4] = s. The strings are not different so we use gt2[j− i] = gt2[1] = 1, hence the remaining suffix
T [4, n] is lexicographically greater than T [5, n] and this can be determined again without any I/Os.

10.3 The Suffix Tree

The suffix tree is a fundamental data structure used in many algorithms processing strings [5]. In its
essence it is a compacted trie that stores all suffixes of an input string, each suffix is represented by
a (unique) path from the root of the trie to one of its leaves. We already discussed compacted tries
in the previous chapter, now we specialize the description in the context of suffix trees and point
out some issues, and their efficient solutions, that arise when the dictionary of indexed strings is
composed by suffixes of one single string.

Let us denote the suffix tree built over an input string T [1, n] as STT (or just ST when the input
is clear from the context) and assume, as done for suffix arrays, that the last character of T is the
special symbol $ which is smaller than any other alphabet character. The suffix tree has the following
properties:

1. Each suffix of T is represented by a unique path descending from root of ST to one of
its leaves. So there are n leaves, one per text suffix, and each leaf is labeled with the
starting position in T of its corresponding suffix.

2. Each internal node of ST has at least two outgoing edges. So there are less than n internal
nodes and less than 2n − 1 edges. Every internal node u spells out a text substring,
denoted by s[u], which prefixes everyone of the suffixes descending from u in the suffix

Searching Strings by Substring 10-17

tree. Typically the value |s[u]| is stored as satellite information of node u, and we use
occ[u] to indicate the number of leaves descending from u.

3. The edge labels are non empty substrings of T . The labels of the edges spurring from
any internal node start with different characters, called branching characters. Edges are
assumed to be ordered alphabetically according to their branching characters. So every
node has at most σ outgoing edges.4

In Figure 10.8 we show the suffix tree built over our exemplar text T [1, 12] = mississippi$.
The presence of the special symbol T [12] = $ ensures that no suffix is a prefix of another suffix of
T and thus every pair of suffixes differs in some character. So the paths from the root to the leaves
of two different suffixes coincide up to their common longest prefix, which ends up in an internal
node of ST .

r

12

$

u

11

$

8

p
p
i
$

x

5

$
i
p
p

2

s
s
i
p
p
i
$

ssi

i

1

m
i
s
s
i
s
s
i
p
p
i
$

v

10

$i

9

pi$

p

w

y

7

$
i
p
p

4

s
s
i
p
p
i
$

i

z

6

$
i
p
p

3

s
s
i
p
p
i
$

si

s

FIGURE 10.8: The suffix tree of the string mississippi$

It is evident that we cannot store explicitly the substrings labeling the edges because this would
end up in a total space complexity of Θ(n2). You can convince yourself by building the suffix
tree for the string consisting of all distinct characters, and observe that the suffix tree consists of
one root connected to n leaves with edges representing all suffixes. We can circumvent this space
explosion by encoding the edge labels with pairs of integers which represent the starting position
of the labeling substring and its length. With reference to Figure 10.8 we have that the label of the
edge leading to leaf 5, namely the substring T [9, 12] = ppi$, can be encoded with the integer pair
〈9, 4〉, where 9 is the offset in T and 4 is the length of the label. Other obvious encodings could
be possible — say the pair 〈9, 12〉 indicating the starting and ending position of the label—, but we
will not detail them here. Anyway, whichever is the edge encoding adopted, it uses O(1) space, and
thus the storage of all edge labels takes O(n) space, independently of the indexed string.

FACT 10.3 The suffix tree of a string T [1, n] consists of n leaves, at most n − 1 internal nodes
and at most 2n − 2 edges. Its space occupancy is O(n), provided that a proper edge-label encoding

4The special character $ is included in the alphabet Σ.

10-18 Paolo Ferragina

is adopted.

As a final notation, we call locus of a text substring t the node v whose spelled string is exactly
t, hence s[v] = t. We call extended locus of t′ the locus of its shortest extension that has defined
locus in ST . In other words, the path spelling the string t′ in ST ends within an edge label, say the
label of the edge (u, v). This way s[u] prefixes t′ which in turn prefixes s[v]. Therefore v is the
extended locus of t′. Of course if t′ has a locus in ST then this coincides with its extended locus.
As an example, the node z of the suffix tree in Figure 10.8 is the locus of the substring ssi and the
extended locus of the substring ss.

There are few important properties that the suffix-tree data structure satisfies, they pervade most
algorithms which hinge on this powerful data structure. We summarize few of them:

Property 2 Let α be a substring of the text T , then there exists an internal node u such that s[u] = α
(hence u is the locus of α) iff they do exist at least two occurrences of α in T followed by distinct
characters.

As an example, take node x in Figure 10.8, the substring s[x] = issi occurs twice in T at
positions 2 and 5, followed by characters i and p, respectively.

Property 3 Let α be a substring of the text T that has extended locus in the suffix tree. Then every
occurrence of α is followed by the same character in T .

As an example, take the substring iss that has node x as extended locus in Figure 10.8. This
substring occurs twice in T at positions 2 and 5, followed always by character i.

Property 4 Every internal node u spells out a substring s[u] of T which occurs at the positions
occ[u] and is maximal, in the sense that it cannot be extended by one character and yet occur at
these positions.

Now we introduce the notion of lowest common ancestor (shortly, lca) in trees, which is defined
for every pair of leaves and denotes the deepest node being ancestor of both leaves in input. As an
example in Figure 10.8, we have that u is the lca of leaf 8 and 2. Now we turn lca between leaves
into lcp between their corresponding suffixes.

Property 5 Given two suffixes T [i, n] and T [j, n], say ` is the length of the longest common prefix
between them. This value can be identified by computing the lowest common ancestor a(i, j) between
the leaves in the suffix tree corresponding to those two suffixes. Therefore, we have s[a(i, j)] =

lcp(T [i, n],T [j, n]).

As an example, take the suffixes T [11, 12] = i$ and T [5, 12] = issippi$, their lcp is the
single character i and the lca between their leaves is the node u, which indeed spells out the string
s[u] = i.

10.3.1 The substring-search problem

The search for a pattern P[1, p] as a substring of the text T [1, n], with the help of the suffix tree ST ,
consists of a tree traversal which starts from its root and proceeds downward as pattern characters
are matched against characters labeling the tree edges (see Figure 10.9). Note that, since the first
character of the edges outgoing from each traversed node is distinct, the matching of P can follow
only one downward path. If the traversal determines a mismatch character, the pattern P does not
occur in T ; otherwise the pattern is fully matched, the extended locus of P is found, and all leaves of
ST descending from this node identify all text suffixes which are prefixed by P. The text positions

Searching Strings by Substring 10-19

associated to these descending leaves are the positions of the occ occurrences of the pattern P in
T . These positions can be retrieved in O(occ) time by visiting the subtree that descends from the
extended locus of P. In fact this subtree has size O(occ) because its internal nodes have (at least)
binary fan-out and consists of occ leaves.

r

u

6

$

v

4

$

2

n
a
$

s , $ and s , n⇒ Fail

n
a

a

1

$
a
n
a
n
a
b

7

$

z

5
$

3

n
a
$

na

T = banana$
P = na

r

u

6

$

v

4

$

2

n
a
$

n
a

a

1

$
a
n
a
n
a
b

7

$

z

5

$

3

n
a
$

na Success
output = {3, 5}

T = banana$
P = na

FIGURE 10.9: Two examples of substring searches over the suffix tree built for the text banana$.
The search for the pattern P = anas fails, the other for the pattern P = na is successful.

In the running example of Figure 10.9, the pattern P = na occurs twice in T and in fact the
traversal of ST fully matches P and stops at the node z, from which descend two leaves labeled 3
and 5. And indeed the pattern P occurs at positions 3 and 5 of T , since it prefixes the two suffixes
T [3, 12] and T [5, 12]. The cost of pattern searching is O(ptσ + occ) time in the worst case, where tσ
is the time to branch out of a node during the tree traversal. This cost depends on the alphabet size
σ and the kind of data structure used to store the branching characters of the edges spurring from
each node. We discussed this issue in the previous Chapter, when solving the prefix-search problem
via compacted tries. There we observed that tσ = O(1) if we use a perfect-hash table indexed by the
branching characters; it is tσ = O(logσ) if we use a plain array and the branching is implemented
by a binary search. In both cases the space occupancy is optimal, in that it is linear in the number
of branching edges, and thus O(n) overall.

FACT 10.4 The occ occurrences of a pattern P[1, p] in a text T [1, n] can be found in O(p+occ)
time and O(n) space by using a suffix tree built on the input text T , in which the branching characters
at each node are indexed via a perfect hash table.

10.3.2 Construction from Suffix Arrays and vice versa

It is not difficult to observe that the suffix array SA of the text T can be obtained from its suffix tree
ST by performing an in-order visit: each time a leaf is encountered, the suffix-index stored in this
leaf is written into the suffix array SA; each time an internal node u is encountered, its associated
value is written into the array lcp.

FACT 10.5 Given the suffix tree of a string T [1, n], we can derive in O(n) time and space the
corresponding suffix array SA and the longest-common-prefix array lcp.

10-20 Paolo Ferragina

Vice versa, we can derive the suffix tree ST from the two arrays SA and lcp in O(n) time as
follows. The algorithm constructs incrementally ST starting from a tree, say ST1, that contains a
root node denoting the empty string and one leaf labeled SA[1], denoting the smallest suffix of T .
At step i > 1, we have inductively constructed the partial suffix tree STi−1 which contains all the
(i − 1)-smallest suffixes of T , hence the suffixes in SA[1, i − 1]. During step i, the algorithm inserts
in STi−1 the i-th smallest suffix SA[i]. This requires the addition of one leaf labeled SA[i] and, as
we will prove next, at most one single internal node which becomes the father of the inserted leaf.
After n steps, the final tree STn will be the suffix tree of the string T [1, n].

The key issue here is to show how to insert the leaf S A[i] into STi−1 in constant amortized time.
This will be enough to ensure a total time complexity of O(n) for the overall construction process.
The main difficulty consists in the detection of the node u father of the leaf S A[i]. This node u
may already exist in STi−1, in this case S A[i] is attached to u; otherwise, u must be created by
splitting an edge of STi−1. Whether u exists or not is discovered by percolating STi−1 upward (and
not downward!), starting from the leaf S A[i− 1], which is the rightmost one in STi−1 because of the
lexicographic order, and stopping when a node x is reached such that lcp[i− 1] ≤ |s[x]|. Recall that
lcp[i− 1] is the number of characters that the text suffix suffSA[i−1] shares with next suffix suffSA[i] in
the lexicographic order. The leaves corresponding to these two suffixes are of course consecutive in
the in-order visit of ST . At this point if lcp[i−1] = |s[x]|, the node x is the parent of the leaf labeled
SA[i], we connect them and the new STi is obtained. If instead lcp[i − 1] < |s[x]|, the edge leading
to x has to be split by inserting a node u that has two children: the left child is x and the right child
is the leaf SA[i] (because it is lexicographically larger than SA[i − 1]). This node is associated with
the value lcp[i − 1]. The reader can run this algorithm over the string T [1, 12] = mississippi$

and convince herself that the final suffix tree ST12 is exactly the one showed in Figure 10.8.
The time complexity of the algorithm derives from an accounting argument which involves the

edges traversed by the upward percolation of ST . Since the suffix suffSA[i] is lexicographically greater
than the suffix suffSA[i−1], the leaf labeled SA[i] lies to the right of the leaf SA[i − 1]. So every time
we traverse an edge, we either discard it from the next traversals and proceed upward, or we split
it and a new leaf is inserted. In particular all edges from SA[i − 1] to x are never traversed again
because they lie to the left of the newly inserted edge (u, SA[i]). The total number of these edges
is bounded by the total number of edges in ST , which is O(n) from Fact 10.3. The total number of
edge-splits equals the number of inserted leaves, which is again O(n).

FACT 10.6 Given the suffix array and the longest-common-prefix array of a string T [1, n], we
can derive the corresponding suffix tree in O(n) time and space.

10.3.3 McCreight’s algorithm∞

A naı̈ve algorithm for constructing the suffix tree of an input string T [1, n] could start with an empty
trie and then iteratively insert text suffixes, one after the other. The algorithm maintains the property
by which each intermediate trie is indeed a compacted trie of the suffixes inserted so far. In the worst
case, the algorithm costs up to O(n2) time, take e.g. the highly repetitive string T [1, n] = an−1$. The
reason for this poor behavior is due to the re-scanning of parts of the text T that have been already
examined during the insertion of previous suffixes. Interestingly enough do exist algorithms that
construct the suffix tree directly, and thus without passing through the suffix- and lcp-arrays, and
still take O(n) time. Nowadays the space succinctness of suffix arrays and the existence of the Skew
algorithm, drive the programmers to build suffix trees passing through suffix arrays (as explained in
the previous section). However, if the average lcp among the text suffixes is small then the direct
construction of the suffix tree may be advantageous both in internal memory and on disk. We refer
the interested reader to [3] for a deeper analysis of these issues.

Searching Strings by Substring 10-21

In what follows we present the classic McCreight’s algorithm [11], introduced in 1976. It is
based on a nice technique that adds some special pointers to the suffix tree that allow to avoid
the rescanning mentioned before. These special pointers are called suffix links and are defined as
follows. The suffix link S L(z) connects the node z to the node z′ such that s[z] = as[z′]. So z′ spells
out a string that is obtained by dropping the first character from s[z]. The existence of z′ in ST is
not at all clear: Of course s[z′] is a substring of T , given that s[z] is, and thus there exists a path in
ST that ends up into the extended locus of s[z′]; but nothing seems to ensure that s[z′] has indeed
a locus in ST , and thus that z′ exists. This property is derived by observing that the existence of
z implies the existence of at least 2 suffixes, say suffi and suff j that have the node z as their lowest
common ancestor in ST , and thus s[z] is their longest common prefix (see Property 5). Looking at
Figure 10.8, we can take for node z the suffixes suff3 and suff6 (which are actually children of z).
Now take the two suffixes following those ones, namely suffi+1 and suff j+1 (i.e. suff4 and suff7 in the
figure). They will share s[z′] as their longest common prefix, given that we dropped just their first
character, and thus they will have z′ as their lowest common ancestor. In Figure 10.8, s[z] = ssi,
s[z′] = si and the node z′ does exist and is indicated with y. In conclusion every node z has one
suffix link correctly defined; more subtle is to observe that all suffix links form a tree rooted in the
root of ST : just observe that |s[z′]| < |s[z]| so they cannot induce cycles and eventually end up in the
root of the suffix tree (spelling out the empty string).

McCreight’s algorithm works in n steps, it starts with the suffix tree ST1 which consists of a root
node, denoting the empty string, and one leaf labeled suff1 = T [1, n] (namely the entire text). In a
generic step i > 1, the current suffix tree STi−1 is the compacted trie built over all text suffixes suff j
such that j = 1, 2, . . . , i − 1. Hence suffixes are inserted in ST from the longest to the shortest one,
and at any step STi−1 indexes the (i − 1) longest suffixes of T .

To ease the description of the algorithm we need to introduce the notation headi which denotes
the longest prefix of suffix suffi which occurs in STi−1. Given that STi−1 is a partial suffix tree, headi

is the longest common prefix between suffi and any of its previous suffixes in T , namely suff j with
j = 1, 2, . . . , i − 1. Given headi we denote by hi the (extended) locus of that string in the current
suffix tree: actually hi is the extended locus in STi−1 because suffi has not yet been inserted. After
its insertion, we will have that headi = s[hi] in STi, and indeed hi is set as the parent of the leaf
associated to the suffix suffi. As an example, consider the suffix suff5 = byabz$ in the partial suffix
trees of Figure 10.10. We have that this suffix shares only the character b with the previous four
suffixes of T , so head5 = b in ST4, and head5 has extended locus in ST4, which is the leaf 2. But,
after its insertion, we get the suffix tree ST5 in which h5 = v in ST5.

Now we are ready to describe the McCreight’s algorithm in detail. To produce STi, we must
locate in STi−1 the (extended) locus hi of headi. If it is an extended locus, then the edge incident
in this node is split by inserting an internal node, which corresponds to hi, and spells out headi,
to which the leaf for suffi is attached. In the naı̈ve algorithm, headi and hi were found tracing a
downward path in STi−1 matching suffi character-by-character. However this induced a quadratic
time complexity in the worst case. Instead McCreight’s algorithm determines headi and hi by using
the information inductively available for string headi−1, and its locus hi−1, and the suffix links which
are already available in STi−1.

FACT 10.7 In STi−1 the suffix link S L(u) is defined for all nodes u , hi−1. It may be the case
that S L(hi−1) is defined too, because that node was already present in STi−1 before the insertion of
suffi−1.

Proof Since headi−1 prefixes suffi−1, the second suffix of headi−1 starts at position i and thus
prefixes the suffix suffi. We denote this second suffix with head−i−1. By definition headi is the longest

10-22 Paolo Ferragina

r

u

1

$
z
b
a
y
b
a
x

4

y
a
b
z
$

head4

ba

2

b
x
a
b
y
a
b
z
$

3

xabyabz$

S T4

r

u

1

$
z
b
a
y
b
a
x

4

y
a
b
z
$

head4

ba

v

2

$
x
b
a
y
b
a
x

8
z
$

b

3

xabyabz$

S T5

r

u

1

$z
ba
yb
ax

4

y
a
b
z
$

7

z$

head7

ba

v

2

$
x
b
a
y
b
a
x

5

y
a
b
z
$

b

3

x
a
b
y
a
b
z
$

6

yabz$

S T7

r

u

1

$z
ba
yb
ax

4

y
a
b
z
$

7

z$

head7

ba

v

2

$x
ba
yb
ax

5

y
a
b
z
$

8

z$

b

3

x
a
b
y
a
b
z
$

6

yabz$

S T8

FIGURE 10.10: Several steps of the McCreight’s algorithm for the string T =abxabyabz$.

prefix shared between suffi and anyone of the previous text suffixes, so that |headi| ≥ |headi−1| − 1
and the string head−i−1 prefixes headi.

McCreight’s algorithm starts with ST1 that consists of two nodes: the root and the leaf for suff1.
At step 1 we have that head1 is the empty string, h1 is the root, and S L(root) points to the root
itself. At a generic step i > 1, we know headi−1 and hi−1 (i.e. the parent of suffi−1), and we wish to
determine headi and hi, in order to insert the leaf for suffi as a child of hi. These data are found via
the following three sub-steps:

1. if S L(headi−1) is defined, we set w = S L(headi−1) and we go to step 3;
2. Otherwise we need to perform a rescanning whose goal is to find/create the locus w

of head−i−1 and consequently set the suffix link S L(hi−1) = w. This is implemented
by taking the parent f of headi−1, jumping via its suffix link f ′ = S L(f) (which is
defined according to Fact 10.7), and then tracing a downward path from f ′ starting from
the (|s[f ′]| + 1)-th character of suffi. Since we know that head−i−1 occurs in T and it
prefixes suffi, this downward tracing to find w can be implemented by comparing only
the branching characters of the traversed edges with head−i−1. If the landing node of this
traversal is the locus of head−i−1, then this landing node is the searched w; otherwise the
landing node is the extended locus of head−i−1, so we split the last traversed edge and
insert the node w such that s[w] = head−i−1. In all cases we set S L(hi−1) = w;

3. Finally, we locate headi starting from w and scanning the rest of suffi. If the locus of
headi does exist, then we set it to hi; otherwise the scanning of headi stopped within
some edge, and so we split it by inserting hi as the locus of headi. We conclude the
process by installing the leaf for suffi as a child of hi.

Figure 10.10 shows an example of the advantage induced by suffix links. As step 8 we have
the partial suffix tree ST7, head7 = ab, its locus h7 = u, and we need to insert the suffix suff8 =

Searching Strings by Substring 10-23

bz$. Using McCreight’s algorithm, we find that S L(h7) is defined and equal to v, so we reach that
node following the suffix link (without rescanning head−i−1). Subsequently, we scan the rest of suff8,
namely z$, searching for the locus of head8, but we find that actually head8 = head−7 , so h8 = v and
we can attach there the leaf 8.

From the point of view of time complexity, we observe that the rescanning and the scanning
steps perform two different types of traversals: the former traverses edges by comparing only the
branching characters, since it is rescanning the string head−i−1 which is already known from the
previous step i − 1; the latter traverses edges by comparing their labels in their entirety because it
has to determine headi. This last type of traversal always advances in T so the cost of the scanning
phase is O(n). The difficulty is to evaluate that the cost of rescanning is O(n) too. The proof comes
from an observation on the structure of suffix links and suffix trees: if S L(u) = v then all ancestors
of u point to a distinct ancestor of v. This comes from Fact 10.7 (all these suffix links do exist), and
from the definition of suffix links (which ensures ancestorship). Hence the tree-depth of v = S L(u),
say d[v], is larger than d[u] − 1 (where −1 is due to the dropping of the first character). Therefore,
the execution of rescanning can decrease the current depth at most by 2 (i.e., one for reaching the
father of hi−1, one for crossing S L(hi−1)). Since the depth of ST is most n, and we loose at most
two levels per SL-jump, then the number of edges traversed by rescanning is O(n), and each edge
traversal takes O(1) time because only the branching character is matched.

The last issue to be considered regards the cost of branching out of a node during the re-scanning
and the scanning steps. Previously we stated that this costs O(1) by using perfect hash-tables built
over the branching characters of each internal node of ST . In the context of suffix-tree construc-
tion the tree is dynamic and thus we should adopt dynamic perfect hash-tables, which is a pretty
involved solution. A simpler approach consists of keeping the branching characters and their asso-
ciated edges within a binary-search tree thus supporting the branching in O(logσ) time. Practically,
programmers relax the requirement of worst-case complexity and use either hash tables with chain-
ing, or dictionary data structures for integer values (such as the Van Emde-Boas tree, whose search
complexity is O(log logσ) time) because characters can be looked at as sequences of bits and hence
integers.

THEOREM 10.5 McCreight’s algorithm builds the suffix tree of a string T [1, n] in O(n logσ)
time and O(n) space.

This algorithm is inefficient in an external-memory setting because it may elicit one I/O per each
tree-edge traversal. Nevertheless, as we observed before, of the distribution of the lcps is skewed
towards small values, then this construction might be I/O-efficient in that the top part of the suffix
tree could be cached in the internal memory, and thus do not elicit any I/Os during the scanning and
re-scanning steps. We refer the reader to [3] for details on this issue.

10.4 Some interesting problems

10.4.1 Approximate pattern matching

The problem of approximate pattern matching can be formulated as: finding all substrings of a text
T [1, n] that match a pattern P[1, p] with at most k errors. In this section we restrict our discussion
to the simplest type of errors, the ones called mismatches or substitutions (see Figure 10.11). This
way the text substrings which “k-mismatch” the searched pattern P have length p and coincide with
the pattern in all but at most k characters. The following figure provides an example by considering
two DNA strings formed over the alphabet of four nucleotide bases {A,T,G,C}. The reason for this
kind of strings is that Bio-informatics is the context which spurred interest around the approximate
pattern-matching problem.

10-24 Paolo Ferragina

C C G T A C G A T C A G T A
C C G A A C T

⇑ ⇑
FIGURE 10.11: An example of matching between T (top) and P (bottom) with k = 2 mismatches.

The naı̈ve solution to this problem consists of trying to match P with every possible substring
of T , having length p, counting the mismatches and returning the positions were their number is at
most k. This would take O(pn) time, independently of k. The inefficiency comes from the fact that
each pattern-substring comparison starts from the beginning of P, thus taking O(p) time. In what
follows we describe a sophisticated solution which hinges on an elegant data structure that solves
an apparently un-related problem formulated over an array of integers, and called Range Minimum
Query (shortly, RMQ). This data structure is the backbone of many other algorithmic solutions in
problems arising in Data Mining, Information Retrieval, and so on.

The following Algorithm 10.4 solves the k-mismatches problem in O(nk) time by making the
following basic observation. If P occurs in T with j ≤ k mismatches, then we can align the pattern
P with a substring of T so that j or j − 1 substrings coincide and j characters mismatch. Actually
equal substrings and mismatches interleave each other. As an example consider again Figure 10.11,
the pattern occurs at position 1 in the text T with 2 mismatches, and in fact two substrings of P
match their corresponding substrings of T . This means that if we could compare pattern and text
substrings for equality in constant time, then we could execute the naı̈ve-approach taking O(nk)
time, instead of O(np) time. To be operational, this observation can be rephrased as follows: if
T [i, i + `] = P[j, j + `] is one of these matching substrings, then ` is the longest common prefix
between the pattern and the text suffixes starting at the matching positions i and j. Algorithm 10.4
deploys this rephrasing to code a solution which takes O(nk) time provided that lcp-computations
take O(1) time.

Algorithm 10.4 Approximate pattern matching based on LCP-computations
matches = {}
for i = 1 to n do

m = 0, j = 1;
while m ≤ k and j ≤ p do

` = lcp(T [i + j − 1, n], P[j, p];
j = j + `;
if j ≤ p then

m = m + 1; j = j + 1;
end if

end while
if m ≤ k then

matches = matches ∪ {T [i, i + p − 1]};
end if

end for
return matches;

If we run the Algorithm 10.4 over the strings showed in Figure 10.11, we perform two lcp-
computations and find that P occurs at text position 1 with 2-mismatches:

Searching Strings by Substring 10-25

14 5 11 8 10 1 6 2 7 12 3 13 7 12

0

15

$

1

A

$

CGA.. GTA$

TCA..

1

2

C

AGTA$ CGT..

ATC.. TAC..

1

2

G

ATC..

TA

$ CGA..

1

2

T

A

CAG..

$ CGA..

15

1

1

14

2

2

5

3

3

11

4

4

8

5

5

10

6

6

1

7

7

6

8

8

2

9

9

7

10

10

12

11

11

3

12

12

13

13

13

7

14

14

12

15

15

0 1 1 1 0 1 1 2 0 1 3 0 2 1

SA =

lcp-array =

FIGURE 10.12: An example of suffix tree, suffix array, lcp-array for the string X =

CCGTACGATCAGTA. In the suffix tree we have indicated only a prefix of few characters of the long
edge labels. The figure highlights that the computation of lcp(X[2, 14], X[10, 14]) boils down to
finding the depth of the lca-node in STX between the leaf 2 and the leaf 10, as well as to solve a
range minimum query on the sub-array lcp[6, 8] since SAX[6] = 10 and SAX[9] = 2.

• lcp(T [1, 14], P[1, 7]) = lcp(CCGTACGATCAGTA, CCGAACT) = CCG.
• lcp(T [5, 14], P[5, 7]) = lcp(ACGATCAGTA, ACT) = AC.

How do we compute lcp(T [i + j − 1, n], P[j, p]) in constant time? We know that suffix trees and
suffix arrays have built-in some lcp-information, but we similarly recall that these data structures
were built on one single string, namely the text T . Here we are talking of suffixes of P and T
together. Nonetheless we can easily circumvent this difficulty by constructing the suffix array, or
the suffix tree, over the string X = T#P, where # is a new character not occurring elsewhere. This
way each computation of the form lcp(T [i + j − 1, n], P[j, p]) can now be turned into an lcp-
computation between suffixes of X, precisely lcp(T [i + j − 1, n], P[n + 1 + j, n + 1 + p]). We
are therefore left with showing how these lcp-computations can be performed in constant time,
whichever is the pair of compared suffixes. This is the topic of the next subsection.

Lowest Common Ancestor, Range Minimum Query and Cartesian Tree

Let us start from an example, by considering the suffix tree STX and the suffix array SAX built on
the string X = CCGT ACGATCAGT A. This string is not in the form X = T#P because we wish to
stress the fact that the considerations and the algorithmic solutions proposed in this section apply to
any string X, not necessarily the ones arising from the Approximate Pattern-Matching problem.

The key observation, whose correctness spurs immediately from Figure 10.12, is that there is a
strong relation between the lcp-problem over X’s suffixes and the computation of lowest common
ancestors (lca) in the suffix tree STX . Consider the problem of finding the longest common prefix
between suffixes X[i, x] and X[j, x]) where x = |X|. It is not difficult to convince yourself that the
node u = lca(X[i, x], X[j, x]) in the suffix tree STX spells out their lcp, and thus the value |s[u]|

10-26 Paolo Ferragina

stored in node u is exactly the lcp-value we are searching for. Notice that this property holds
independently of the lexicographic sortedness of the edge labels, and thus of the suffix tree leaves.

Equivalently, the same value can be derived by looking at the suffix array SAX . In particular take
the lexicographic positions ip and jp where those two suffixes occur in SAX , say SAX[ip] = i and
SAX[jp] = j (we are assuming for simplicity that ip < jp). It is not difficult to convince yourself
that the minimum value in the sub-array lcp[ip, jp − 1]5 is exactly equal to |s[u]| since the values
contained in that sub-array are the values stored in the suffix-tree nodes of the subtree that descends
from u. Actually the order of these values is the one given by the in-order visit of u’s descendants.
Anyway, this order is not important for our computation which actually takes the smallest value,
because it is interested in the shallowest node (namely the root u) of that subtree.

Figure 10.12 provides a running example which clearly shows these two strong properties, which
actually do not depend on the order of the children of suffix-tree nodes. As a result, we have two
approaches to compute lcp in constant time, either through lca-computations over STX or through
RMQ-computations over lcpX . For the sake of presentation we introduce an elegant solution for the
latter, which actually induces in turn an elegant solution for the former, given that their are strongly
related.

In general terms the RMQ problem can be stated as follows:

The range-minimum-query problem. Given an array A[1, n] of elements drawn from an
ordered universe, build a data structure RMQA that is able to compute efficiently the position of
a smallest element in A[i, j], for any given queried range (i, j). We say “a smallest” because
the array may contain many minimum elements.

We underline that this problem asks for the position of a minimum element in the queried sub-
array, rather than its value. This is more general because the value of the minimum can be obviously
retrieved from its position in A by accessing this array, which is available.

In this lecture we aim for constant-time queries [1]. The simplest solution achieves this goal via
a table that stores the index of a minimum entry for each possible range (i, j). Such table requires
O(n2) space and O(n2) time to be built. A better solution hinges on the following observation: any
range (i, j) can be decomposed into two (possibly overlapping) ranges whose size is a power of two,
namely (i, i + 2L − 1) and (j − 2L + 1, j) where L = blog(j − i + 1)c. This allows us to sparsify
the previous quadratic-sized table by storing only ranges whose size is a power of two. This way,
for each position i we store the answers to the queries RMQA(i, i + 2L − 1), thus occupying a total
space of O(n log n) without impairing the time complexity of the query which is still constant and
corresponds to return RMQA(i, j) = argmini, j{RMQA(i, i + 2L − 1), RMQA(j − 2L + 1, j)}.

In order to get the optimal O(n) space occupancy, we need to dig into the structure of the
RMQ-problem and make a twofold reduction which goes back-and-forth from RMQ-computations
to lca-computations: namely, we reduce (1) the RMQ-computation over the lcp-array to an lca-
computation over Cartesian Trees (that we define next); we then reduce (2) the lca-computation
over Cartesian Trees to an RMQ-computation over a binary array. This last problem will then be
solved in O(n) space and constant query time. Clearly reduction (2) can be applied to any tree, and
thus can be applied to Suffix Trees in order to solve lca-queries over them.

First reduction step: from RMQ to lca. We transform the RMQA-problem “back” into an lca-
problem over a special tree which is known as Cartesian Tree and is built over the entries of the
array A[1, n]. The Cartesian Tree CA is a binary tree of n nodes, each labeled with one of A’s entries
(i.e. value and position in A). The labeling is defined recursively as follows: the root of CA is labeled

5Recall that lcp[q] stores the length of the longest common prefix between suffix SA[i] and its next suffix SA[i + 1].

Searching Strings by Substring 10-27

by the minimum entry in A[1, n], say this is 〈A[m],m〉. Then the left subtree of the root is recursively
defined as the Cartesian Tree of the subarray A[1,m−1], and the right subtree is recursively defined
as the Cartesian Tree of the subarray A[m + 1, n]. See Figure 10.13 for an example.

1,3

7,4

3,55,2

2,1

A = [2, 5, 1, 7, 3]
1 2 3 4 5

FIGURE 10.13: Cartesian Tree built over the array A[1, 5] = {2, 5, 1, 7, 3}. Observe that nodes of
CA store as first (black) number A’s values, and as second (red) number their positions in A.

The following Figure 10.14 shows the Cartesian tree built on the lcp-array depicted in Fig-
ure 10.12. Given the construction process, we can state that ranges in the lcp-array correspond
to subtrees of the Cartesian tree. Therefore computing RMQA(i, j) boils down to compute an lca-
query between the nodes of CA associated to the entries i and j. Differently of what occurred for
lca-queries on STX , where the arguments were leaves of that suffix tree, the queried nodes in the
Cartesian Tree may be internal nodes, and actually it might occur that one node is ancestor of the
other node. For example, executing RMQlcp(6, 8) equals to executing lca(6, 8) over the Cartesian
Tree Clcp of Figure 10.14. The result of this query is the node 〈lcp[7], 7〉 = 〈1, 7〉. Notice that we
have another minimum value in lcp[6, 8] at lcp[6] = 1; the answer provided by the lca is one of
the existing minima in the queried-range.

Second reduction step: from lca to RMQ. We transform the lca-problem over the Cartesian Tree
Clcp “back” into an RMQ-problem over a special binary array ∆[1, 2e], where e is the number of
edges in the Cartesian Tree (of course e = O(n)). It seems strange this “circular” sequence of
reductions that now has turned us back into an RMQ-problem. But the current RMQ-problem, unlike
the original one, is formulated on a binary array and thus admits an optimal solution in O(n) space.

To build the binary array ∆[1, 2e] we need first to build the array D[1, 2e] which is obtained as
follows. Take the Euler Tour of Cartesian Tree CA, visiting the tree in pre-order and writing down
each node everytime the visit passes through it. A node can be visited multiple times, precisely it is
visited/written as many times as its number of incident edges; except for the root which is written
the number of incident edges plus 1.

Given the Euler Tour of the Cartesian Tree CA, we build the array D[1, 2e] which stores the depths
of the visited nodes in the order stated by the Euler Tour (see Figure 10.14). Given D and the way
the Euler Tour is built, we can conclude that query lca(i, j) in CA boils down to compute the node
of minimum depth in the sub-array D[i′, j′] where i′ (resp. j′) is the position of the first (resp. last)
occurrence of the node i (resp. j) in the Euler Tour. In fact, the range D[i′, j′] corresponds to the part
of the Euler Tour that starts at node i and ends at node j. The node of minimum depth encountered
in this Euler sub-Tour is properly the lca(i, j).

So we reduced an lca-query over the Cartesian Tree into an RMQ-query over node depths. In
our running example on Figure 10.14 this reduction transforms the query lca(6, 8) into a query
RMQD(11, 13), which is highlighted by a red rectangle. Turning nodes into ranges can be done in

10-28 Paolo Ferragina

0

1

1

2

1

3

1

4

0

5

1

6

1

7

2

8

0

9

1

10

3

11

0

12

2

13

1

14

Euler Tour = 1 5 2 4 3 4 2 5 9 7 6 7 8 7 9 12 10 11 10 12 14 13 14 12 9 5 1

D = 1 2 3 4 5 4 3 2 3 4 5 4 5 4 3 4 5 6 5 4 5 6 5 4 3 2 1

FIGURE 10.14: Cartesian tree built on the lcp-array of Figure 10.12: inside the nodes we report
the LCP’s values, outside the nodes we report the corresponding position in the LCP array (in case
of ties in the LCP’s values we make an arbitrary choice). On the bottom part are reported the Euler
Tour of the Cartesian Tree and the array D of the depths of the nodes according to the Euler-Tour
order.

constant time by simply storing two integers per node of the Cartesian Tree, denoting their first/last
occurrence in the Euler Tour, thus taking O(n) space.

We are again “back” to an RMQ-query over an integer array. But the current array D is special
because its consecutive entries differ by 1 given that they refer to the depths of consecutive nodes
in an Euler Tour. And in fact, two consecutive nodes in the Euler Tour are connected by an edge
and thus one node is the parent of the other, and hence their depths differ by one unit. The net result
of this property is that we can solve the RMQ-problem over D[1, 2e] in O(n) space and O(1) time as
follows. (Recall that e = O(n).) Solution is based on two data structures which are detailed next.

First, we split the array D into 2e
d subarrays Dk of size d = 1

2 log e each. Next, we find the
minimum element in each subarray Dk, and store its position at the entry M[k] of a new array whose
size is therefore 2e

d . We finally build on the array M the sparse-table solution indicated above which
takes superlinear space (in the size of M) and solves RMQ-queries in constant time. The key point
here is that M’s size is sublinear in e, and thus in n, so that the overall space taken by array M and
its sparse-table is O((e

log e) ∗ log e
log e) = O(e) = O(n).

The second data structure is built to efficiently answer RMQ-queries in which i and j are in the
same block Dk. It is clear that we cannot tabulate all answers to all such possible pairs of indexes
because this would end up in Θ(n2) space occupancy. So the solution we describe here spurs from
two simple, deep observations whose proof is immediate and left to the reader:

Binary entries: Every block Dk can be transformed into a pair that consists of its first element
Dk[1] and a binary array ∆k[i] = Dk[i] − Dk[i − 1] for i = 2, . . . , d. Entries of ∆k are
either −1 or +1 because of the unit difference between adjacent entries of D.

Searching Strings by Substring 10-29

Minimum location: The position of the minimum value in Dk depends only on the content of
the binary sequence ∆k and does not depend on the starting value Dk[1].

Nicely, the possible configurations that every block Dk can assume are infinite, given that infinite
is the number of ways we can instantiate the input array A on which we want to issue the RMQ-
queries; but the possible configurations of the image ∆k is finite and equal to 2d−1. This suggests
to apply the so called Four Russians trick to the binary arrays by tabulating all possible binary
sequences ∆k and, for each of them, storing the position of the minimum value. Since the blocks
∆k have length d − 1 < d =

log e
2 , the total number of possible binary sequences is at most 2d−1 =

O(2
log e

2) = O(
√

e) = O(
√

n). Moreover, since both query-indexes i and j can take at most d =
log e

2
possible values, being internal in a block Dk, we can have at most O(log2 e) queries of this third type.
Consequently, we build a lookup table T [io, jo,∆k] that is indexed by the possible query-offsets io
and jo within the block Dk and its binary configuration ∆k. Table T stores at that entry the position
of the minimum value in Dk. We also assume that, for each k, we have stored ∆k so that the binary
representation ∆k of Dk can be retrieved in constant time. Each of these indexing parameters takes
O(log e) = O(log n) bits of space, hence one memory word, and thus can be managed in O(1) time
and space. In summary, the whole table T consists of O(

√
n(log n)2) = o(n) entries. The time

needed to build T is O(n). The power of transforming Dk into ∆k is evident now, every entry of
T [io, jo,∆k] is actually encoding the answer for an infinite number of blocks Dk, namely the ones
that can be turned to the same binary configuration ∆k.

At this point we are ready to design an algorithm that, using the three data structures illustrated
above, answers a query RMQD(i, j) in constant time. If i, j are inside the same block Dk then the
answer is retrieved in two steps: first we compute the offsets io and jo with respect to the beginning
of Dk and determine the binary configuration ∆k from k; then we use this triple to access the proper
entry of T . Otherwise the range (i, j) spans at least two blocks and can thus be decomposed in three
parts: a suffix of some block Di′ , a consecutive sequence of blocks Di′+1 · · ·D j′−1, and finally the
prefix of block D j′ . The minimum for the suffix of Di′ and the prefix of D j′ can be retrieved from T ,
given that these ranges are inside two blocks. The minimum of the range spanned by Di′+1 · · ·D j′−1
is stored in M. All this information can be accessed in constant time and the final minimum-position
can be retrieved by comparing these three minimum values, in constant time too.

THEOREM 10.6 Range-minimum queries over an array A[1, n] of elements drawn from an
ordered universe can be answered in constant time using a data structure that occupies O(n) space.

Given the stream of reductions we illustrated above, we can conclude that Theorem 10.6 applies
also to computing lca in generic trees: it is enough to take the input tree in place of the Cartesian
Tree.

THEOREM 10.7 Lowest-common-ancestor queries over a generic tree of size n can be an-
swered in constant time using a data structure that occupies O(n) space.

10.4.2 Text Compression

Data compression will be the topic of one of the following chapters; nonetheless in this section
we address the problem of compressing a text via the simple algorithm which is at the core of the
well known gzip compressor, named LZ77 from the initials of its inventors (Abraham Lempel and
Jacob Ziv [9]) and from the year of its publication (1977). We will show that there exists an optimal
implementation of the LZ77-algorithm taking O(n) time and using suffix trees.

10-30 Paolo Ferragina

Given a text string T [1, n], the algorithm LZ77 produces a parsing of T into substrings that are
defined as follows. Assume that it has already parsed the prefix T [1, i − 1] (at the beginning this
prefix is empty), then it decomposes the remaining text suffix T [i, n] in three parts: the longest
substring T [i, i + ` − 1] which starts at i and repeats before in the text T , the next character T [i + `],
and the remaining suffix T [i + ` + 1, n]. The next substring to add to the parsing of T is T [i, i + `],
and thus corresponds to the shortest string that is new in T [1, i− 1]. Parsing then continues onto the
remaining suffix T [i + ` + 1, n], if any.

Compression is obtained by succinctly encoding the triple of integers 〈d, `,T [i + `]〉, where d is
the distance (in characters) from i to the previous copy of T [i, i + `− 1]; ` is the length of the copied
string; T [i + `] is the appended character. By saying “previous copy” of T [i, i + ` − 1], we mean
that its copy starts before position i but it might extend after this position, hence it could be d < `;
furthermore, the previous copy can be any previous occurrence of T [i, i + ` − 1], although space-
efficiency issues suggest us to take the closest copy (and thus the smallest d). Finally we observe
that the reason for adding the character T [i + `] to the emitted triple is that this character behaves
like an escape-mechanism; in fact it is useful when no-copy is possible and thus ` = 0 (this occurs
when a new character is met in T).6

Before digging into an efficient implementation of the LZ77-algorithm let us consider our exam-
ple string T = mississippi. Its LZ77-parsing is computed as follows:

m
1
i

2
s

3
s

4
i

5
s

6
s

7
i

8
p

9
p

10
i

11

Output: < 0, 0,m >

m
1

i
2
s

3
s

4
i

5
s

6
s

7
i

8
p

9
p

10
i

11

Output: < 0, 0, i >

m
1
i

2
s

3
s

4
i

5
s

6
s

7
i

8
p

9
p

10
i

11

Output: < 0, 0, s >

m
1
i

2
s

3
s

4
i

5
s

6
s

7
i

8
p

9
p

10
i

11

Output: < 1, 1, i >

m
1
i

2
s

3
s

4
i

5
s

6
s

7
i

8
p

9
p

10
i

11

Output: < 3, 3, p >

6We are not going to discuss the integer-encoding issue, since it will be the topic of a next chapter, we just mention here
that efficiency is obtained in gzip by taking the rightmost copy and by encoding the values d and ` via a Huffman coder.

Searching Strings by Substring 10-31

m
1
i

2
s

3
s

4
i

5
s

6
s

7
i

8
p

9
p

10
i

11

Output: < 1, 1, i >

We can compute the LZ77-parsing in O(n) time via an elegant algorithm that deploys the suffix
tree ST . The difficulty is to find πi, the longest substring that occurs at position i and repeats before
in the text T . Say d is the distance of the previous occurrence. Given our notation above we have
that ` = |πi|. Of course πi is a prefix of suffi and a prefix of suffi−d; actually, it is the longest common
prefix of these two suffixes, and by maximality, there is no other previous suffix suff j (with j < i)
that shares a longer prefix with suffi. By properties of suffix trees, the lowest-common-ancestor of
leaves i and j spells out πi. However we cannot compute lca(i, j) by issuing a query to the data
structure of Theorem 10.7 because we do not know j, which is exactly the information we wish
to compute. Similarly we cannot trace a downward path from the root of ST trying to match suffi
because all suffixes of T are indexed in the suffix tree and thus we could detect a longer copy which
follows position i, instead of preceding it.

To circumvent these problems we preprocess ST via a post-order visit that computes for every
internal node u its minimum leaf min(u). Clearly min(u) is the leftmost position from which we can
copy the substring s[u]. Given this information we can determine easily πi, just trace a downward
path from the root of ST scanning suffi and stopping as soon as the reached node v is such that
min(v) = i. At this point we take u as the parent of v and set πi = s[u], and d = i −min(u). Clearly,
the chosen copy of πi is the farthest one and not the closest one: this does not impact in the number
of phrases in which T is parsed by LZ77, but possibly influences the magnitude of these distances
and thus their succinct encoding. Devising an LZ77-parser that efficiently determines the closest
copy of each πi is non trivial and needs much more sophisticated data structures.

Take T = mississippi as the string to be parsed (see above) and consider its suffix tree ST in
Figure 10.8. Assume that the parsing is at the suffix suff2 = ississippi. Its tracing down ST stops
immediately at the root of the suffix tree because the node to be visited next would be u, for which
min(u) = 2 which is not smaller than the current suffix position. Then consider the parsing at suffix
suff6 = ssippi. We trace down ST and actually exhaust suff6, so reaching the leaf 6, for which
min is 3. So the selected node is its parent z, for which s[z] = ssi. The emitted triple is correctly
< 3, 3, p >.

The time complexity of this implementation of the LZ77-algorithm is O(n) because the traversal
of the suffix tree advances over the string T , and this may occur only n times. Branching out
of suffix-tree nodes can be implemented in O(1) time via perfect hash tables, as observed for the
substring-search problem. The construction of the suffix tree costs O(n) time, by using one of the
algorithms we described in the previous sections. The computation of the values min(u), over all
nodes u, takes O(n) time via a post-order visit of ST .

THEOREM 10.8 The LZ77-parsing of a string T [1, n] can be computed in O(n) time and
space. Each substring of the parsing is copied from its farthest previous occurrence.

10.4.3 Text Mining

In this section we briefly survey two examples of uses of suffix arrays and lcp-arrays in the solution
of sophisticated text mining problems.

Let us consider the following question: Check whether there exists a substring of T [1, n] that
repeats at least twice and has length L. Solving this problem in a brute-force way would mean to
take every text substring of length L, and count its number of occurrences in T . These substrings

10-32 Paolo Ferragina

are Θ(n), searching each of them takes O(nL) time, hence the overall time complexity of this trivial
algorithm would be O(n2L). A smarter and faster, actually optimal, solution comes from the use
either of the suffix tree or of the lcp-array lcp, built on the input text T s.

The use of suffix tree is simple. Let us assume that such a string does exist, and it occurs at
positions x and y of T . Now take the two leaves in the suffix tree which correspond to suffx and suffy
and compute their lowest common ancestor, say a(x, y). Since T [x, x + L− 1] = T [y, y + L− 1], it is
that |s[a(x, y)]| ≥ L. We write “greater or equal” because it could be the case that a longer substring
is shared at positions x and y, in fact L is just fixed by the problem. The net result of this argument
is that it does exist an internal node in the suffix tree whose label is greater or equal than L; a visit
of the suffix tree is enough to search for any node such this one, thus taking O(n) time.

The use of the suffix array is a little bit more involved, but follows a similar argument. Recall that
suffixes in SA are lexicographically ordered, so the longest common prefix shared by suffix SA[i] is
with its adjacent suffixes, namely either with suffix SA[i − 1] or with suffix SA[i + 1]. The length
of these lcps is stored in the entries lcp[i − 1, i]. Now, if the repeated substring of length L does
exist, and it occurs e.g. at text positions x and y, then we have lcp(T [x, n],T [y, n]) ≥ L. These
two suffixes not necessarily are contiguous in SA (this is the case when the substring occurs more
than twice), nonetheless all suffixes occurring among them in SA will surely share a prefix of length
L, because of their lexicographic order. Hence, if suffix T [x, n] occurs at position q of the suffix
array, i.e. SA[q] = x, then we have that either lcp[q − 1] ≥ L or lcp[q] ≥ L, depending on the fact
that T [y, n] < T [x, n] or vice versa, respectively. Hence we can solve the question stated above by
scanning lcp and searching for an entry ≥ L. This takes O(n) optimal time.

Let us now ask a more sophisticated question: Check whether there exists a text substring that
repeats at least C times and has length L. This is the typical query in a text mining scenario,
where we are interested not just in a repetitive event but in an event occurring with some statistical
evidence. We can again solve this problem by trying all possible substrings and counting their
occurrences. Again, a faster solution comes from the use either of the suffix tree or of the array
lcp. Following the argument provided in the solution of the previous question we note that, if a
substring of length L occurs (at least) C times, then it does exist (at least) C text suffixes that share
(at least) L characters. So it does exist a node u in the suffix tree such that |s[u]| ≥ L and the number
of descending leaves occ[u] ≥ C. Equivalently, it does exist a sub-array in lcp of length ≥ C − 1
that consists of entries ≥ L. Both approaches provide an answer to the above question in O(n) time.

Let us conclude this section by asking a query closer to a search-engine scenario: Given two
patterns P and Q, and a positive integer k, check whether there exists an occurrence of P whose
distance from an occurrence of Q in an input text T is at most k. This is also called proximity
search over a text T which is given in advance to be preprocessed. The solution passes through
the use of any search data structure, being it a suffix tree or a suffix array built over T , plus some
sorting/merging steps. We search for P and Q in T and derive their occurrences, say O. Both
suffix arrays and suffix trees return these occurrences unsorted. Therefore we sort them, in order to
produce the ordered list of occurrences of P and Q. At this point it is easy to determine whether the
question above admits a positive answer; if it does, then there do exist two consecutive occurrences
of P and Q whose distance is at most k. To detect this situation it is enough to scan the sorted
Sequence O and check, for every consecutive pair of positions which are occurrences of P and Q,
whether the difference is at most k. This takes overall O(|P|+ |Q|+ |O| log |O|) time, which is clearly
advantageous whenever the set O of candidate occurrences is small, and thus the queries P and Q
are sufficiently selective.

References

Searching Strings by Substring 10-33

[1] Michael A. Bender and Martin Farach-Colton. The LCA Problem Revisited. In Procs
of the Latin American Symposium on Theoretical Informatics (LATIN), 88-94, 2000.

[2] Martin Farach-Colton, Paolo Ferragina, S. Muthukrishnan. On the sorting-complexity

of suffix tree construction. Journal of the ACM, 47(6): 987-1011, 2000.

[3] Paolo Ferragina. String search in external memory: algorithms and data structures.

Handbook of Computational Molecular Biology, edited by Srinivas Aluru. Chapman &

Hall/CRC Computer and Information Science Series, chapter 35, Dicembre 2005.

[4] Paolo Ferragina and Travis Gagie and Giovanni Manzini. Lightweight data indexing

and compression in external memory. Algorithmica: Special issue on selected papers of
LATIN 2010, 63(3): 707-730, 2012.

[5] Dan Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and Com-
putational Biology. University Press, 1997.

[6] Gaston H. Gonnet, Ricardo A. Baeza-Yates, and Tim Snider. New indices for text:

PAT trees and PAT arrays. In B. Frakes and R. A. Baeza-Yates, editors, Information
Retrieval: Data Structures and Algorithms, chapter 5, pages 66–82, Prentice-Hall, 1992.

[7] Juha Kärkkäinen and Peter Sanders. Simple linear work suffix array construction.

In Procs of the International Colloquium on Automata, Languages and Programming
(ICALP), Lecture Notes in Computer Science vol. 2791, Springer, 943–955, 2003.

[8] Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, and Kunsoo Park. Linear-

time longest-common-prefix computation in suffix arrays and its applications. In Procs
of the Symposium on Combinatorial Pattern Matching (CPM), Lecture Notes in Computer

Science vol. 2089, Springer, 181–192, 2001.

[9] Jacob Ziv and Abraham Lempel. A Universal Algorithm for Sequential Data Compres-

sion. IEEE Transactions on Information Theory, 23(3): 337-343, 1977.

[10] Udi Manber and Gene Myers. Suffix arrays: a new method for on-line string searches.

SIAM Journal on Computing, 22(5):935–948, 1993.

[11] Edward M. McCreight. A space-economical suffix tree construction algorithm. Journal
of the ACM, 23(2): 262-272, 1976.

11
Integer Coding

Everything should be made as
simple as possible, but no
simpler
Albert Einstein

11.1 Elias codes: γ and δ . 11-3
11.2 Rice code . 11-4
11.3 PForDelta code . 11-5
11.4 Variable-byte code and (s, c)-dense codes 11-6
11.5 Interpolative code . 11-8
11.6 Elias-Fano code . 11-10
11.7 Concluding remarks . 11-13

In this chapter we will address a basic encoding problem which occurs in many contexts, and whose
efficient dealing is frequently underestimated for the impact it may have on the total space occu-
pancy and speed of the underlying application [2, 8].

Problem. Let S = s1, . . . , sn be a sequence of positive integers si, possibly repeated. The
goal is to represent the integers of S as binary sequences which are self-delimiting and use
few bits.

We note that the request about si of being positive integers can be relaxed by mapping a positive
integer x to 2x and a negative integer x to −2x+1, thus turning again the set S to a set of just positive
integers.

Let us comment two exemplar applications. Search engines store for each term t the list of
documents (i.e. Web pages, blog posts, tweets, etc. etc.) where t occurs. Answering a user query,
formulated as sequence of keywords t1t2 . . . tk, then consists of finding the documents where all
tis occur. This is implemented by intersecting the document lists for these k terms. Documents are
usually represented via integer IDs, which are assigned during the crawling of those documents from
the Web. Storing these integers with a fixed-length binary encoding (i.e. 4 or 8 bytes) may require
considerable space, and thus time for their retrieval, given that modern search engines index up to
20 billion documents. In order to reduce disk-space occupancy, as well as increase the amount of
cached lists in internal memory, two kinds of compression tricks are adopted: the first one consists
of sorting the document IDs in each list, and then encode each of them with the difference between
it and its preceding ID in the list, the so called d-gap1; the second trick consists of encoding each
d-gap with a variable-length sequence of bits which is short for small integers.

Another example of occurrence for the above problem relates to data compression. We have seen
in Chapter 10 that the LZ77-compressor turns input files into sequence of triples in which the first
two components are integers. Other known compressors (such as MTF, MPEG, RLE, BWT, etc.)

1Of course, the first document ID of a list is stored explicitly.

c© Paolo Ferragina, 2009-2020 11-1

11-2 Paolo Ferragina

produce as intermediate output one or more sets of integers, with smaller values most probable and
larger values increasingly less probable. The final coding stage of those compressors must therefore
convert these integers into a bit stream, such that the total number of bits is minimized.

The main question we address in this chapter is how we design a variable-length binary repre-
sentation for (unbounded) integers which takes as few bits as possible and is prefix-free, namely the
encoding of sis can be concatenated to produce an output bit stream, which preserves decodability,
in the sense that each individual integer encoding can be identified and decoded.

The first and simplest idea to solve this problem is surely that one to take m = max j s j and then
encode each integer si ∈ S by using 1 + blog2 mc bits. This fixed-size encoding is efficient whenever
the set S is not much spread and concentrated around the value zero. But this is a very unusual
situation, in general, m � si so that many bits are wasted in the output bit stream. So why not
storing each si by using its binary encoding with 1 + blog2 sic bits. The subtle problem with this
approach would be that this code is not self-delimiting, and in fact we cannot concatenate the binary
encoding of all si and still be able to distinguish each codeword. As an example, take S = {1, 2, 3}
and the output bit sequence 11011 which would be produced by using their binary encoding. It is
evident that we could derive many compatible sequence of integers from 11011, such as S , but also
{6, 1, 1}, as well as {1, 2, 1, 1}, and several others.

It is therefore clear that this simple encoding problem is challenging and deserves the attention
that we dedicate in this chapter. We start by introducing one of the simplest integer codes known,
the so called unary code. The unary code U(x) for an integer x ≥ 1 is given by a sequence of x − 1
bits set to 0, ended by a (delimiting) bit set to 1. The correctness of the condition that x , 0 is easily
established. U(x) requires x bits, which is exponentially longer than the length Θ(log x) of its binary
code, nonetheless this code is efficient for very small integers and soon becomes space inefficient as
x increases.

This statement can be made more precise by recalling a basic fact coming from the Shannon’s
coding theory, which states that the ideal code length L(c) for a symbol c is equal to log2

1
Pr[c] bits,

where P[c] is the probability of occurrence of symbol c. This probability can be known in advance,
if we have information about the source emitting c, or it can be estimated empirically by examining
the occurrences of integers si in S . The reader should be careful in recalling that, in the scenario
considered in this chapter, symbols are positive integers so the ideal code for the integer x consists
of log2

1
Pr[x] bits. So, by solving the equation |U(x)| = log2

1
Pr[x] with respect to P[x], we derive the

distribution of the sis for which the unary code is optimal. In this specific case it is P[x] = 2−x.
As far as efficiency is concerned, the unary code needs a lot of bit shifts which are slow to be
implemented in modern PCs; again another reason to favor small integers.

FACT 11.1 The unary code of a positive integer x takes x bits, and thus it is optimal for the
distribution P[x] = 2−x.

Using this same argument we can also deduct that the fixed-length binary encoding, which uses
1 + blog2 mc bits, is optimal whenever integers in S are distributed uniformly within the range
{1, 2, . . . ,m}.

FACT 11.2 Given a set S of integers, of maximum value m, the fixed-length binary code repre-
sents each of them in 1+blog2 mc bits, and thus it is optimal for the uniform distribution P[x] = 1/m.

In general integers are not uniformly distributed, and in fact variable-length binary representations
must be considered which eventually improve the simple unary code. There are many proposals in
the literature, each offering a different trade-off between space occupancy of the binary-code and

Integer Coding 11-3

time efficiency for its decoding. The following subsections will detail the most useful and the most
used among these codes, starting from the most simplest ones which use fixed encoding models for
the integers (such as, e.g., γ and δ codes) and, then, moving to the more involved Huffman and Inter-
polative codes which use dynamic models that adapt themselves to the distribution of the integers in
S . It is very well known that Huffman coding is optimal, but few times this optimality is dissected
and made clear. In fact, this is crucial to explain some apparent contradictory statements about these
more involved codes: such as the fact that in some cases Interpolative coding is better than Huff-
man coding. The reason is that Huffman coding is optimal among the family of static prefix-free
codes, namely the ones that use a fixed model for encoding each single integer of S (specifically, the
Huffman code of an integer x is defined according to P[x]). Vice versa, Interpolative coding uses
a dynamic model that encodes x according to the distribution of other integers in S , thus possibly
adopting different codes for the occurrences of x. Depending on the distribution of the integers in
S , this adaptivity might be useful and thus originate a shorter output bit stream.

11.1 Elias codes: γ and δ

These are two very simple universal codes for integers which use a fixed model, they have been
introduced in the ’60s by Elias [3]. The adjective “universal” here relates to the property that the
length of the code is O(log x) for any integer x. So it is just a constant factor more than the optimal
binary code B(x) having length 1+ blog xc, with the additional wishful property of being prefix-free.
γ-code represents the integer x as a binary sequence composed of two parts: a sequence of |B(x)|−

1 zeros, followed by the binary representation B(x). The initial sequence of zeros is delimited by the
1 which starts the binary representation B(x). So γ(x) can be decoded easily: count the consecutive
number of zeros up to the first 1, say they are c; then, fetch the following c + 1 bits (included the 1),
and interpret the sequence as the integer x.

` `

γ(x) = U(`) B(x) γ(9) = 0001001

FIGURE 11.1: Representation for γ(9).

The γ-code requires 2|B(x)|−1 bits, which is 2(1+blog2 xc)−1 = 2blog2 xc+1. In fact, the γ-code
of the integer 9 needs 2blog2 9c + 1 = 7 bits. From Shannon’s condition on ideal codes, we derive
that the γ-code is optimal whenever the distribution of the values follows the formula Pr[x] ≈ 1

2x2 .

FACT 11.3 The γ-code of a positive integer x takes 2blog2 xc+ 1 bits, and thus it is optimal for
the distribution P[x] ≈ 1

2x2 , and it is a factor of 2 from the length of the optimal binary code.

The inefficiency in the γ-code resides in the unary coding of the length |B(x)| which is really
costly as x becomes larger and larger. In order to mitigate this problem, Elias introduced the δ-code,
which applies the γ-code in place of the unary code. So δ(x) consists of two parts: the first encodes
γ(|B(x)|), the second encodes B(x). Notice that, since we are using the γ-code for B(x)’s length,
the first and the second parts do not share any bits; moreover we observe that γ is applied to |B(x)|
which guarantees to be a number greater than zero. The decoding of δ(x) is easy, first we decode
γ(|B(x)|) and then fetch B(x), so getting the value x in binary. For δ-code we notice that it could

11-4 Paolo Ferragina

encode the value zero as 10, where the first bit corresponds to γ(1) = 1 and thus tells that the length
of the following binary sequence is 1 and it represents with the bit 0 the value 0.

`′ `′

δ(x) = U(`′) B(`) B(x) δ(14) = 0001001110

FIGURE 11.2: Representation for δ(14).

As far as the length in bits of δ(x) is concerned, we observe that it is (1 + 2blog2 |B(x)|c) + |B(x)| ≈
1 + log x + 2 log log x. This encoding is therefore a factor 1 + o(1) from the optimal binary code,
hence it is universal.

FACT 11.4 The δ-code of a positive integer x takes about 1 + log2 x + 2 log2 log2 x bits, and
thus it is optimal for the distribution P[x] ≈ 1

2x(log x)2 , and it is a factor of 1 + o(1) from the length of
the optimal binary code.

In conclusion, γ- and δ-codes are universal and pretty efficient whenever the set S is concentrated
around the value one; however, it must be noted that these two codes need a lot of bit shifts to be
decoded and this may be slow if numbers are larger and thus encoded in many bits. The follow-
ing codes trade space efficiency with decoding speed and, in fact, they are preferred in practical
applications.

11.2 Rice code

There are situations in which integers are concentrated around some value, different from zero;
here, Rice coding becomes advantageous both in compression ratio and decoding speed. Its special
feature is to be a parametric code, namely one which depends from a positive integer k, which
may be fixed according to the distribution of the integers in the set S . The Rice code Rk(x) of an
integer x > 0, given the parameter k, consists of two parts: the quotient q = b x−1

2k c and the remainder
r = x− 1− 2kq.2 The quotient is stored in unary using q + 1 bits (the +1 is needed because q may be
0), the remainder r is in the range [0, 2k) and thus it is stored in binary using k bits. So the quotient
is encoded in variable length, whereas the remainder is encoded in fixed length. The closer 2k is
to the value of x, the shorter is the representation of q, and thus the faster is its decoding. For this
reason, k is chosen in such a way that 2k is concentrated around the mean of S ’s elements.

The bit length of Rk(x) is q + k + 1. This code is a particular case of the Golomb Code [8], it is
optimal when the values to be encoded follow a geometric distribution with parameter p, namely
Pr[x] = (1 − p)x−1 p. In this case, if 2k ' ln(2)

p ' 0.69 mean(S), the Rice and all Golomb codes
generate an optimal prefix-code [8].

FACT 11.5 The Rice code of a positive integer x takes b x−1
2k c + 1 + k bits, and it is optimal for

2The −1 in the quotient and in the remainder is introduced in order to deploy the configuration 0 in both of them since x
is assumed to be strictly positive. In the case that we admit x ≥ 0, then we have to remove the −1 from the formulas.

Integer Coding 11-5

q + 1 k

Rk(x) = U(q) Bk(r) R4(83) = 0000010010

r = 83 − 1 − 5 · 24 = 2q = b82/24c = 5

FIGURE 11.3: Representation for R4(83)

the geometric distribution Pr[x] = (1 − p)x−1 p.

11.3 PForDelta code

This method for compressing integers supports extremely fast decompression and achieves a small
size in the compressed output whenever S ’s values follow a gaussian distribution. In detail, let us
assume that most of S ’s values fall in an interval [base, base + 2b − 2], we translate the values in
the new interval [0, 2b − 2] in order to encode them in b bits; the other values outside this range
are called exceptions and they are represented in the compressed list with an escape symbol and
also encoded explicitly in a separate list using a fixed-size representation of w bits (namely, a whole
memory word). The good property of this code is that all values in S are encoded in fixed length,
either b bits or w + b bits, so that they can be decoded very fast and possibly in parallel by packing
few of them in a memory word.

Bb(x) ∀x ∈ {base, . . . , base + 2b − 2} ES C = {x ≥ base + 2b − 1}

1 2 � � 2 6 0 5 � 2 10 16 22

S = 1 2 10 16 2 6 0 5 22 2

FIGURE 11.4: An example for PForDelta, with b = 3 and base = 0. The values in the range (red
box) are encoded using 3 bits, while the out-of-range values (gray box) are encoded separately and
an escape symbol� is used as a place-holder (in this specific case the value 2b − 1 = 7).

FACT 11.6 The PForDelta code of a positive integer x takes either b bits or b+w bits, depending
on the fact that x ∈ [base, base + 2b − 2] or not, respectively.

The design of a PForDelta code needs to deal with two problems:

• How to choose b: in the original work, b was chosen such that about the 90% of the
values in S are smaller than 2b. An alternative solution is to trade between space wasting
(choosing a greater b) or space saving (more exceptions, smaller b). In [7] it has been
proposed a method based on dynamic programming, that computes the optimal b for
a desired compression ratio. In particular, it returns the largest b that minimizes the
number of exceptions and, thus, ensures a faster decompression.

11-6 Paolo Ferragina

• How to encode the escape symbol: a possible solution is to assign a special bit sequence
for it, namely the value 2b − 1, and thus leaving 2b − 1 configurations for the values in
the range. This explains why we assumed to be able to encode in b bits only the values
in {0, 1, 2, . . . , 2b − 2}, because the last configuration 2b − 1 is left to encode the escape
symbol.

In conclusion PForDelta encodes blocks of k consecutive integers so that they can be stored in
a multi-word (i.e. multiple of 32 bits). Those integers that do not fit within b bits are treated as
exceptions and stored in another array that is merged to the original sequence of codewords during
the decoding phase (thus paying w+b bits). PForDelta is surprisingly succinct in storing the integers
which occur in search-engine indexes; but the actual positive feature which makes it very appealing
for developers is that it is incredibly fast in decoding because of the word-alignment and the fact that
there exist implementations which do not use if-statements, and thus avoid branch mispredictions.

11.4 Variable-byte code and (s, c)-dense codes

Another class of codes which trade speed by succinctness is the one of the so called (s, c)-dense
codes. Their simplest instantiation, originally used in the Altavista search engine, is the variable-
byte code which uses a sequence of bytes to represent an integer x. This byte-aligned coding is
useful to achieve a significant decoding speed. It is constructed as follows: the binary representation
B(x) is partitioned into groups of 7-bits, possibly the first group is padded by appending 0s to its
front; a flag-bit is appended to each group to indicate whether that group is the last one (bit set to 0)
or not (bit set to 1) of the representation. The decoding is simple, we scan the byte sequence until
we find a byte whose value is smaller than 128.

7 bits 7 bits 7 bits 7 bits

8 bits 8 bits 8 bits

1 1 0. . .

216 = 10000000000000000

100001001000000000000000

FIGURE 11.5: Variable-byte representation for the integer 216

The minimum amount of bits necessary to encode x is 8, and on average 4 bits are wasted because
of the padding. Hence this method is proper for large values x.

FACT 11.7 The Variable-byte code of a positive integer x takes d |B(x)|
7 e bytes, and thus 8∗d |B(x)|

7 e
bits. This code is optimal for the distribution P[x] ≈ 7

√
1/x8.

The use of the status bit induces a subtle issue, in that it partitions the configurations of each
byte into two sets: the values smaller than 128 (status bit equal to 0, called stoppers) and the values
larger or equal than 128 (status bit equal to 1, called continuers). For the sake of presentation we
denote the cardinalities of the two sets by s and c, respectively. Of course, we have that s + c = 256
because they represent all possibly byte-configurations. During the decoding phase, whenever we
encounter a continuer byte, we go on reading, otherwise we stop.

Integer Coding 11-7

The drawback of this approach is that for any x < 128 we use always 1 byte. Therefore if the set
S consists of very-small integers, we are wasting bits. Vice versa, if S consists of integers larger
than 128, then it could be better to enlarge the set of stoppers. Indeed nobody prevents us to change
the distribution of stoppers and continuers, provided that s + c = 256. Let us analyze how changes
the number of integers which can be encoded with one of more bytes, depending on the choice of s
and c:

• One byte can encode the first s integers;
• Two bytes can encode the subsequent sc integers.
• Three bytes can encode the subsequent sc2 integers.
• k bytes can encode sck−1 integers.

It is evident, at this point, that the choice of s and c depends on the distribution of the integers
to be encoded. For example, assume that we want to encode the values 0, . . . , 15 and they have
decreasing frequency; moreover, assume that the word-length is 3 bits (instead of 8 bits), so that
s + c = 23 = 8 (instead of 256).

Values
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

s = c = 4
000
001
010
011

100 000
100 001
100 010
100 011
101 000
101 001
101 010
101 011
110 000
110 001
110 010
110 011
111 000
111 001
111 010
111 011

s = 6, c = 2
000
001
010
011
100
101

110 000
110 001
110 010
110 011
110 100
110 101
111 000
111 001
111 010
111 011
111 100
111 101

s = c = 4 s = 6, c = 2
s - from 000 000
s - to 011 101
c - from 100 110
c - to 111 111

s 4 (4) 6 (6)
cs 16 (20) 12 (18)
c2 s 64 (86) 24 (42)

FIGURE 11.6: Example of (s, c)-encoding using two different values for s and c. In brackets we
show the starting value for all codewords having a given composition.

Table 11.6 shows how the integers smaller than 15 are encoded by using two different choices
for s and c: in the first case, the number of stoppers and continuers is 4; in the second case, the
number of stoppers is 6 and the number of continuers is 2. Notice that in both cases we correctly
have s+c = 8. We point out that in both cases, two words of 3 bits (i.e. 6 bits) are enough to encode
all the 15 integers; but, while in the former case we can encode only the first four values with one
word, in the latter the values encoded using one word are six. This can lead to a more compressed
sequence according to the skewness of the distribution of {1, . . . , 15}.

This shows, surprisingly, that can be advantageous to adapt the number of stoppers and continuers

11-8 Paolo Ferragina

to the probability distribution of S ’s values. Figure 11.7 further details this observation, by showing
the compression ratio as a function of s, for two different distributions ZIFF and AP, the former is
the classic Zipfian distribution (i.e. P[x] ≈ 1/x), the latter is the distribution derived from the words
of the Associated-Press collection (i.e. P[x] is the frequency of occurrence of the x-th most frequent
word). When s is very small, the number of high frequency values encoded with one byte is also
very small, but in this case c is large and therefore many words with low frequency will be encoded
with few bytes. As s grows, we gain compression in more frequent values and loose compression
in less frequent values. At some later point, the compression lost in the last values is larger than the
compression gained in values at the beginning, and therefore the global compression ratio worsens.
That point give us the optimal s value. In [1] it is shown that the minimum is unique and the authors
propose an efficient algorithm to calculate that optimal s.

FIGURE 11.7: An example of how compression rate varies according to the choice of s, given that
c = 256 − s.

11.5 Interpolative code

This is an integer-encoding technique that is ideal whenever the sequence S shows clustered occur-
rences of integers, namely subsequences which are concentrated in small ranges. This is a typical
situation which arises in the storage of posting lists of search engines [7]. Interpolative code is
designed in a recursive way by assuming that the integer sequence to be compressed consists of
increasing values: namely S ′ = s′1, . . . , s

′
n with s′i < s′i+1. We can turn the original problem to this

one, by just setting s′i =
∑i

j=1 s j.
At each iteration we know, for the current subsequence S ′l,r to be encoded, the following four

parameters:

• the left index l and the right index r delimiting the subsequence S ′l,r = {s′l , s′l+1, . . . , s
′
r};

• a lower-bound low to the lowest value in S ′l,r, and an upper-bound hi to the highest value
in S ′l,r, hence low ≤ s′l and hi ≥ s′r. The values low and hi do not necessarily coincide
with s′l and s′r are lower and upper estimates of them during the execution of the recursive
calls.

Integer Coding 11-9

Initially the subsequence to be encoded is the full sequence S ′[1, n], so that we have l = 1, r = n,
low = s′1 and hi = s′n. These four values are stored in the compressed file so that the decoder can
read them.

At each recursive call we first encode the middle element s′m, where m = b l+r
2 c, given the in-

formation available for the 4-tuple 〈l, r, low, hi〉, and then recursively encode the two subsequences
s′l , . . . , s

′
m−1 and s′m+1, . . . , s

′
r, by using a properly recomputed parameters 〈l, r, low, hi〉 for each of

them.
In order to succinctly encode s′m we deploy as much information as possible we can derive from

〈l, r, low, hi〉. Specifically, we observe that it is s′m ≥ low + m − l, because to the left of s′m we have
m − l distinct elements of S ′ and the smallest one is larger than low; and s′m ≤ hi − (r − m) (via a
similar argument). Thus s′m lies in the range [low + m − l, hi − r + m] so we encode not just s′m but
the difference between this value and its known lower bound (low + m − l) by using dlog2 Be bits,
where B = hi − low − r + l + 1 is the size of that interval. In this way, interpolative coding can
use very few bits per value whenever the sequence S ′l,r is dense. The pseudocode is given in Figure
11.1, where procedure BinaryCode(x, a, b) emits the binary encoding of (x− a) in dlog2(b− a + 1)e
bits, by assuming that x ∈ {a, a + 1, . . . , b − 1, b}.

Algorithm 11.1 Interpolative coding 〈S ′, l, r, low, hi〉
1: if r < l then
2: return the empty string;
3: end if
4: if l = r then
5: return BinaryCode(S ′[l], low, hi);
6: end if
7: Compute m = b l+r

2 c;
8: Compute the binary sequence A1 = BinaryCode(S ′[m], low + m − l, hi − r + m);
9: Compute the binary sequence A2 = Interpolative coding of 〈S ′, l,m − 1, low, S ′[m] − 1〉;

10: Compute the binary sequence A3 = Interpolative coding of 〈S ′,m + 1, r, S ′[m] + 1, hi〉;
11: Return the concatenation of A1 · A2 · A3;

With the exception of the values of the first iteration, which must be known to both the encoder
and the decoder, all values for the subsequent iterations can be easily derived from the previous
ones. In particular,

• for the subsequence s′l , . . . , s
′
m−1, the parameter low is the same of the previous step,

since s′l has not changed; and we can set hi = s′m − 1, since s′m−1 < s′m given that we
assumed the integers to be distinct and increasing;

• for the subsequence s′m+1, . . . , s
′
r, the parameter hi is the same as before, since s′r has not

changed; and we can set low = s′m + 1, since s′m+1 > s′m;
• the parameters l, r and n are recomputed accordingly.

Figure 11.8 shows a running example of the behavior of the algorithm. We conclude the descrip-
tion of Interpolative coding by noticing that the encoding of an integer s′i is not fixed but depends
on the distribution of the other integers in S ′. This reflects onto the original sequence S in such a
way that the same integer x may be encoded differently in its occurrences. This code is therefore
adaptive and, additionally, it is not prefix-free; these two specialties may turn it better than Huffman
code, which is optimal among the class of static prefix-free codes.

11-10 Paolo Ferragina

S = 1 2 3 5 7 9 11 15 18 19 20 21

1 2 3 5 7 11 15 18 19 20 21

1 2 5 7 11 15 19 20 21

NO BITS
EMITTED 7 15 NO BITS

EMITTED

n = 12 l = 1 r = 12 low = 1 hi = 21

n = 5 l = 1 r = 5 low = 1 hi = 8 n = 6 l = 7 r = 12 low = 10 hi = 21

n = 6 l = 7 r = 12
low = 10 hi = 21

n = 2 l = 4 r = 5
low = 4 hi = 8

n = 2 l = 1 r = 2
low = 1 hi = 2

n = 3 l = 10 r = 12
low = 19 hi = 21

FIGURE 11.8: The blue and the red boxes are, respectively, the left and the right subsequence of
each iteration. In the green boxes is indicated the integer s′m to be encoded. We show explicitly also
the number n = r− l+1 of integers to be encoded, for illustrative purposes. The procedure performs,
in practice, a preorder traversal of a balanced binary tree whose leaves are the integers in S . When
it encounters a subsequence of the form [low, low + 1, . . . , low + n − 1], it doesn’t emit anything.
Thus, the items are encoded in the following order (in brackets the actual number encoded): 9 (3),
3 (0), 5 (1), 7 (1), 18 (6), 11 (1), 15 (4).

11.6 Elias-Fano code

Unlike Interpolative coding, the code described in this section does not depend on the distribution
of the integers to be encoded and, very importantly, it can be indexed (by proper compressed data
structures) in order to efficiently access randomly the encoded integers. This is a positive feature
in some settings, and a negative features in other settings. It is positive in the context of storing
inverted lists of search engines and adjacency lists of large graphs (as it occurs in Facebook’s Uni-
corn system); it is negative whenever integers occur clustered and space is a main concern of the
underlying applications. Some authors [6] have recently proposed a (sort of) dynamic-programming
approach that turns Elias-Fano coding into a distribution-sensitive code, like Interpolative code, thus
combining its efficiency in randomly access the encoded integers and its space succinctness which
derives from the possible clustering of these integers. Experiments have shown that Interpolative
coding is only 2%− 8% smaller than the optimized Elias-Fano code but up to 5.5 times slower; and
Variable-byte code is 10% − 40% faster than the optimized Elias-Fano code but > 2.5 times larger
in space. This means that the Elias-Fano code is a competitive choice whenever an integer sequence
must be compressed and (randomly) accessed.

As for the Interpolative code, Elias-Fano code works on a monotonically increasing sequence
S ′ = s′1, . . . , s

′
n with s′i < s′i+1 and we set the size of the universe u = s′n + 1. We assume that each

integer s′i is represented in binary with b = dlog2 ue bits. We partition the binary representation of
s′i into two blocks: one is denoted by H(s′i) and consists of the h = dlog ne most significant bits (the
leftmost ones), whereas the other block is denoted by L(s′i) and consists of the ` = b−h = dlog2(u/n)e
less significant bits (the rightmost ones). It is b = ` + h.

The blocks L(s′i) are concatenated all together, in the order i = 1, 2, . . . , n, thus forming the binary
sequence L whose length is n` = n dlog2(u/n)e bits.

The blocks H(s′i) are encoded in an apparently strange way whose motivation will be clear when
we will evaluate the overall space occupancy of the code. We start by observing that each block

Integer Coding 11-11

H(s′i) assumes values in {0, 1, 2, . . . , 2h − 1}, because it consists of h bits, each of these values is
called bucket. So the Elias-Fano code iterates over the buckets and constructs the binary sequence
H by writing, for each bucket j, the negative unary representation of the number x of elements s′i
for which H(s′i) = j: i.e., it writes 1x0 (so that 1 is repeated x times; with x = 0 if no H(s′i) = j).

The written binary sequence has n bits set to 1, because every s′i generates one bit set to 1
in the negative unary representation; and a number of 0 which is equal to the number of writ-
ten buckets, because every 0 delimits the encoding of a bucket in the negative unary represen-
tation. Now, since the maximum bucket value is bu/2`c, then the number 0 can be bounded by
bu/2dlog2 u/nec ≤ u/2log2(u/n) = n. Just as an example, if u = 19 and we use ` = 4 bits for the less
significant part, then bu/2`c = b19/16c = 1 which correctly states that the maximum bucket value is
1 (hence two configurations, 0 and 1) and, indeed, the most significant part of the integer encodings
is formed by 1 bit because b = dlog2 ue = 5 bits.

THEOREM 11.1 The Elias-Fano encoding of a monotonically increasing sequence of n in-
tegers in the range [0, u) takes less than 2n + n dlog2

u
n e bits, regardless of their distribution. This

is almost optimal if the integers are uniformly distributed in [0, u); precisely, less than 2 bits per
integer in addition to the optimal encoding of dlog2(u/n)e.

Figure 11.9 shows a running example of the coding process.

1 = 000 01
4 = 001 00
7 = 001 11

18 = 100 10
24 = 110 00
26 = 110 10
30 = 111 10
31 = 111 11

L = 0100111000101011

bucket 0 1 2 3 4 5 6 7

H = 1011000100110110

FIGURE 11.9: The Elias-Fano’s code for the integer sequence S ′ = 1, 4, 7, 18, 24, 26, 30, 31. In this
case u = 32 and n = 8, so that log2 u = 5 bits and ` = dlog u

n e = 2. Notice that the value j = 1
occurs twice as H(s′i), namely for the integers 4 and 7, so the binary sequence H encodes j = 1 as
110, instead the value j = 3 does not occur as H(s′i) of any integer s′i and so the binary sequence H
encodes j = 3 as 0. The binary sequence H consists of 2h ≤ n = 8 unary sequences (and thus 8 bits
set to 0) and n = 8 bits set to 1.

We can augment the Elias-Fano’s coding of S ′ to support efficiently the following two operations:

• Access(i) which, given an index 1 ≤ i ≤ n, returns s′i ;
• NextGEQ(x) which, given an integer 0 ≤ x ≤ u, returns the smallest element s′i which is

greater than or equal to x.

We need to augment H with an auxiliary data structure that efficiently, in time and space, answers
a well-known primitive: Select1(p,H) which returns the position in H (counting from 1) of the p-th
bit set to 1 (similarly it is defined Select0(p,H)). We do not want to enter here into the technicalities
of the Select primitive, we content ourselves in pointing out that this query can be answered in
constant time and o(|H|) = o(n) bits of extra space (see Chapter 15 for details on compressed data
structures for supporting the Select primitive, or [5]). Given this data structure built upon the binary
array H the two operations above can be implemented in O(1) time as follows.

11-12 Paolo Ferragina

Access(i) needs to concatenate the higher and the lower bits of s′i present in L and H, respectively.
The block L(s′i) is easily retrieved by accessing the i-th block of ` bits in the binary sequence L. The
retrieval of H(s′i) is a little bit more complicated and boils down to determine in H the negative
unary sequence referring to H(s′i). Since we do not know s′i but just i, this corresponds to find the
negative unary sequence which includes the i-th bit set to 1, and then derive the rank of that unary
sequence and finally encode it with h = dlog2 ne bits. Consequently, in order to derive H(s′i) we
compute Select1(i,H) −i and encode it with h = dlog2 ne bits. In fact, Select1(i,H) returns the
position in H of the i-th 1 denoting s′i (counting from 1); then, we substract i to obtain the number
of 0s occurring before that 1. By construction this value indicates the rank of the bucket which
contains the 1 of s′i .

As an example consider Figure 11.9 and execute Access(5). The fifth 1 corresponding to the
integer s′5 in H occurs at position 11 and falls in the 6th bucket; and in fact, H(s′5) = 110 (note that
6 = 110). Applying the algorithm above we get: L(s′5) = 00 because this is the fifth block of ` = 2
bits in L; and the retrieval of H(s′5) is obtained by computing Select1(5,H) −5 = 11 − 5 = 6, and
by encoding 6 in h = dlog2 ne = 3 bits as H(s′5) = 110. We have thus obtained s′5 = 110 · 00 = 24.

NextGEQ(x) is implemented as follows. First we observe that Select0(H(x)) gives the position
(counting from 1) of the bit 0 ending the negative unary sequence representing H(x)−1 (we assume
that the position is 0 if H(x) = 0). Thus, p = Select0(H(x)) + 1 is the starting position in array H
of the negative unary sequence representing H(x) and thus of the elements whose highest bits are
equal to H(x) (if any). If the bit H[p] = 0, then it is empty the bucket containing elements in S ′

with the same highest bits as x, and thus we have to take the first element of the next non empty
bucket (which has highest bits larger than H(x)): this is the element of rank p − H(x) in S ′, which
may be retrieved with Access(p − H(x)). Otherwise the bucket is non empty, its elements have the
same highest bits as x, and hence the element answering NextGEQ(x) is identified by scanning the
elements at position p − H(x) and beyond, by comparing the corresponding lowest bits in L until
an element y with L(y) ≥ L(x) is found in the bucket of x or the next bucket is reached (hence a
bit 0 in H is passed over). And in this latter case, the first element of the next bucket is returned
being surely larger than x. These elements are 2` = Θ(u/n), so their scan would take O(u/n) time in
the worst case. We could speed up this search by performing a binary search over that bucket, thus
taking O(log(u/n)) time.

Another way to compute NextGEQ(x) could consist of performing a binary search over the com-
pressed S ′ by means of Access operation. The previous description, although more involved, is
more efficient in that it uses few (constant) random memory accesses and a short memory scan.

As an example consider again Figure 11.9 and assume to execute NextGEQ(25) (where 25 =

11001). We compute p = Select0(110) + 1 = Select0(6) + 1 = 10 + 1 = 11. Since H[11] = 1, the
bucket is non empty and thus we scan (in parallel) L from the `-group of bits at position p−H(x) =

11 − 6 = 5, until we find in the bucket of 110 the lowest bits 10, since this value is larger than 01.
This is the integer 26.

Now assume to execute NextGEQ(11) (where 11 = 01011). We compute p = Select0(010)+1 =

Select0(2) + 1 = 5 + 1 = 6. Since H[6] = 0, we need to find the first element of the next non empty
bucket. This is the element of rank p − H(x) = 6 − 2 = 4 in S ′, namely 18.

FACT 11.8 It is possible to index the Elias-Fano encoding of a monotonically increasing se-
quence of n integers in the range [0, u), taking o(n) extra bits and support the random access to any
of these integers (i.e. Access(i) operation) in constant time. Other operations (such as NextGEQ(x))
may be supported efficiently, too.

A comment is in order at this point. Since Elias-Fano code represents a monotone sequence
of integers regardless of its regularities, clustered sequences get significantly worse compression

Integer Coding 11-13

than what Interpolative code is able to achieve. Take, as an illustrative example, the sequence
S ′ = (1, 2, . . . , n − 1, u − 1) of n integers. This sequence is highly compressible since the length of
the first run and the value of u−1 can be encoded in O(log u) bits each. Conversely Elias-Fano code
requires 2 + log2(u/n) bits per element. Some authors [6] have studied how to turn the Elias-Fano
code into an distribution-sensitive code that takes advantage of the regularities present into the input
sequence S ′. They proposed two approaches. A simple one based on a two-level storage scheme:
the sequence S ′ is partitioned into n/m chunks of m integers each, then the “first level” is created by
using Elias-Fano to encode the last integer of each chunk (we expect that these m integers are well
interspersed in [0, u)); then, the “second level” is created by using a specific Elias-Fano code on
each chunk whose integers are delta-encoded with respect to the last integer of the previous chunk
(available in the first level). This very simple scheme improves the space occupancy of the classic
Elias-Fano code (which operates on the entire S ′) by up to 30% but it slows down the decompression
time up to 10%; as far as Interpolative code is concerned, it worsen its space occupancy by up to
10% but it achieves three/four times faster decompression. A more sophisticated approach, based
on a Shortest-Path interpretation of Elias-Fano’s encoding of S ′ on a suitably constructed graph,
comes even closer in space to Interpolative code and still achieves very fast decompression.

11.7 Concluding remarks

We wish to convince the reader about the generality of the Integer Compression problem, because
more and more frequently other compression problems, such as the classic Text Compression, boil
down to compressing sequences of integers. An example was given by the LZ77-compressor in
Chapter 10. Another example can be obtained by looking at any text T as a sequence of tokens,
being them words or single characters; each token can be represented with an integer (aka token-
ID), so that the problem of compressing T can be solved by compressing the sequence of token-IDs.
In order to better deploy one of the previous integer-encoding schemes, one can adopt an interesting
strategy which consists of sorting the tokens by decreasing frequency of occurrence in T , and then
assign as token-ID their rank in the ordered sequence. This way, the more frequent is the occurrence
of the token in T , the smaller is the token-ID, and thus the shorter will be the codeword assigned to it
by anyone of the previous integer-encoding schemes. Therefore this simple strategy implements the
golden rule of data compression which consists of assigning short codewords to frequent tokens. If
the distribution of the tokens follows one of the distributions indicated in the previous sections, those
codewords have optimal length; otherwise, the codewords may be sub-optimal. In [4] it is shown
that, if the i-th word follows a Zipfian distribution, such as P[i] = c(1/i)α where c is a normalization
constant and α is a parameter depending on the input text, then the previous algorithm using δ-
coding achieves a performance close to the entropy of the input text.

References

[1] Nieves R. Brisaboa, Antonio Farina, Gonzalo Navarro, José R. Paramá. Lightweight

natural language text compression. Information Retrieval, 10:1-33, 2007.

[2] Alistair Moffat. Compressing Integer Sequences and Sets. In Encyclopedia of Algorithms.
Springer, 2009.

[3] Peter Fenwick. Universal Codes. In Lossless Data Compression Handbook. Academic

Press, 2003.

[4] Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze. Introduction to
Information Retrieval. Cambridge University Press, 2008.

[5] Gonzalo Navarro and Eliana Providel. Fast, Small, Simple Rank/Select on Bitmaps. In

Procs of International Symposium on Experimental Algorithms (SEA), pp. 295-306, 2012.

11-14 Paolo Ferragina

[6] Giuseppe Ottaviano and Rossano Venturini. Partitioned Elias-Fano indexes. In Procs
of ACM SIGIR Conference, pp. 273-282, 2014.

[7] Hao Yan, Shuai Ding, Torsten Suel. Inverted Index Compression and Query Processing

with Optimized Document Ordering. In Procs of WWW, pp. 401-410, 2009.

[8] Ian H. Witten, Alistair Moffat, Timoty C. Bell. Managing Gigabytes. Morgan Kauffman,

second edition, 1999.

12
Statistical Coding

12.1 Huffman coding . 12-1
Canonical Huffman coding • Bounding the length of
codewords

12.2 Arithmetic Coding . 12-10
Bit streams and dyadic fractions • Compression
algorithm • Decompression algorithm • Efficiency •

Arithmetic coding in practice • Range Coding∞

12.3 Prediction by Partial Matching∞ . 12-22
The algorithm • The principle of exclusion • Zero
Frequency Problem

The topic of this chapter is the statistical coding of sequences of symbols (aka texts) drawn from
an alphabet Σ. Symbols may be characters, in this case the problem is named text compression, or
they can be genomic-bases thus arising the Genomic-DB compression problem, or they can be bits
and in this case we fall in the realm of classic data compression. If symbols are integers, then we
have the Integer coding problem, addressed in the previous Chapter, which can be solved still with
a statistical coder by just deriving statistical information on the integers occurring in the sequence
S . In this latter case, the code we derive is an optimal prefix-free code for the integers of S , but its
coding/decoding time is larger than the one incurred by the integer encoders of the previous Chapter,
and indeed, this is the reason for their introduction.

Conceptually, statistical compression may be viewed as consisting of two phases: a modeling
phase, followed by a coding phase. In the modeling phase the statistical properties of the input
sequence are computed and a model is built. In the coding phase the model is used to compress the
input sequence. In the first sections of this Chapter we will concentrate only on the second phase,
whereas in the last section we will introduce a sophisticated modeling technique. We will survey
the best known statistical compressors: Huffman coding, Arithmetic Coding, Range Coding, and
finally Prediction by Partial Matching (PPM), thus providing a pretty complete picture of what can
be done by statistical compressors. The net result will be to go from a compression performance
that can be bounded in terms of 0-th order entropy, namely an entropy function depending on the
probability of single symbols (which are therefore considered to occur i.i.d.), to the more precise
k-th order entropy which depends on the probability of k-sized blocks of symbols and thus models
the case e.g. of Markovian sources.

12.1 Huffman coding

First published in the early ’50s, Huffman coding was regarded as one of the best methods for
data compression for several decades, until the Arithmetic coding made higher compression rates
possible at the end of ’60s (see next chapter for a detailed discussion about this improved coder).

c© Paolo Ferragina, 2009-2020 12-1

12-2 Paolo Ferragina

Huffman coding is based upon a greedy algorithm that constructs a binary tree whose leaves are
the symbols in Σ, each provided with a probability P[σ]. At the beginning the tree consists only
of its |Σ| leaves, with probabilities set to the P[σ]s. These leaves constitute a so called candidate
set, which will be kept updated during the construction of the Huffman tree. In a generic step, the
Huffman algorithm selects the two nodes with the smallest probabilities from the candidate set, and
creates their parent node whose probability is set equal to the sum of the probabilities of its two
children. That parent node is inserted in the candidate set, while its two children are removed from
it. Since each step adds one node and removes two nodes from the candidate set, the process stops
after |Σ| − 1 steps, time in which the candidate set contains only the root of the tree. The Huffman
tree has therefore size t = |Σ| + (|Σ| − 1) = 2|Σ| − 1.

a
0.005

b
0.1

c
0.15

d
0.3

e
0.25

f
0.15

(a) Leaves of the Huffman tree

a
0.005

b
0.1

c
0.15

d
0.3

e
0.25

f
0.15

0

0.15
1

(b) The first merging step

a
0.005

b
0.1

c
0.15

d
0.3

e
0.25

f
0.15

0

0.15

x

0

0.30

y

0

0.60

0

0

0.40
1

1

1

1

1

(c) The final Huffman tree

FIGURE 12.1: Constructing the Huffman tree for the alphabet Σ = {a, b, c, d, e, f }.

Figure 12.1 shows an example of Huffman tree for the alphabet Σ = {a, b, c, d, e, f }. The first
merge (on the left) attaches the symbols a and b as children of the node x, whose probability is set
to 0.05 + 0.1 = 0.15. This node is added to the candidate set, whereas leaves a and b are removed
from it. At the second step the two nodes with the smallest probabilities are the leaf c and the node
x. Their merging updates the candidate set by deleting x and c, and by adding their parent node y
whose probability is set to be 0.15 + 0.15 = 0.3. The algorithm continues until there is left only one
node (the root) with probability, of course, equal to 1.

In order to derive the Huffman code for the symbols in Σ, we assign binary labels to the tree
edges. The typical labeling consists of assigning 0 to the left edge and 1 to the right edge spurring
from each internal node. But this is one of the possible many choices. In fact a Huffman tree can
originate 2|Σ|−1 labeled trees, because we have 2 labeling choices (i.e. 0-1 or 1-0) for the two edges
spurring from each one of the |Σ| − 1 internal nodes. Given a labeled Huffman tree, the Huffman
codeword for a symbol σ is derived by taking the binary labels encountered on the downward path
that connects the root to the leaf associated to σ. This codeword has a length L(σ) bits, which
corresponds to the depth of the leaf σ in the Huffman tree. The Huffman code is prefix-free because
every symbol is associated to a distinct leaf and thus no codeword is the prefix of another codeword.

We observe that the choice of the two nodes having minimum probability may be not unique,
and the actual choices available may induce codes which are different in the structure but, nonethe-
less, they have all the same optimal average codeword length. In particular these codes may offer
a different maximum codeword length. Minimizing this value is useful to reduce the size of the
compression/decompression buffer, as well as the frequency of emitted symbols in the decoding
process. Figure 12.2 provides an illustrative example of these multiple choices.

A strategy to minimize the maximum codeword length is to choose the two oldest nodes among

Statistical Coding 12-3

0.1 0.1 0.2 0.2 0.4

0.2 0.4

1

0.6

0.1 0.1 0.2 0.2 0.4

0.2

0.4

0.6

1

FIGURE 12.2: An example of two Huffman codes having the same average codeword length 22
10 ,

but different maximum codeword length.

the ones having same probability and belonging to the current candidate set. Oldest nodes means
that they are leaves or they are internal nodes that have been merged farther in the past than the
other nodes in the candidate set. This strategy can be implemented by using two queues: the first
one contains the symbols ordered by increasing probability, the second queue contains the internal
nodes in the order they are created by the Huffman algorithm. It is not difficult to observe that the
second queue is sorted by increasing probability too. In the presence of more than two minimum-
probability nodes, the algorithm looks at the nodes in the first queue, after which it looks at the
second queue. Figure 12.2 shows on the left the tree resulting by this algorithm and, on the right,
the tree obtained by using an approach that makes an arbitrary choice.

The compressed file originated by Huffman algorithm consists of two parts: the preamble which
contains an encoding of the Huffman tree, and thus has size Θ(|Σ|), and the body which contains
the codewords of the symbols in the input sequence S . The size of the preamble is usually dropped
from the evaluation of the length of the compressed file; even if this might be a significant size
for large alphabets. So the alphabet size cannot be underestimated, and it must be carefully taken
into account. In the rest of the section we will concentrate on the evaluation of the size in bits for
the compressed body, and then turn to the efficient encoding of the Huffman tree by proposing the
elegant Canonical Huffman version which offers space succinctness and very fast decoding speed.

Let LC =
∑
σ∈Σ L(σ) P[σ] be the average length of the codewords produced by a prefix-free code

C, which encodes every symbol σ ∈ Σ in L(σ) bits. The following theorem states the optimality of
Huffman coding:

THEOREM 12.1 If C is an Huffman code, then LC is the shortest possible average length
among all prefix-free codes C′, namely it is LC ≤ LC′ .

To prove this result we first observe that a prefix-free code can be seen as a binary tree (more
precisely, we should say binary trie), so the optimality of the Huffman code can be rephrased as
the minimality of the average depth of the corresponding binary tree. This latter property can be
proved by deploying the following key lemma, whose proof is left to the reader who should observe
that, if the lemma does not hold, then a not minimum-probability leaf occurs at the deepest level
of the binary tree; in which case it can be swapped with a minimum-probability leaf (therefore not
occurring at the deepest level) and thus reduce the average depth of the resulting tree.

LEMMA 12.1 Let F be a set of binary trees whose average depth is minimum among all
binary trees with |Σ| leaves. Then there exists a tree T in F in which two leaves with minimum
probabilities will be at the greatest depth, children of the same parent node.

12-4 Paolo Ferragina

All trees in F have surely two leaves with minimum probabilities at the greatest depth, otherwise
a simple swap between a leaf at the greatest depth and not of minimum probability with a leaf
of minimum probability but not at greatest depth, would give a tree of smaller average depth thus
contraddicting the fact that all trees in F have minimum average depth. However, the property that
the two leaves with minimum probabilities at the greatest depth are children of the same parent node
does not necessarely hold for all trees in F . Take for example the case of five symbols {a, b, c, d, e}
having probability [.1, .1, .11, .11, .58]. The Huffman tree would merge (a, b) and then (c, d) making
both of them children of the same parent, which is a sibling of the leaf e. Another tree with minimum
average depth could be built by merging (a, c) and then (b, d) making both of them children of the
same parent, which is again a sibling of the leaf e. But in this last tree, the two leaves with minimum
probabilities will be not children of the same parent node. Conversely, at least one tree in F will
satify both properties as stated in the Fact above.

Let us assume that the alphabet Σ consists of n symbols, and symbols x and y have the smallest
probability. Let TC be the binary tree generated by a code C applied onto this alphabet; and let us
denote by RC the reduced tree which is obtained by dropping the leaves for x and y. Thus the parent,
say z, of leaves x and y is a leaf of RC with probability P[z] = P[x] + P[y]. So the tree RC is a tree
with n − 1 leaves corresponding to the alphabet Σ − {x, y} ∪ {z} (see Figure 12.3).

`

z

x y

TC
`

z
P[x] + P[y]

RC

FIGURE 12.3: Relationship between a tree T and its corresponding reduced tree R.

LEMMA 12.2 The relation between the average depth of the tree T with the one of its reduced
tree R is given by the formula LT = LR + (P[x] + P[y]), where x and y are the symbols having the
smallest probability.

Proof It is enough to write down the equalities for LT and LR, by summing the length of all root-
to-leaf paths multiplied by the probability of the landing leaf. So we have LT =

(∑
σ,x,y P[σ] L(σ)

)
+

(P[x]+P[y])(LT (z)+1), where z is the parent of x and y and thus LT (x) = LT (y) = LT (z)+1. Similarly,
we can write LR =

(∑
σ,x,y P[σ]L(σ)

)
+ L(z)(P[x] + P[y]). So the thesis follows.

The optimality of Huffman code (claimed in the previous Theorem 12.1) can now be proved by
induction on the number n of symbols in Σ. The base n = 2 is obvious, because any prefix-free
code must assign at least one bit to |Σ|’s symbols; therefore Huffman is optimal because it assigns
the single bit 0 to one symbol and the single bit 1 to the other.

Let us now assume that n > 2 and, by induction, assume that Huffman code is optimal for an
alphabet of n − 1 symbols. Take now |Σ| = n, and let C be an optimal code for Σ and its underlying
distribution. Our goal will be to show that LC = LH , so that Huffman is optimal for n symbols too.

Statistical Coding 12-5

Clearly LC ≤ LH because C was assumed to be an optimal code for Σ. Now we consider the two
reduced trees, say RC and RH , which can be derived from TC and TH , respectively, by dropping the
leaves x and y with the smallest probability and leaving their parent z. By Lemma 12.1 (for the
optimal C) and the way Huffman works, this reduction is possible for both trees TC and TH . The
two reduced trees define a prefix-code for an alphabet of n − 1 symbols; so, given the inductive
hypothesis, the code defined by RH is optimal for the “reduced” alphabet Σ ∪ {z} − {x, y}. Therefore
LRH ≤ LRC over this “reduced” alphabet. By Lemma 12.2 we can write LH = LRH + P[x] + P[y]
and, according to Lemma 12.1, we can write LC = LRC + P[x] + P[y]. So it turns out that LH ≤ LC

which, combined with the previous (opposite) inequality due to the optimality of C, gives LH = LC .
This actually means that Huffman is an optimal code also for an alphabet of n symbols, and thus
inductively proves that it is an optimal code for any alphabet size.

We remark that this statement does not mean that C = H, and indeed do exist optimal prefix-free
codes which cannot be obtained via the Huffman algorithm (see Figure 12.4). Rather, the previous
statement indicates that the average codeword length of C and H is equal. The next fundamental
theorem provides a quantitative upper-bound to this average length.

0.1 0.1 0.1 0.1

0.3 0.3

(a) Huffman

0.1 0.1 0.1 0.1

0.3 0.3

no Huffmanno Huffman

(b) Not obtainable by Huffman algorithm

FIGURE 12.4: Example of an optimal code not obtainable by means of the Huffman algorithm.

THEOREM 12.2 LetH be the entropy of the source emitting the symbols of an alphabet Σ, of
size n, henceH =

∑n
i=1 P[σi] log2

1
P[σi]

. The average codeword length of the Huffman code satisfies
the inequalitiesH ≤ LH < H + 1.

This theorem states that the Huffman code can loose up to 1 bit per compressed symbol with
respect to the entropyH of the underlying source. This extra-bit is a lot or a few depending on the
value ofH . ClearlyH ≥ 0, and it is equal to zero whenever the source emits just one symbol with
probability 1 and all the other symbols with probability 0. Moreover it is also H ≤ log2 |Σ|, and it
is equal to this upper bound for equiprobable symbols. As a result if H � 1, the Huffman code is
effective and the extra-bit is negligible; otherwise, the distribution is skewed, and the bit possibly
lost by the Huffman code makes it inefficient. On the other hand Huffman, as any prefix-free code,
cannot encode one symbol in less than 1 bit, so the best compression ratio that Huffman can obtain
for each symbol is to encode it from log2 |Σ| bits into 1 bit, and therefore a compression ratio which
is surely ≥ 1

log2 |Σ| . If Σ is ASCII, hence |Σ| = 256, Huffman cannot achieve a compression ratio for
any sequence S which is less than 1/8 = 12, 57%.

12-6 Paolo Ferragina

In order to overcome this limitation, Shannon proposed in its famous article of 1948 a sim-
ple blocking scheme which considers an extended alphabet Σk whose symbols are substrings of
k-symbols. This way, the new alphabet has size |Σ|k and thus, if we use Huffman on the symbol-
blocks, the extra-bit lost is for a block of size k, rather than a single symbol. This actually means
that we are loosing a fractional part of a bit per symbol, namely 1/k, and this is indeed negligible
for larger and larger values of k.

So why not taking longer and longer blocks as symbols of the new alphabet Σk? This would
improve the coding of the input text, because of the blocking, but it would increase the encoding
of the Huffman tree which constitutes the preamble of the compressed file: in fact, as k increases,
the number of leaves/symbols also increases as |Σ|k. The compressor should find the best trade-off

between these two quantities, by possibly trying several values for k. This is clearly possible, but
yet it is un-optimal; Section 12.2 will propose a provably optimal solution to this problem.

12.1.1 Canonical Huffman coding

Let us recall the two main limitations incurred by the Huffman code:

- It has to store the structure of the tree and this can be costly if the alphabet Σ is large, as
it occurs when coding blocks of symbols, possibly words.

- Decoding is slow because it has to traverse the whole tree for each codeword, and every
edge of the path (bit of the codeword) may elicit a cache miss. Thus the total number of
cache misses could be equal to the total number of bits constituting the compressed file.

There is an elegant variant of the Huffman code, denoted as Canonical Huffman, that alleviates
these problems by introducing a special restructuring of the Huffman tree that allows extremely fast
decoding and a small memory footprint. This will be the topic of this subsection.

The Canonical Huffman code works as follows:

1. Compute the codeword length L(σ) for each symbol σ ∈ Σ according to the classical
Huffman’s algorithm.

2. Construct the array num which stores in the entry num[`] the number of symbols having
Huffman codeword of `-bits.

3. Construct the array symb which stores in the entry symb[`] the list of symbols having
Huffman codeword of `-bits.

4. Construct the array fcwhich stores in the entry fc[`] the first codeword of all symbols
encoded with ` bits;

5. Assign consecutive codewords to the symbols in symb[`], starting from the codeword
fc[`].

Figure 12.5 provides an example of an Huffman tree which satisfies the Canonical property. The
num array is actually useless, so that the Canonical Huffman needs only to store fc and symb arrays,
which means at most max2 bits to store fc (i.e. max codewords of length at most max each), and
at most (|Σ| + max) log2 (|Σ| + 1) bits to encode table symb. Consequently the key advantage of
Canonical Huffman is that we do not need to store the tree-structure via pointers, with a saving of
Θ(|Σ| log2 (|Σ| + 1)) bits.

The other important advantage of Canonical Huffman resides in its decoding procedure which
does not need to percolate the Huffman tree, but it only operates on the two available arrays, thus
inducing at most two cache-misses per decoded symbol.1 The pseudo-code is summarized in the

1It is reasonable to assume that the number of cache-misses is just 1 because the array fc is small and can be fit in cache.

Statistical Coding 12-7

a
0.005

b
0.15

c
0.15

d
0.2

e
0.2

f
0.250

0

0

0

0

1

1

1

1

1

symb code `
a 0000 4
b 0001 4
c 001 3
d 01 2
e 10 2
f 11 2

`
symb

num fc
0 1 2

1 0 2
2 d e f 3 1
3 c 1 1
4 a b 2 0

FIGURE 12.5: Example of canonical Huffman coding.

following 6 lines:

v = next_bit();

l = 1;

while(v < fc[l])

v = 2v + next_bit();

l++;

return symb[l, v-fc[l]];

A running example of the decoding process is given un Figures 12.6–12.7. Let us assume that
the compressed sequence is 01. The function next bit() reads the incoming bit to be decoded,
namely 0. At the first step (Figure 12.6), we have ` = 1, v = 0 and fc[1] = 2; so the while condition
is satisfied (because v = 0 < 2 = fc[1]) and therefore ` is incremented to 2 and v gets the next bit
1, thus assuming the value v = 01 = 1. At the second step (Figure 12.7), the while condition is no
longer satisfied because v = 1 < fc[2] is false and the loop has to stop. The decoded codeword has
length ` = 2 and, since v − fc[2] = 0, the algorithm returns the first symbol of symb[2] = D.

a
0.005

b
0.15

c
0.15

d
0.2

e
0.2

f
0.250

0

0

0

0

1

1

1

1

1

symb code `
a 0000 4
b 0001 4
c 001 3
d 01 2
e 10 2
f 11 2

`
symb

num fc
0 1 2

1 0 2
2 d e f 3 1
3 c 1 1
4 a b 2 0

FIGURE 12.6: First Step of decoding 01 via the Canonical Huffman of Figure 12.5.

A subtle comment is in order at this point, the value fc[1] = 2 seems impossible, because we
cannot represent the value 2 with a codeword consisting of one single bit. This is a special value

12-8 Paolo Ferragina

a
0.005

b
0.15

c
0.15

d
0.2

e
0.2

f
0.250

0

0

0

0

1

1

1

1

1

symb code `
a 0000 4
b 0001 4
c 001 3
d 01 2
e 10 2
f 11 2

`
symb

num fc
0 1 2

1 0 2
2 d e f 3 1
3 c 1 1
4 a b 2 0

FIGURE 12.7: Second Step of decoding 01 via the Canonical Huffman of Figure 12.5.

because this way fc[1] will be surely larger than any codeword of one bit, hence the Canonical
Huffman algorithm will surely fetch another bit in the while-cycle.

The correctness of the decoding procedure can be inferred informally from Figure 12.8. The
while-guard v < fc[`] actually checks whether the current codeword v is to the left of fc[`] and
thus it is to the left of all symbols which are encoded with ` bits. In the figure this corresponds to
the case v = 0 and ` = 4, hence v = 0000 and fc[4] = 0001. If this is the case, since the Canonical
Huffman tree is skewed to the left, the codeword to be decoded has to be longer and thus a new bit
is fetched by the while-body. In the figure this corresponds to fetch the bit 1, and thus set v = 1 and
` = 5, so v = 00001. In the next step the while-guard is false, v ≥ fc[`] (as indeed fc[5] = 00000),
and thus v lies to the right of fc[`] and can be decoded by looking at the symbols symb[5].

0

0

0

0 1

10
cw

firstcode

firstcode

firstcode

truncating here
firstcode 0 0 0 0 0
cw 0 0 0 0 1
firstcode 0 0 0 1

truncating here

FIGURE 12.8: Tree of codewords.

The only issue it remains to detail is how to get a Canonical Huffman tree, whenever the under-
lying symbol distribution does not induce one with such a property. Figure 12.5 actually derived an
Huffman tree which was canonical, but this is not necessarily the case. Take for example the distri-
bution: P[a] = P[b] = 0.05, P[c] = P[g] = 0.1, P[d] = P[f] = 0.2, P[e] = 0.3, as shown in Figure
12.9. The Huffman algorithm on this tree generates a non Canonical tree, which can be turned into

Statistical Coding 12-9

a
0.05

b
0.05

c
0.1

d
0.2

e
0.3

f
0.2

g
0.1

0

0.1
1

1

1

0

1

0

0 1

0.3
10

0.2
0

0.4

symb code `
a 0000 4
b 0001 4
c 001 3
d 01 2
e 10 2
f 110 3
g 111 3

`
symb

num fc
0 1 2

1 0 2
2 d e 2 2
3 c f g 3 1
4 a b 2 0

FIGURE 12.9: From Huffman tree to a Canonical Huffman Tree.

a Canonical one by means of the following few lines of pseudo-code, in which max indicates the
longest codeword length assigned by the Huffman algorithm:

fc[max]=0;

for(l= max-1; l>=1; l--)

fc[l]=(fc[l+1] + num[l+1])/2;

There are two key remarks to be done before digging into the proof of correctness of the algo-
rithm. First, fc[`] is the value of a codeword consisting of ` bits, so the reader should keep in
mind that fc[5] = 4 means that the corresponding codeword is 00100, which means that the binary
representation of the value 4 is padded with zeros to have length 5. Second, since the algorithm sets
fc[max] = 0, the longest codeword is a sequence of max zeros, and so the tree built by the Canonical
Huffman is totally skewed to the left. If we analyze the formula that computes fc[`] we can guess
the reason of its correctness. The pseudo-code is reserving num[`+1] codewords of length `+1 bits
to the symbols in symb[` + 1] starting from the value fc[` + 1]. The first unused codeword of ` + 1
bits is therefore given by the value fc[`+ 1] + num[`+ 1]. So the formula then divides this value by
2, which corresponds to dropping the last (` + 1)-th bit from the binary encoding of that number. It
can be proved that the resulting sequence of `-bits can be taken as the first-codeword fc[`] because
it does not prefix any other codeword already assigned. The “reason” can be derived graphically by
looking at the binary tree which is being built by Canonical Huffman. In fact, the algorithm is taking
the parent of the node at depth `+ 1, whose binary-path represents the value fc[`+ 1] + num[`+ 1].
Since the tree is a fully binary and we are allocating leaves in the tree from left to right, this node is
always a left child of its parent, so its parent is not an ancestor of any (` + 1)-bit codeword assigned
before.

In Figure 12.9 we notice that fc[1] = 2 which is an impossible codeword because we cannot
encode 2 in 1 bit; nevertheless this is the special case mentioned above that actually encodes the
fact that no codeword of that length exists, and thus allows the decoder to find always v < fc[1]
after having read just one single bit, and thus execute next bit() to fetch another bit from the
input and thus consider a codeword of length 2.

12.1.2 Bounding the length of codewords

If the codeword length exceeds 32 bits the operations can become costly because it is no longer
possible to store codewords as a single machine word. It is therefore interesting to survey how
likely codeword overflow might be in the Huffman algorithm.

12-10 Paolo Ferragina

Given that the optimal code assigns a codeword length L(σ) ≈ log2 1/P[σ] bits to symbol σ,
one could conclude that P[σ] ≈ 2−33 in order to have L(σ) > 32, and hence conclude that this bad
situation occurs only after about 233 symbols have been processed. This first approximation is an
excessive upper bound.

It is enough to consider a Huffman tree which has the structure of a binary tree, skewed to the left,
whose leaf i has frequency F(i) which is an increasing function, hence F(i+1) < F(i+2). Moreover
we assume that

∑i
j=1 F(j) < F(i + 2) in order to induce the Huffman algorithm to join F(i + 1) with

the last created internal node rather than with leaf i + 2 (or all the other leaves i + 3, i + 4, . . .). It is
not difficult to observe that F(i) may be taken to be the Fibonacci sequence, possibly with different
initial conditions, such as F(1) = F(2) = F(3) = 1. The following two sequences show F’s
values and their cumulative sums for the modified Fibonacci sequence: F = (1, 1, 1, 3, 4, 7, . . .) and∑l+1

i=1 F(i) = (2, 3, 6, 10, 17, 28, . . .). In particular it is F(33) = 3.01 ∗ 106 and
∑33

i=1 F(i) = 1.28 ∗ 107.
The cumulative sum indicates how much text has to be read in order to force a codeword of length
l. Thus, the pathological case can occur just after 10 Mb; considerably less than the preceding
estimation!

They do exist methods to reduce the codeword lengths still guaranteeing a good compression
performance. One approach consists of scaling the frequency counts until they form a good ar-
rangement. An appropriate scaling rule is

ĉi =

⌈
ci

∑L+2
i=1 F′(i) − 1 − |Σ|
(
∑|Σ|

i=1 ci)/cmin

⌉

where ci is the actual frequency count of the i−th symbol in the actual sequence, cmin is the minimum
frequency count, ĉi is the scaled approximate count for i-th symbol, L is the maximum bit length
permitted in the final code and

∑L+2
i=1 F(i) represents the length of the text which may induce a code

of length L + 1.
Although simple to implement, this approach could fail in some situations. An example is when

32 symbols have to be coded in codewords with no more than L = 5 bits. Applying the scaling rule
we obtain

∑L+2
i=1 F(i)−1−|Σ| = 28−1−32 = −5 and consequently negative frequency counts ĉi. It is

nevertheless possible to build a code with 5 bits per symbol, just take the fixed-length one! Another
solution, which is more time-consuming but not subject to the previous drawback, is the so called
iterative scaling process. We construct a Huffman code and, if the longest codeword is larger than
L bits, all the counts are reduced by some constant ratio (e.g. 2 or the golden ratio 1.618) and a new
Huffman code is constructed. This process is continued until a code of maximum codeword length
L or less is generated. In the limit, all symbols will have their frequency equal to 1 thus leading to
a fixed-length code.

12.2 Arithmetic Coding

The principal strength of this coding method, introduced by Elias in the ’60s, is that it can code
symbols arbitrarily close to the 0-th order entropy, thus resulting much better than Huffman on
skewed distributions. So in Shannon’s sense it is optimal.

For the sake of clarity, let us consider the following example. Take an input alphabet Σ = {a, b}
with a skewed distribution: P[a] = 99

100 and P[b] = 1
100 . According to Shannon, the self information

of the symbols is respectively i(a) = log2
1
pa

= log2
100
99 ' 0, 015 bits and i(b) = log2

1
pb

=

log2
100
99 ' 6, 67 bits. Hence the 0-th order entropy of this source is H0 = P[a] i(a) + P[b] i(b) '

0, 08056 bits. In contrast a Huffman coder, like any prefix-coders, applied to texts generated by this
source must use at least one bit per symbol thus having average length LH = P[a] L(a)+ P[b] L(b) =

P[a] + P[b] = 1 � H0. Consequently Huffman is far from the 0-th order entropy, and clearly, the
more skewed is the symbol distribution the farthest is Huffman from optimality.

Statistical Coding 12-11

The problem is that Huffman replaces each input symbol with a codeword, formed by an integral
number of bits, so the average length of a text T compressed by Huffman is Ω(|T |) bits. Therefore
Huffman cannot achieve a compression ratio better than 1

log2 |Σ| , the best case is when we substitute
one symbol (encoded plainly with log2 |Σ| bits) with just 1 bit. This is 1/8 = 12.5% in the case that
Σ are the characters of the ASCII code.

To overcome this problem, Arithmetic Coding relaxes the request to be a prefix-coder by adopting
a different strategy:

• the compressed output is not a concatenation of codewords associated to the symbols of
the alphabet.

• rather, a bit of the output can represent more than one input symbol.

This results in a better compression, at the cost of slowing down the algorithm and of loosing the
capability to access/decode the compressed output from any position.

Another interesting feature of Arithmetic coding is that it works easily also in the case of a
dynamic model, namely a model in which probabilities P[σ] are updated as the input sequence S
is processed. It is enough to set P[σ] = (`σ + 1)/(` + |Σ|) where ` is the length of the prefix of S
processed so far, and `σ is the number of occurrences of symbol σ in that prefix. The reader can
check that this is a sound probability distribution, initially set to the uniform one. Easily enough,
these dynamic probabilities can be also kept updated by the decompression algorithm, so that both
compressor and decompressor look at the same input distribution and thus decode the same symbols.

12.2.1 Bit streams and dyadic fractions

A bit stream b1b2b3 . . . bk, possibly k → ∞, can be interpreted as a real number in the range [0, 1)
by prepending ”0.” to it:

b1b2b3 . . . bk → 0.b1b2b3 . . . bk =

k∑

i=1

bi · 2−i

A real number x in the range [0, 1) can be converted in a (possibly infinite) sequence of bits with the
algorithm Converter, whose pseudocode is given below. This algorithm consists of a loop where
the variable output is the output bitstream and where :: expresses concatenation among bits. The
loop has to end when the condition accuracy is satisfied: we can decide a level of accuracy in the
representation of x, we can stop when we emitted a certain number of bits in output or when we
establish that the representation of x is periodic.

A key concept here is the one of dyadic fraction, namely a fraction of the form v
2k where v and

k are positive integers. The real number associated to a finite bit stream b1b2b3 . . . bk is indeed the
dyadic fraction val(b1b2b3...bk)

2k , where val(s) is the value of the binary string s. Vice versa a fraction v
2k

can be written as .bink(v), where bink(v) is the binary representation of the integer v as a bit string
of length k (eventually padded with zeroes).

In order to clarify how Converter works, we apply the pseudocode at the number 1
3 :

1
3
· 2 =

2
3
< 1→ output = 0

2
3
· 2 =

4
3
≥ 1→ output = 01

In this second iteration x is greater than 1, so we have concatenated the bit 1 to the output and, at
this point, we need to update the value of x executing the line 7 in the pseudocode:

4
3
− 1 =

1
3

12-12 Paolo Ferragina

Algorithm 12.1 Converter (x)
Require: A real number x ∈ [0, 1).
Ensure: The string of bits representing x.

1: repeat
2: x = 2 ∗ x
3: if x < 1 then
4: output = output :: 0
5: else
6: output = output :: 1
7: x = x − 1
8: end if
9: until accuracy

We have already encountered this value of x, so we can stop the loop and output the periodic
representation 01 for 1

3 .
Let us consider another example; say x = 3

32 .

3
32
· 2 =

6
32

< 1→ output = 0

6
32
· 2 =

12
32

< 1→ output = 00

12
32
· 2 =

24
32

< 1→ output = 000

24
32
· 2 =

48
32
≥ 1→ output = 0001

(
48
32
− 1

)
· 2 = 1 ≥ 1→ output = 00011

(1 − 1) · 2 = 0 < 1→ output = 000110

0 · 2 = 0 < 1→ output = 0001100

and so on. The binary representation for 3
32 is 000110̄.

12.2.2 Compression algorithm

Compression by Arithmetic coding is iterative: each step takes as input a subinterval of [0, 1), repre-
senting the prefix of the input sequence compressed so far, and the probabilities and the cumulative
probabilities of alphabet symbols,2 and consumes the next input symbol. This subinterval is further
subdivided into smaller subintervals, one for each symbol σ of Σ, whose lengths are proportional to
their probabilities P[σ]. The step produces as output a new subinterval that is the one associated to
the consumed input symbol, and is contained in the previous one. The number of steps is equal to
the number of symbols to be encoded, and thus to the length of the input sequence.

2We recall that the cumulative probability of a symbol σ ∈ Σ is computed as
∑

c<σ P[c] and it is provided by the
statistical model, constructed during the modeling phase of the compression process. In the case of a dynamic model,
the probabilities and the cumulative probabilities change as the input sequence is scanned.

Statistical Coding 12-13

More in detail, the algorithm starts considering the interval [0, 1) and, consumed the entire input,
produces the interval [l, l + s) associated to the last symbol of the input sequence. The tricky issue
here is that the output is not the pair 〈l, s〉 (hence two real numbers) but it is just one real x ∈ [l, l+ s),
chosen to be a dyadic fraction, plus the length of the input sequence.

In the next section we will see how to choose this value in order to minimize the number of output
bits, here we will concentrate on the overall compression stage whose pseudocode is indicated
below: the variables li and si are, respectively, the starting point and the length of the interval
encoding the i-th symbol of the input sequence.

Algorithm 12.2 AC-Coding (S)
Require: The input sequence S , of length n, the probabilities P[σ] and the cumulative fσ.
Ensure: A subinterval [l, l + s) of [0, 1).

1: s0 = 1
2: l0 = 0
3: i = 1
4: while i ≤ n do
5: si = si−1 ∗ P[S [i]]
6: li = li−1 + si−1 ∗ fS [i]
7: i = i + 1
8: end while
9: output = 〈x ∈ [ln, ln + sn), n〉

As an example, consider the input sequence S = abac with probabilities P[a] = 1
2 , P[b] = P[c] =

1
4 and cumulative probabilities fa = 0, fb = P[a] = 1

2 , and fc = P[a] + P[b] = 3
4 . Following the

pseudocode of AC-Coding (S) we have n = 4 and thus we repeat the internal loop four times.
In the first iteration we consider the first symbol of the sequence, S [1] = a, and compute the new
interval [l1, l1 + s1) given P[a] and fa from the static model:

s1 = s0 P[S [1]] = 1 × P[a] =
1
2

l1 = l0 + s0 fS [1] = 0 + 1 × fa = 0

In the second iteration we consider the second symbol, S [2] = b, the (cumulative) probabilities P[b]
and fb, and determine the second interval [l2, l2 + s2):

s2 = s1 P[S [2]] =
1
2
× P[b] =

1
8

l2 = l1 + s1 fS [2] = 0 +
1
2
× fb =

1
4

We continue this way for the third and the fourth symbols, namely S [3] = a and S [4] = c, so at the
end the final interval is:

[l4, l4 + s4) =

[
19
64
,

19
64

+
1

64

)
=

[
19
64
,

20
64

)
=

[
19
64
,

5
16

)

In Figure 12.10 we illustrate the execution of the algorithm in a graphical way. Each step zooms
in the subinterval associated to the current symbol. The last step returns a real number inside the

12-14 Paolo Ferragina

0

1
2

3
4

1

0

1
4

3
8

1
2

1
4

5
16

11
32

3
8

1
4

9
32

19
64

5
16

a

b

c

a

b

c

a

b

c

a

b

c final
interval

FIGURE 12.10: The algorithmic idea behind Arithmetic coding.

final subinterval, hence this number is inside all the previously generated intervals too. This number
together with the value of n is sufficient to reconstruct the entire sequence of input symbols S , as
we will show in the following subsection. In fact, all input sequences of a fixed length n will be
associated to distinct sub-intervals which do not intersect and cover [0, 1); but sequences of different
length might be nested.

12.2.3 Decompression algorithm

The input consists of the stream of bits resulting from the compression stage, the length of the input
sequence n, the symbol probabilities P[σ], and the output is the original sequence S given that
Arithmetic coding is a lossless compressor. The decompressor works also in the case of a dynamic
model:

Algorithm 12.3 AC-Decoding (b, n)
Require: The binary representation b of the compressed output, the length n of S , the probabilities

P[σ] and the cumulative fσ.
Ensure: The original sequence S .

1: s0 = 1
2: l0 = 0
3: i = 1
4: while i ≤ n do
5: subdivide the interval [li−1, li−1 + si−1) into subintervals of length proportional to the prob-

abilities of the symbols in Σ (in the predefined order)
6: take the symbol σ corresponding to the subinterval in which 0.b lies
7: S = S :: σ
8: si = si−1 ∗ P[σ]
9: li = li−1 + si−1 ∗ fσ

10: i = i + 1
11: end while
12: output = S

• at the first iteration, the statistical model is set to the uniform distribution over Σ;

Statistical Coding 12-15

• at every other iteration, a symbol is decoded using the current statistical model, which
is then updated by increasing the frequency of that symbol.

Decoding is correct because encoder and decoder are synchronized, in fact they use the same
statistical model to decompose the current interval, and both start from the interval [0, 1). The
difference is that the encoder uses symbols to choose the subintervals, whereas the decoder uses the
number b to choose (the same) subintervals to zoom in.

As an example, take the result 〈 39
128 , 4〉 and assume that the input distribution is P[a] = 1

2 , P[b] =

P[c] = 1
4 (i.e. the one of the previous section). The decoder executes the decompression algorithm

starting with the initial interval [0, 1), we suggest the reader to parallel the decompression process
with the compression one in Figure 12.10:

• in the first iteration the initial range will be subdivided in three subintervals one for each
symbol of the alphabet. These intervals follow a predefined order; in particular, for this
example, the first interval is associated to the symbol a, the second to b and the last one
to c. The size of every subinterval is proportional to the probability of the respective
symbol: [0, 1

2), [1
2 ,

3
4) and [3

4 , 1). At this point the algorithm will generate the symbol a
because 39

128 ∈ [0, 1
2). After that it will update the subinterval executing the steps 8 and

9, thus synchronizing itself with the encoder.
• in the second iteration the new interval [0, 1

2) will be subdivided in the subintervals [0, 1
4),

[1
4 ,

3
8), [3

8 ,
1
2). The second symbol generated will be b because 39

128 ∈ [1
4 ,

3
8).

• continuing in this way, the third and the fourth iterations will produce respectively the
symbols a and c, and the initial sequence will be reconstructed correctly. Notice that
we can stop after generating 4 symbols because that was the original sequence length,
communicated to the decoder.

12.2.4 Efficiency

Intuitively this scheme performs well because we associate large subintervals to frequent symbols
(given that the interval size si decreases as P[S [i]] ≤ 1), and a large final interval requires fewer
bits to specify a number inside it. From step 5 of the pseudocode of AC-Coding (S) is easy to
determine the size sn of the final interval associated to an input sequence S of length n:

sn = sn−1 × P[S [n]] = sn−2 × P[S [n − 1]] × P[S [n − 1]] = . . . =

= s0 × P[S [1]] ∗ · · · ∗ P[S [n]] = 1 ×
n∏

i=1

P[S [i]] (12.1)

The formula 12.1 is interesting because it says that sn depends on the symbols forming S but
not on their ordering within S . So the size of the interval returned by Arithmetic coding for S is
the same whichever is that ordering. Now, since the size of the interval impacts onto the num-
ber of bits returned in the compressed output, we derive that the output size is independent of
the permutation of S ’s characters. This does not contradicts with the previous statement, proved
below, that Arithmetic coding achieves a performance close to the 0th order empirical entropy
H0 = Sum|Σ|i=1P[σi] log2(1/P[σi]) of the sequence S , given that entropy’s formula is independent
of S ’s symbol ordering too.

We are left with the problem of choosing a number inside the interval [ln, ln + sn) that has the
form of a dyadic fraction v

2k and can be encoded with the fewest bits (i.e. smallest k). The following
lemma is crucial to establish the performance and correctness of Arithmetic coding.

LEMMA 12.3 Take a real number x = 0.b1b2 · · · . If we truncate it to its first d bits, we obtain
a real number truncd(x) ∈ [x − 2−d, x].

12-16 Paolo Ferragina

Proof The real number x = 0.b1b2 · · · differs from its truncation, possibly, on the bits that follow
the position d. Those bits have been reset to 0 in truncd(x). Therefore we have:

x − truncd(x) =

∞∑

i=1

bd+i2−(d+i) ≤
∞∑

i=1

1 × 2−(d+i) = 2−d
∞∑

i=1

1
2i = 2−d

So we have
x − truncd(x) ≤ 2−d ⇐⇒ x − 2−d ≤ truncd(x)

On the other hand, it is of course truncd(x) ≤ x because we have reset possibly few bits to 0.

COROLLARY 12.1 The truncation of l+ s
2 to its first

⌈
log2

2
s

⌉
bits falls in the interval [l, l+ s).

Proof It is enough to set d =
⌈
log2

2
s

⌉
in Lemma 12.3, and observe that 2−d ≤ s

2 .

At this point we can specialize AC-Coding(S) in order to return the first
⌈
log2

2
sn

⌉
bits of the

binary representation of the value ln + sn
2 . Nicely enough, algorithm Converter allows to incre-

mentally generate these bits.
For the sake of clarity, let us resume the previous example taking the final interval [l4, l4 + s4) =

[19
64 ,

20
64) found in the compression stage. We know that l4 = 19

64 and s4 = 1
64 , hence the value to

output is

l4 +
s4

2
=

19
64

+
1
64
· 1

2
=

39
128

truncated at the first
⌈
log2

2
s4

⌉
= log2 128 = 7 bits. The resulting stream of bits associated to this

value is obtained by executing the algorithm Converter for seven times, in this way:

39
128
· 2 =

78
128

< 1→ output = 0

78
128
· 2 =

156
128
≥ 1→ output = 01

(
156
128
− 1

)
· 2 =

56
128

< 1→ output = 010

56
128
· 2 =

112
128

< 1→ output = 0100

112
128
· 2 =

224
128
≥ 1→ output = 01001

(
224
128
− 1

)
· 2 =

192
128
≥ 1→ output = 010011

(
192
128
− 1

)
· 2 = 1 ≥ 1→ output = 0100111

At the end the encoder sends the pair 〈01001112, 4〉 and the statistical model to the decoder given
by Σ = {a, b, c} and the symbol probabilities P[a] = 1

2 , P[b] = 1
4 , P[c] = 1

4 .
We are ready now to prove the main theorem of this section which relates the compression ratio

achieved by Arithmetic coding with the 0-th order entropy of S .

THEOREM 12.3 The number of bits emitted by Arithmetic Coding for a sequence S of length
n is at most 2 + nH0, whereH0 is the 0-th order entropy of the input source.

Statistical Coding 12-17

Proof By Corollary 12.1, we know that the number of output bits is:
⌈
log2

2
sn

⌉
< 2 − log2 sn = 2 − log2

n∏

i=1

P[S [i]]

 = 2 −
n∑

i=1

log2 P[S [i]]

If we let nσ be the number of times a symbol σ occurs in S , and assume that n is sufficiently large,
then we can estimate P[σ] ' nσ

n . At this point we can rewrite the summation by iterating not over
the positions i in S , but rather by grouping the same symbols and thus iterating over the symbols σ:

2 −
∑

σ∈Σ
nσ log2 P[σ] = 2 − n

∑

σ∈Σ
P[σ] log2 P[σ]

 = 2 + nH0

We can draw some considerations from the result just proved:

• there is a waste of only two bits on an entire input sequence S , hence 2
n bits per symbol.

This is a vanishing lost as the input sequence becomes longer and longer.
• the size of the output is a function of the set of symbols constituting S with their multi-

plicities, but not of their order.

In the previous section we have seen that Huffman coding requires n+nH0 bits for compressing a
sequence of n symbols, so Arithmetic Coding is much better. Another advantage is that it calculates
the representation on the fly thus it can easily accommodate the use of dynamic modeling. On
the other hand, it must be said that (Canonical) Huffman is faster and can decompress any portion
of the compressed file provided that we known its first codeword. This is however impossible
for Arithmetic Coding which allows only the whole decompression of the compressed file. This
property justifies the frequent use of Canonical Huffman coding in the context of compressing Web
collections, where Σ consists of words/tokens. Such a variant is known as Huffword [7].

12.2.5 Arithmetic coding in practice

The implementation of Arithmetic coding presents two main problems that we comment below.
The number x produced by the coding phase is known only when the entire input is processed:

this is a disadvantage in situations like digital communications, in which for the sake of speed, we
desire to start encoding/decoding before the source/compressed string is completely scanned; some
possible solutions are:

1. the text to be compressed is subdivided into blocks, which are compressed individually;
this way, even the problem of specifying the length of the text is relieved: only the
length of the last block must be sent to permit its decompression, or the original file can
be padded to an integral number of blocks, if the real ’end of file’ is not important.

2. the two extremes of the intervals produced at each compression step are compared and
the binary prefix on which their binary representation coincides is emitted. This op-
tion does not solve the problem completely, in fact it can happen that they don’t have
any common prefix for a long time, nonetheless this is effective because it happens fre-
quently in practice.

More significantly, the encoding and decoding algorithms presented above require arithmetic
with infinite precision which is costly to be approximated. There are several proposals about using
finite precision arithmetic (see e.g. [3, 8]), which nonetheless penalizes the compression ratio up to
nH0 + 2

100 n. Even so Arithmetic coding is still better than Huffman: 2
100 vs. 1 bit loss.

12-18 Paolo Ferragina

The next subsection describes a practical implementation for Arithmetic coding proposed by
Witten, Neal and Clearly [8]; sometimes called Range Coding [5]. It is mathematically equivalent
to Arithmetic Coding, which works with finite precision arithmetic so that subintervals have integral
extremes.

12.2.6 Range Coding∞

The key idea is to make some approximations, in order to represent in finite precision real numbers:

• for every symbol σ in the sorted alphabet Σ the probability P[σ] is approximated by an
integer count c[σ] of the number of occurrences of the symbol in the input sequence,
and the cumulative probability fσ with a cumulative count C[σ] which sums the counts
of all symbols preceding σ in Σ, hence C[σ] =

∑
α<σ c[α]. So we have

P[σ] =
c[σ]

C[|Σ| + 1]
fσ =

C[σ]
C[|Σ| + 1]

• the interval [0, 1) is mapped into the integer interval [0,M), where M = 2w depends on
the length w in bits of the memory-word.

• during the i-th iteration of the compression or decompression stages the current subin-
terval (formerly [li, li + si)) will be chosen to have integer endpoints [Li,Hi) such that

Li = Li−1 +
⌊

fS [i] (Hi−1 − Li−1)
⌋

Hi = Li + bP[S [i]] (Hi−1 − Li−1)c
These approximations induce a compression loss empirically estimated (by the original authors)

as 10−4 bits per input symbol. In order to clarify how it works, we will first explain the compression
and decompression stages, and then we will illustrate an example.

Compression stage. In order to guarantee that every interval [Li,Hi) has non-empty subintervals,
at each step we must have

Hi − Li ≥ M
4

+ 2 (12.2)

In fact, if we compute the integer starting point of the subinterval Li+1 by

Li+1 = Li +
⌊

fS [i+1] · (Hi − Li)
⌋

= Li +

⌊
C[S [i + 1]]
C[|Σ| + 1]

· (Hi − Li)
⌋

since C[i]s are strictly increasing, in order to guarantee that we do not have empty subintervals, it is
sufficient to have Hi−Li

C[|Σ|+1] ≥ 1 that can be obtained, from Equ. 12.2, by keeping

C[|Σ| + 1] ≤ M
4

+ 2 ≤ Hi − Li (12.3)

This means that an adaptive Arithmetic Coding, that computes the cumulative counts during com-
pression, must reset these counts every M

4 +2 input symbols, or rescale these counts every e.g. M
8 +1

input symbols by dividing them by 2.

Rescaling. We proved that, if in each iteration the interval [Li,Hi) has size ≥ M
4 +2, we can subdivide

it in non-empty subintervals with integer endpoints and sizes proportional to the probabilities of the
symbols. In order to guarantee this condition, one can adopt the following expansion rules, which
are repeatedly checked before each step of the compression process:

Statistical Coding 12-19

1. [Li,Hi) ⊆
[
0, M

2

)
→ output ’0’, and the new interval is:

[Li+1,Hi+1) = [2 · Li, 2 · (Hi − 1) + 2)

2. [Li,Hi) ⊆
[

M
2 ,M

)
→ output ’1’, and the new interval is

[Li+1,Hi+1) =

[
2 ·

(
Li − M

2

)
, 2 ·

(
Hi − 1 − M

2

)
+ 2

)

3. if M
4 ≤ Li <

M
2 < Hi ≤ 3M

4 then we cannot output any bit, even if the size of the interval
is less than M

4 , so we have a so called underflow condition (that is managed as indicated
below).

4. otherwise, it is Hi − Li ≥ M
4 + 2 and we can continue the compression as is.

In the case of underflow, we cannot emit any bit until the interval falls in one of the two halves
of [0,M) (i.e. cases 1 or 2 above). If we suppose to continue and operate on the interval [M

4 ,
3M
4) as

we did with [0,M), by properly rewriting conditions 1 and 2, the interval size can fall below M
8 and

thus the same problem arises again. The solution is to use a parameter m that records the number of
times that the underflow condition occurred, so that the current interval is within [M

2 − M
2m+1 ,

M
2 + M

2m+1);
and observe that, when eventually the interval will not include M

2 , we will output 01m if it is in the
first half, or 10m if it is in the second half. After that, we can expand the interval around its halfway
point and count the number of expansions:

• mathematically, if M
4 ≤ Li <

M
2 < Hi ≤ 3M

4 then we increment the number m of
underflows and consider the new interval

[Li+1,Hi+1) =

[
2 ·

(
Li − M

4

)
, 2 ·

(
Hi − 1 − M

4

)
+ 2

)

• when expansion 1 or 2 are operated, after the output of the bit, we output also m copies
of the complement of that bit, and reset m to 0.

End of the input sequence. At the end of the input sequence, because of the expansions, the current
interval satisfies at least one of the inequalities:

Ln <
M
4
<

M
2
< Hn or Ln <

M
2
<

3M
4

< Hn (12.4)

It may be the case that m > 0 so that we have to complete the the output bit stream as follows:

• if the first inequality holds, we can emit 01m1 = 01m+1 (if m = 0 this means to codify
M
4)

• if the second inequality holds, we can emit 10m0 = 10m+1 (if m = 0 this means to codify
3M
4)

Decompression stage. The decoder must mimic the computations operated during the compression
stage. It maintains a shift register v of dlog2 Me bits, which plays the role of x (in the classic Arith-
metic coding) and thus it is used to find the next subinterval from the partition of the current interval.
When the interval is expanded, v is modified accordingly, and a new bit from the compressed stream
is loaded through the function next bit:

1. [Li,Hi) ⊆
[
0, M

2

)
→ consider the new interval

[Li+1,Hi+1) = [2 · Li, 2 · (Hi − 1) + 2), v = 2v + next bit

12-20 Paolo Ferragina

2. [Li,Hi) ⊆
[

M
2 ,M

)
→ consider the new interval

[Li+1,Hi+1) =

[
2 ·

(
Li − M

2

)
, 2 ·

(
Hi − 1 − M

2

)
+ 2

)
,

v = 2 ·
(
v − M

2

)
+ next bit

3. if M
4 ≤ Li <

M
2 < Hi ≤ 3M

4 consider the new interval

[Li+1,Hi+1) =

[
2 ·

(
Li − M

4

)
, 2 ·

(
Hi − 1 − M

4

)
+ 2

)
,

v = 2 ·
(
v − M

4

)
+ next bit

4. otherwise it is Hi − Li ≥ M
4 + 2 and thus we can continue the decompression as is.

In order to understand this decoding process, let us resume the example of the previous sections
with the same input sequence S = abac of length n = 4, ordered alphabet Σ = {a, b, c}, probabilities
P[a] = 1

2 , P[b] = P[c] = 1
4 and cumulative probabilities fa = 0, fb = P[a] = 1

2 , and fc =

P[a] + P[b] = 3
4 . We rewrite these probabilities by using the approximations that we have seen

above, hence C[|Σ| + 1] = 4, and we set the initial interval as [L0,H0) = [0,M), where M is chosen
to satisfy the inequality 12.3:

C[|Σ| + 1] ≤ M
4

+ 2⇐⇒ 4 ≤ M
4

+ 2

so we can take M = 16 and have M
4 = 4, M

2 = 8 and 3M
4 = 12 (of course, this value of M is not

based on the real machine word length but it is useful for our example). At this point, we have the
initial interval

[L0,H0) = [0, 16)

and we are ready to compress the first symbol S [1] = a using the expressions for the endpoints seen
above:

L1 = L0 + b fa · (H0 − L0)c = 0 + b0 · 16c = 0

H1 = L1 + bP[a] · (H0 − L0)c = 0 +

⌊
2
4
· 16

⌋
= 8

The new interval [L1,H1) = [0, 8) satisfies the first expansion rule [L1,H1) ⊆
[
0, M

2

)
, hence we

output ’0’ and we consider the new interval (for the expansion rules we do not change index):

[L1,H1) = [2 · L1, 2 · (H1 − 1) + 2) = [0, 16)

In the second iteration we consider the second symbol S [2] = b, and the endpoints of the new
interval are:

L2 = L1 + b fb · (H1 − L1)c = 8

H2 = L2 + bP[b] · (H1 − L1)c = 12

This interval satisfies the second expansion rule [L2,H2) ⊆
[

M
2 ,M

)
, hence we concatenate at the

output the bit ’1’ (obtaining 01) and we consider the interval

[L2,H2) =

[
2 ·

(
L2 − M

2

)
, 2 ·

(
H2 − 1 − M

2

)
+ 2

)
= [0, 8)

Statistical Coding 12-21

that satisfies again one of the expansion rules, hence we apply the first rule and we obtain the result
output = 010 and:

[L2,H2) = [2 · L1, 2 · (H2 − 1) + 2) = [0, 16)

For the third symbol S [3] = a, we obtain

L3 = L2 + b fa · (H2 − L2)c = 0

H3 = L3 + bP[a] · (H2 − L2)c = 8

and this interval satisfies the first rule, hence output = 0100 and

[L3,H3) = [2 · L3, 2 · (H3 − 1) + 2) = [0, 16)

We continue this way for the last symbol S [4] = c:

[L4,H4) = [L3 + b fc · (H3 − L3)c , L4 + bP[c] · (H3 − L3)c) = [12, 16)

so get the output sequence output = 01001 and

[L4,H4) =

[
2 ·

(
L4 − M

2

)
, 2 ·

(
H4 − 1 − M

2

)
+ 2

)
= [8, 16)

so we expand again and get the output sequence output = 010011 and

[L4,H4) =

[
2 ·

(
L4 − M

2

)
, 2 ·

(
H4 − 1 − M

2

)
+ 2

)
= [0, 16)

At the end of the input sequence the last interval should satisfy the Equ. 12.4. This is true for our
interval, hence, as we know, at this point the encoder sends the pair 〈0100112, 4〉 and the statistical
model P[a] = 1

2 , P[b] = P[c] = 1
4 to the decoder (we are assuming a static model).

As far as the decoding stage is concerned, the first step initializes the shift register v (of length
dlog2 Me = dlog2 16e = 4) with the first dlog2 16e = 4 bits of the compressed sequence, hence
v = 01002 = 410. At this point the initial interval [L0,H0) = [0, 16) is subdivided in three different
subintervals, one for every symbol in the alphabet, according to the probabilities: [0, 8), [8, 12) and
[12, 16). The symbol generated at the first iteration will be a because v = 4 ∈ [0, 8). At this point
we apply the first expansion rule of the decompression process because [L1,H1) = [0, 8) ⊆ [0, M

2),
obtaining:

[L1,H1) = [2 · L1, 2 · (H1 − 1) + 2) = [0, 16)

v = 2 · v + next bit = shiftsx(01002) + 12 = 10002 + 12 = 10012 = 910

In the second iteration the interval [0, 16) is subdivided another time in the same ranges of integers
and the generated symbol will be b because v = 9 ∈ [8, 12). This last interval satisfies the second
rule, hence:

[L2,H2) =

[
2 ·

(
L2 − M

2

)
, 2 ·

(
H2 − 1 − M

2

)
+ 2

)
= [0, 8)

v = 2 ·
(
v − M

2

)
+ next bit = shiftsx(10012 − 10002) + 12 = 00102 + 12 = 00112 = 310

We apply now the first rule (the function next bit returns ’0’ if there are not more bits in the
compressed sequence):

[L2,H2) = [2 · L2, 2 · (H2 − 1) + 2) = [0, 16)

v = 2 · v + next bit = shiftsx(00112) + 02 = 01102 = 610

12-22 Paolo Ferragina

This interval is subdivided again, in the third iteration, obtaining the subintervals [0, 8), [8, 12) and
[12, 16). Like in the previous steps, we find a as generated symbol because v = 6 ∈ [0, 8), and we
modify the interval [L3,H3) = [0, 8) and the shift register v as the first rule specifies:

[L3,H3) = [2 · L3, 2 · (H3 − 1) + 2) = [0, 16)

v = 2 · v + next bit = shiftsx(01102) + 02 = 11002 = 1210

The last generated symbol will be c because v = 12 ∈ [12, 16), and the entire input sequence
is exactly reconstructed. The algorithm can stop because it has generated 4 symbols, which was
provided as input to the decoder as length of S .

12.3 Prediction by Partial Matching∞

In order to improve compression we need better models for the symbol probabilities. A typical
approach consists of estimating them by considering not just individual symbols, and thus assume
that they occur independently of each other, but evaluating the conditional probability of their oc-
currence in S , given few previous symbols, the so called context. In this section we will look at a
particular adaptive technique to build a context–model that can be combined very well with Arith-
metic Coding because it generates skewed probabilities and thus high compression. This method
is called Prediction by Partial Matching (shortly, PPM), it allows to move from 0-th order entropy
coders to k-th order entropy coders. The implementation of PPM suffers two problems: (i) they
need proper data structures to maintain updated in an efficient manner all conditional probabilities,
as S is scanned; (ii) at the beginning the estimates of the context-based probabilities are poor thus
producing an inefficient coding; so proper adjustments have to be imposed in order to quicker es-
tablish good statistics. In the rest of the section we will concentrate on the second issue, and refer
the reader to the literature for the first one, namely [4, 7].

12.3.1 The algorithm

Let us dig into the algorithmic structure of PPM. It uses a suite of finite contexts in order to predict
the next symbol. Frequency counts of these contexts are updated at each input symbol, namely
PPM keeps counts for each symbol σ and for each context α of length `, of how many times the
string ασ occurs in the prefix of S processed so far. This way, at step i, PPM updates the counts
for σ = S [i] and its previous contexts α = S [i − `, i − 1], for any ` = 0, 1, . . . ,K where K is the
maximum context-model admitted.

In order to encode the symbol S [i], PPM starts from the longest possible context of length K,
namely S [i − K, i − 1], and then switches to shorter and shorter contexts until it finds the one, say
S [i−`, i−1], which is able to predict the current symbol. This means that PPM has a counting for S [i]
in S [i− `, i− 1] which is strictly larger than 0, and thus the estimated probability for this occurrence
is not zero. Eventually it reaches the context of order −1 which corresponds to a model in which all
symbols have the same probabilities. The key compression issue is how to encode the length ` of the
model adopted to compress S [i], so that also the decoder can use that context in the decompression
phase. We could use an integer encoder, of course, but this would take an integral number of bits
per symbol, thus vanishing all efforts of a good modeling; we need something smarter.

The algorithmic idea is to turn this problem into a symbol-encoding problem, by introducing an
escape symbol (esc) which is emitted every time a context-switch has to be performed. So esc
signals to the decoder to switch to the next shorter model. This escaping-process continues till a
model where the symbol is not novel is reached. If the current symbol has never occurred before,
K + 1 escape symbols are transmitted to make the decoder to switch to the (−1)–order model that

Statistical Coding 12-23

predicts all possible symbols according to the uniform distribution. Note that the 0–order context
corresponds to a distribution of probabilities estimated by the frequency counts, just as in the classic
Arithmetic coding. Using such strategy, the probability associated to a symbol is always the one that
has been calculated in the longest context where the symbol has previously occurred; so it should
be more precise than just the probabilities based on individual counts for the symbols in Σ.

We notice that at the beginning, some contexts may be missing; in particular, when i ≤ K, the
encoder and the decoder do not use the context with maximum order K, but the context of length
(i − 1), hence the one read so far. When the second symbol is used, the 0–order context is used and,
if the second symbol is novel, an esc is emitted. The longest context K is used when i > K: in this
case K symbols have been read already, and the K–order context is available. To better understand
how PPM works, we consider the following example.

Let the input sequence S be the string abracadabra and let K = 2 be the longest context used
in the calculation of K–order models and its conditional probabilities. As previously said, the only
model available when the algorithm starts is the (−1)–order model. So when the first symbol a is
read, the (−1)–order assigns to it the uniform probability 1

|Σ| = 1
5 . At the same time, PPM updates

frequency counts in the 0–order model assigning a probability P[a] = 1
2 and P[esc] = 1

2 . In this
running example we assume that the escape symbol is given a count equal to the total number of
different characters in the model. Other strategies to assign a probability to the escape symbol will
be discussed in detail in section 12.3.3.

PPM then reads b and uses the 0–order model, which is currently the longest one, as explained
above. An escape symbol is transmitted since b has never been read before. The (−1)–order model
is so used to compress b and then both the 1–order and the 0–order models are updated. In the
0–order model we have P[a] = 1

4 , P[b] = 1
4 , P[esc] = 2

4 = 1
2 (two distinct symbols have been read).

In the 1–order model the probabilities are P[b|a] = 1
2 and P[esc|a] = 1

2 (only one distinct symbol
is read). Now let us suppose that the current symbol is S [6] = d. Since it is the first occurrence of
d in S , three escape symbols will be transmitted for switching from the 2–order to the (−1)–order
model. Table 12.1 shows the predictions of the four models after that PPM, in its version C (see
Sec. 12.3.3), has completed the processing of the input sequence.

We remark that PPM offers probability estimates which can then be used by an Arithmetic coder
to compress a sequence of symbols. The idea is to use every model (either the one which offers a
successful prediction or the one which leads to emit an esc) to partition the current interval of the
Arithmetic coding stage and the current symbol to select the next sub-interval. This is the reason
why PPM is better looked as a context-modeling technique rather than a compressor, the coding
stage could be implemented via Arithmetic coding or any other statistical encoder.

12.3.2 The principle of exclusion

It is possible to use the knowledge about symbol frequencies in k-order models to improve the
compression rate when switching through escape symbols to low-order ones. Suppose that the
whole input sequence S of the example above has been processed and that the following symbol
to be encoded is c. The prediction ra → c is used (since ra is the current 2–order context, with
K = 2) and thus c is encoded with a probability of 1

2 using 1 bit. Suppose now that, instead of c, the
character d follows abracadabra. In the context ra an escape symbol is transmitted (encoded with
a 1

2 probability) and PPM switches to the 1–order model. In this model, the prediction a → d can
be used and d can be encoded with probability 1

7 . This prediction takes into account the fact that,
earlier in the processing, the symbol d has followed a. However the fact that ra was seen before
followed by c implies that the current symbol cannot be c. In fact, if it were followed by c, PPM
would not have switched to the 1–order model and would have used the longest context ra. The
decoder can so exclude the case of an a followed by a c. This reduces the frequency count of the
group a→ by one and the character d could thus be encoded with probability 1

6 .

12-24 Paolo Ferragina

Order k = 2 Order k = 1 Order k = 0 Order k = −1
Predictions c p Predictions c p Predictions c p Predictions c p
ab → r 2 2

3 a → b 2 2
7 → a 5 5

16 → ∀σ[i] 1 1
|Σ| = 1

5
→ esc 1 1

3 → c 1 1
7 → b 2 2

16
→ d 1 1

7 → c 1 1
16

ac → a 1 1
2 → esc 3 2

7 → d 1 1
16

→ esc 1 1
2 → r 2 2

16
b → r 2 2

3 → esc 5 5
16

ad → a 1 1
2 → esc 1 1

3
→ esc 1 1

2
c → a 1 1

2
br → a 2 2

3 → esc 1 1
2

→ esc 1 1
3

d → a 1 1
2

ca → d 1 1
2 → esc 1 1

2
→ esc 1 1

2
r → a 2 2

3
da → b 1 1

2 → esc 1 1
3

→ esc 1 1
2

ra → c 1 1
2

→ esc 1 1
2

TABLE 12.1 Version C of PPM models after processing the whole S = abracadabra.

Suppose now that after abracadabra the novel symbol e occurs. In this case a sequence of escape
symbols is transmitted to make the decoder switch to the −1–order model. Without exclusion the
novel symbol would be encoded with a probability of 1

|Σ| . However, if PPM is now using the (−1)–
order model, it means that none of the previously seen symbols is the current one. The symbols
already read can thus be excluded in the computation of the prediction since it is impossible that
they are occurring at this point of the input scan. The probability assigned to the novel symbol by
the (−1)–order model using the exclusion principle is 1

|Σ|−q where q is the total number of distinct
symbols read in S . Performing this technique takes a little extra time but gives a reasonable payback
in terms of extra compression, because all nonexcluded symbols have their probability increased.

12.3.3 Zero Frequency Problem

It may seem that the performance of PPM should improve when the length of the maximum context
is increased. Fig 12.11 shows an experimental evidence of this intuition.

We notice that with contexts longer than 4–5 characters there is no improvement. The reason is
that with longer contexts, there is a greater probability to use the escape mechanism, transmitting as
many escape symbols as it is needed to reach the context length for which non-null predictions are
available.

Anyway, whichever is the context length used, the choice of the encoding method for the escape
symbol is very important. There is no sound theoretical basis for any particular choice to assign
probabilities to the escape symbol if no a priori knowledge is available. A method is chosen accord-
ing to the programmer experience only. The various implementations of PPM described below are
identified by the escape method they use. For example, PPMA stands for PPM with escape method
A. Likewise, PPMC or PPMD use escape methods C and D. The maximum order of the method

Statistical Coding 12-25

FIGURE 12.11: PPM compression ratio on increasing context length. Computed on Thomas
Hardy’s text Far from the Madding Crowd.

can be included too. For example, PPMC5 stands for PPM with escape method C and maximum
order-model K = 5. In the following, Cn will denote a context, σ a symbol in the input alphabet,
c(σ) the number of times that the symbol σ has occurred in context Cn, n the number of times the
current context Cn has occurred, q the total number of distinct symbols read.

Method A [1, 6]. This technique allocates one count to the possibility that a symbol will occur in
a context in which it has not been read before. The probability P[σ] that σ will occur again in the
same context is estimated by P[σ] =

c(σ)
1+n . The probability that a novel symbol will occur in Cn, i.e.

the escape probability P[esc], is then:

P[esc] = 1 −
∑

σ∈Σ,c(σ)>0

P[σ] = 1 −
∑

σ∈Σ,c(σ)>0

c(σ)
1 + n

= 1 − 1
1 + n

∑

σ∈Σ,c(σ)>0

c(σ) = 1 − n
1 + n

=
1

1 + n

Method B [1, 6]. The second technique classifies a symbol as novel unless it has already oc-
curred twice. The motivation is that a symbol that has occurred only once can be an anomaly. The
probability of a symbol is thus estimated by P[σ] =

c(σ)−1
n , and q is set as the number of distinct

symbols seen so far in the input sequence. The escape probability now is:

12-26 Paolo Ferragina

P[esc] = 1 −
∑

σ∈Σ,c(σ)>0

P[σ]

= 1 −
∑

σ∈Σ,c(σ)>0

c(σ) − 1
n

= 1 − 1
n

∑

σ∈Σ,c(σ)>0

(c(σ) − 1)

= 1 − 1
n

∑

σ∈Σ,c(σ)>0

c(σ) −
∑

σ∈Σ,c(σ)>0

1

= 1 − 1
n

(n − q) =
q
n

Method C [4]. It is an hybrid between the previous two methods. When a novel symbol occurs,
a count of 1 is added both to the escape count and to the new symbol count. In this way the total
count increases by 2. Thus it estimates the probability of a symbol σ as P[σ] =

c(σ)
n+q and the escape

probability P[esc] as:

P[esc] = 1 −
∑

σ∈Σ,c(σ)>0

c(σ)
n + q

=
q

n + q

Method D. It is a minor modification of method C. It treats in a more uniform way the occurrence
of a novel symbol: instead of adding 1, it adds 1

2 both to the escape and to the new symbol. The
probability of a symbol is then:

P[σ] =
c(σ) − 1

2

n
=

(
2 · c(σ) − 1

2 · n
)

The probability of the escape symbol is:

P[esc] = 1 −
∑

σ∈Σ,c(σ)>0

P[σ]

= 1 −
∑

σ∈Σ,c(σ)>0

(
c(σ) − 1

2

n

)

= 1 − 1
n

∑

σ∈Σ,c(σ)>0

c(σ) −
∑

σ∈Σ,c(σ)>0

1
2

= 1 − n
n

+
1
n

q
2︷ ︸︸ ︷∑

σ∈Σ,c(σ)>0

1
2

=
q

2n

Method P [6]. The method is based on the assumption that symbols appear according to a Poisson
process. Under such hypothesis, it is possible to extrapolate probabilities from an N symbol sample
to a larger sample of size N′ = (1 + θ)N, where θ > 0. Denoting with ti the number of distinct
symbols occurred exactly i times in the sample of size N, the number of novel symbols can be

Statistical Coding 12-27

approximated by t1θ − t2θ2 + t3θ3 − · · · . The probability that the next symbol will be novel equals
the number of expected new symbols when N′ = N + 1. In this case:

P[esc] = t1
1
n
− t2

1
n2 + t3

1
n3 − · · ·

Method X [6]. This method approximates method P computing only the first term of the series
since in most cases n is very large and ti decreases rapidly as i increases: P[esc] = t1

n . The previous
formula may also be interpreted as approximating the escape probability by counting the symbols
that have occurred only once.
Method XC [6]. Both methods P and X break down when either t1 = 0 or t1 = n. In those cases the
probability assigned to the novel symbol is, respectively, 0 or 1. To overcome this problem, method
XC uses method C when method X breaks down:

P[esc] =

{ t1
n 0 < t1 < n
q

n+q otherwise

Method X1. The last method described here is a simple variant of method X that avoids breaking
down to a probability of 0 or 1. Instead of using two different methods, it adds 1 to the total count.
The probability of a generic symbol σ is P[σ] =

c(σ)
n+t1+1 , and the probability of the escape symbol is

P[esc] = t1+1
n+t1+1 .

References

[1] John G. Clearly and Ian H. Witten. Data Compression Using Adaptive Coding and

Partial String Matching. IEEE Transactions on Communications, 32:396–402, 1984.

[2] Peter M. Fenwick. A new data structure for cumulative frequency tables. Software
Practice and Experience, 327–336, 1994.

[3] Paul Howard and Jeffrey S. Vitter. Arithmetic Coding for Data Compression. Proceed-
ings of the IEEE, 857–865, 1994.

[4] Alistair Moffat. Implementing the PPM Data Compression Scheme. IEEE Transactions
on Communications, 38:1917–1921, 1990.

[5] G. Nigel and N. Martin. Range Encoding: an algorithm for removing redundancy from a

digitised message. Presented in March 1979 to the Video & Data Recording Conference,

1979.

[6] Ian H. Witten and Timoty C. Bell. The Zero-Frequency Problem: Estimating the

Probabilities of Novel Events in Adaptive Text Compression. IEEE Transactions on
Information Theory, 37:1085–1094, 1991.

[7] Ian H. Witten, Alistair Moffat, Timoty C. Bell. Managing Gigabytes. Morgan Kauffman,

second edition, 1999.

[8] Ian H. Witten, Radford M. Neal and John G. Clearly. Arithmetic Coding for data

compression. Communications of the ACM, 520-540, 1987.

13
Dictionary-based compressors

13.1 LZ77 . 13-1
13.2 LZ78 . 13-4
13.3 LZW . 13-6
13.4 On the optimality of compressors∞ 13-7

The methods based on a dictionary take a totally different approach to compression than the statis-
tical ones: here we are not interested in deriving the characteristics (i.e. probabilities) of the source
which generated the input sequence S . Rather, we assume to have a dictionary of strings, and we
look for those strings in S , replacing them with a token which identifies them in the dictionary. The
choice of the dictionary is of course crucial in determining how well the file is compressed. An
English dictionary will have a hard time to compress an Italian text, for instance; and it would be
totally unappropriate to compress an executable file. Thus, while a static dictionary can be used
to compress very well certain specific and known in advance kinds of files, it cannot be used for a
good general-purpose compressor. Moreover, we don’t want to transmit the full dictionary along
with each compressed file – and it’s often unreasonable to assume the receiver already has a copy
of our dictionary.

So, starting from 1977, Ziv and Lempel introduced a family of compressors which addressed
successfully these problems by designing two algorithms, named LZ77 and LZ78 from the initials
of the inventors and the years of the proposal, which use the input sequence they are compressing
as the dictionary, and substitute each occurrence of an already seen string with either the offset of
its previous position or an ID assigned incrementally to new dictionary phrases. The dictionary
is dynamically built in the sense that it starts empty and then it grows as the input sequence is
processed; at the beginning low compression is achieved, but after some kbs good compression
is obtained. For typical textual files, those methods achieve about 33% compression ratio. The
Lempel-Ziv’s compressors are very popular because of their gzip instantiation, and constitute the
base of more sophisticated compressors in use today, such as 7zip and LZMA and LZ4. In the
following paragraphs, we will show them in detail, along with some interesting variants.

13.1 LZ77

Ziv and Lempel, in their seminal paper of 1977 [11], described their contribution as follows “[. . .]
universal coding scheme which can be applied to any discrete source and whose performance is
comparable to certain optimal fixed code book scheme designed for completely specified sources
[. . .]”. They key expression is “comparable to [...] fixed code book scheme designed for completely
specified sources”, because the authors compare to previously designed statistical compressors, such
as Huffman and Arithmetic, for which a statistical characterization of the source was necessary.

c© Paolo Ferragina, 2009-2020 13-1

13-2 Paolo Ferragina

Conversely, dictionary-based compressors waive this characterization which is derived implicitly by
observing substring repetitiveness via a fully syntactic approach.

We will not dig into the observations which provide a mathematical ground to these comments
[11, 3], rather we will concentrate only on the algorithmic issues. LZ77’s compressor is based on a
sliding window W[1,w] which contains a portion of the input sequence that has been processed so
far, typically consisting of the last w characters, and a look-ahead buffer B which contains the suffix
of the text still to be processed. In the following picture the window W = aabbababb is of size 9,
and the rest of the input sequence is B = baababaabbaa$.

←− · · · aabbababb baababaabbaa$ −→
The algorithm works inductively by assuming that everything occurring before B has been pro-

cessed and compressed by LZ77; where W is initially set to the empty string. The compressor
operates in two main stages: parsing and encoding. Parsing consists of transforming the input se-
quence S into a sequence of triples of integers (called phrases). Encoding turns these triples into a
(compressed) bit stream by applying either a statistical compressor (i.e. Huffman or Arithmetic) to
each triplet-component individually, or an integer encoding scheme.

So the interesting algorithmic stage is the parsing stage, which works as follows. LZ77 searches
for the longest prefix α of B which occurs as a substring of WB. We write the concatenation WB
rather than the single string B because the previous occurrence we are searching for may start in
W and extend up to within B. Say α occurs at distance d from the current position (namely the
beginning of B), and it is followed by character c in B, then the triple generated by LZ77 is 〈d, |α|, c〉
where |α| is the length of the copied string. If a match is not found the output triple becomes
〈0, 0, B[1]〉. We notice that any occurrence of α in W must be followed by a character different of c,
otherwise α would be not the longest prefix of B which repeats in W.

After that this triple is emitted, LZ77 advances in B by |α| + 1 positions, and slides W corre-
spondingly. We talk about LZ77 as a dictionary-based compressor because “the dictionary” is not
explicitly stored, rather it is implicitly formed by all substrings of S which start in W and extend
rightward, possibly ending in B. Each of those substrings is represented by the triple indicated
above. The dictionary is dynamic because at every shift it has to be updated by removing the sub-
strings starting in W[1, |α| + 1], and adding the substrings starting in B[1, |α| + 1].

The role of the sliding window is easy to explain, it delimits the size of the dictionary which
is quadratic in W’s length, so it impacts significantly onto the time cost for the search of α. As a
running example, let us consider the following sequence of LZ77-parsing steps:

|aabbabab =⇒ 〈0, 0, a〉
a|abbabab =⇒ 〈1, 1, b〉
aab|babab =⇒ 〈1, 1, a〉
aabba|bab =⇒ 〈2, 3, EOF〉

.

It is interesting to note that the last phrase 〈2, 3, EOF〉 presents a copy-length which is larger than
the copy-distance; this actually indicates the special situation mentioned above in which α starts in
W and ends in B. Even if this overlapping occurs, the copy-step that must be executed by LZ77 in
decompression is not affected, provided that it is executed sequentially according to the following
piece of code:

for i = 0 to L-1 do { S[s+i] = S[s-d+i]; }

s = s+L;

Dictionary-based compressors 13-3

where the triple to be decoded in 〈d, L, c〉 and S [1, s−1] is the prefix of the input sequence which
has been already decompressed. Since d ≤ |W | and the window size is up to few Megabytes, the
copy operation does not elicit any cache miss, thus making the decompression process very fast
indeed. The longer is the window W, the longer are possibly the phrases, the fewer is their number
and thus possibly the shorter is the compressed output; but of course, in terms of compression time,
the longer is the time to search for the longest copied α. Vice versa, the shorter is W, the worse is the
compression ratio but the faster is the compression time. This trade-off is evident and its magnitude
depends on the input sequence.

To slightly improve compression we make the following observation which is due to Storer and
Szymanski [8] and dates back to 1982. In the parsing process two situations may occur: a longest
match has been found, or it has not. In the former case it is not reasonable to add the character
following α (third component in the triple), given that we anyway advance in the input sequence. In
the latter case it is not reasonable to emit two 0s (first two components in the triple) and thus waste
one integer encoding. The simplest solution to these two inefficiencies is to always output a pair,
rather than a triple, with the form: 〈d, |α|〉 or 〈0, B[1]〉. This variant of LZ77 is named LZss, and it
is often confused with LZ77, so we will use it from this point on.

By referring to the previous running example, LZss would obtain the parsing:

|aabbabab =⇒ 〈0, a〉
a|abbabab =⇒ 〈1, 1〉
aa|bbabab =⇒ 〈0, b〉
aab|babab =⇒ 〈1, 1〉
aabb|abab =⇒ 〈3, 2〉
aabbab|ab =⇒ 〈2, 2〉

Gzip: a smart and fast implementation of LZ77. The key programming problem when imple-
menting LZ77 is the fast search for the longest prefix α of B which repeats in W. A brute-force
algorithm that checks the occurrence of every prefix of B in W, via a linear backward scan, would
be very time-consuming and thus unacceptable for compressing Gbs files.

Fortunately, this process can be accelerated by using a suitable data structure. Gzip, the most
popular implementation of LZ77, uses a hash table to determine α and find its previous occurrence
in W. The idea is to store in the hash table all 3-grams occurring in W, namely all triplets of
contiguous characters, by using as key the 3-gram and as its satellite data the position in B
where that 3-gram occurs. Since a 3-gram may repeat multiple times in W, the hash table saves for
a given 3-gram all of its multiple occurrences, sorted by increasing position in S . This way, when
W shifts to the right because of the emission of the pair 〈d, `〉, the hash table can be updated by
deleting the ` 3-grams starting at W[1, `], and inserting the ` 3-grams starting at B[1, `].

The search for α is implemented as follows:

• first, the 3-gram B[1, 3] is searched in the hash table. If it does not occur, then Gzip
emits the phrase 〈0, B[1]〉, and the parsing advances of one single character. Otherwise,
it determines the list L of occurrences of B[1, 3] in W.

• second, for each position i in L (which is expressed as absolute position in S), the
algorithm compares character-by-character S [i, n] against B in order to compute their
longest common prefix. At the end, the position i∗ ∈ L sharing this longest common
prefix is determined, as well as it is found α.

13-4 Paolo Ferragina

• finally, let p be the current position of B in S , the algorithm emits the pair 〈p − i∗, |α|〉,
and advances the parsing of |α| positions.

Gzip implements the encoding of the phrases by using Huffman over two alphabets: the one
formed by the lengths of the copies plus the literals, and the one formed by the distances of the
copies. This trick is sufficiently smart to save one extra bit to distinguish between the two types of
pairs. In fact, 〈0, c〉 is represented as the Huffman encoding of c, and 〈d, `〉 is represented reversed
by anticipating the Huffman encoding of `. Given that literals and copy-lengths are encoded within
the same alphabet, the decoder fetches the next codeword and decompresses it, so being able to
distinguishing whether the next item is a character c or a length `. According to the result, it can
either restart the decoding of the next pair (c has been decoded), or it can decode d (` has been
decoded) by using the other Huffman code.
Gzip deploys an additional programming trick that further speeds up the compression process. It

consists of sorting the list of occurrences of the 3-grams from recent to oldest matches, and possibly
stop the search for α when a sufficient number of candidates has been checked. This trades the
length of the longest match against the speed of the search. As far as the size of the window W is
concerned, Gzip allows to specify −1, . . . ,−9 which actually means that the size may vary from
100Kb to 900Kb, with a consequent improvement of the compression ratio, at the cost of slowing
down the compression speed. Not surprisingly, the longer is W, the faster is the decompression
because the smaller is the number of encoded phrases, and thus the smaller is the number of cache
misses induced by the Huffman decoding process.

For other implementations of LZ77, the reader can look at Chapter 10 where we discussed the
use of the Suffix Tree and unbounded window; as well as we refer to [4] for details about implemen-
tations which take into account the size of the compressed output (in bits) which clearly depends on
the number of phrases but also from the values of their integer components, in a way that cannot be
underestimated. Briefly, it is not necessarily the case that a longer α induces a shorter compressed
output, because it might need to copy α from a far distance d, thus taking many bits for its encoding;
rather, it might be better to divide α into two substrings which can be copied closer enough that the
total number of bits required for their encoding is less than the ones needed for d.

13.2 LZ78

The sliding window used by LZ77 from the one hand speeds up the search for the longest phrase to
encode, but from the other hand limits the search space, and thus the ultimate compression ratio. In
order to avoid this problem and still keep a fast compression stage, Ziv and Lempel devised in 1978
another algorithm, which has been consequently called LZ78 [12]. The key idea is to build incre-
mentally an explicit dictionary that contains only a subset of the substrings of the input sequence
S , selected according to a simple rule that is detailed below. Concurrently, S is decomposed into
phrases which are taken from the current dictionary.

Phrase detection and dictionary update are deeply intermingled. Let S ′ be the sequence to be
parsed yet, and let D be the current dictionary in which every phrase f is identified via the integer
id(f). The parsing of S ′ consists of determining its longest prefix f ′ which is also a phrase of D,
and substituting it with the pair 〈id(f ′), c〉 where c is the character following f ′ in S ′. Next, D is
updated by adding the new phrase f ′c, which is just one character longer than the phrase f ′ ∈ D.
Therefore the dictionary is prefix-complete because it will contain all the prefixes of every phrase in
D, moreover its size grows with the length of the input sequence.

It goes without saying that, as it occurred for LZ77, the stream of pairs generated by the LZ78-
parsing will be encoded via a statistical compressor (such as Huffman or Arithmetic) or via any
variable-length integer encoder. This will produce the compressed bit stream, eventual output of
LZ78.

Dictionary-based compressors 13-5

Input Output Dictionary
- - 0: empty
a <0, a> 1: a

ab <1, b> 2: ab

b <0, b> 3: b

aba <2, a> 4: aba
bb <3, b> 5: bb

ba <3, a> 6: ba

abab <4, b> 7: abab
aa <1, a> 8: aa

TABLE 13.1 LZ78-parsing of the string

S = aabbababbbaababaa.

(0,ε)

(1, a)

(2, b)

(3, b)

(4, a)

(5, b) (6, a)

(7, b)

(8, a)

FIGURE 13.1: The trie for the dictionary in table 13.1

As an illustrative example, let us consider the sequence S = abcde f g . . . and the dictionary D
containing the phrase abcd with id = 43, but not containing the phrase abcde. Given this scenario,
LZ78 outputs the pair 〈43, e〉 and adds the new phrase abcde to the current dictionary. The parsing
will then continue over the suffix S = f g Table 13.1 reports a full running example.

The decompressor works in a very similar way: it reads a pair 〈id, x〉, it determines the phrase f
corresponding to the integer id in the current dictionary D, emits the substring f c and updates the
current dictionary by adding that substring as a new phrase.

The LZ78 algorithm needs an efficient data structure to manage the dictionary, which can be
easily found in the trie (see Chapter 9), given that it supports fast insertion and prefix-search of
strings. The prefix-complete property satisfied by D ensures that the trie is uncompacted, namely
every edge is labeled with a single character. The encoding algorithm fits nicely on this structure (see
Figure 13.1). Searching for the longest prefix of S ′ which is a dictionary phrase, can be implemented
by traversing the trie according to S ′’s characters until a trie leaf is reached. That is the detected
phrase f ′. In addition, the new phrase f ′c is inserted in the trie by just appending a new node to the
leaf for f ′ and labeling it with the single character c. That new node will be actually a leaf of the
trie.

The final question is how do we manage large files and, thus, large dictionaries which host longer
and longer phrases. There are a few possibilities to cope with this problem:

1. Freeze the dictionary, disallowing the entry of new strings. This is the simplest option.
2. Discard the dictionary, starting with a new empty one. This can also be an advantage

if the file can be seen as structured in blocks, each one with a different set of recurring

13-6 Paolo Ferragina

Input Output Dictionary
a - 0-255:’\0’-’\255’
a 97 (a) 256: aa

b 97 (a) 257: ab

b 98 (b) 258: bb

ab 98 (b) 259: ba

aba 257 (ab) 260: aba

eof 97 (aba) 261: aba EOF

TABLE 13.2 LZW-encoding of S = aabbababa; 97 and

98 are the ASCII codes for a and b.

strings.
3. Before inserting a new string, delete the least recently used one. This solution recalls a

sort of LRU model in the dictionary access and management.

13.3 LZW

LZW is a very popular variant of LZ78, developed by Welch in 1984 [10]. Its main objective is to
avoid the need for the second component of the pair 〈id(f ′), c〉, and thus for the byte representing
a character. To accomplish this goal, before the start of the algorithm, all possible one-character
strings are written into the dictionary. This means that the phrase-ids from 0 to 255 have been
allocated to these characters. Next, the parsing of S starts searching for the longest prefix f ′ which
matches a phrase inD. Since the next prefix f ′c of S ′ does not occur inD, then f ′c is added to the
dictionary, taking the next available id, and the next phrase to detect starts from c rather than from
the following character, as instead done in LZ78 and LZ77. So parsing and dictionary updating are
misaligned.

Decoding is a bit tricky because of this misalignment. Assume that decoding has to manage two
ids i′ and i′′, and call their corresponding dictionary phrases f ′ and f ′′. The decoder, in order to
re-align the dictionary, has to create the phrase n′ from the reading of i′ and i′′, setting n′ = f ′ f ′′[1],
where f ′′[1] is the first character of the phrase f ′′. This seems easy but, indeed, it is not!

If f ′ and f ′′ are already available inD, the construction of n′ is a trivial task, just set n′ = f ′ f ′′[1].
But if f ′′ is not available the situation gets complicate! Let us look how this can happen. Take the
compression stage when the compressor emitted i′ for f ′ and inserted n′ = f ′ f ′′[1] in D. Clearly
the compressor knows f ′′ and so can do this insertion.

But if the next phrase f ′′ starts with n′, then the decompressor is in trouble. In fact the decom-
pressor sees i′, decodes it and obtains f ′, but then it needs to construct n′ and insert it in D. This
seems not possible because n′ needs f ′′[1] and we have that f ′′ is prefixed by n′ which is exactly
the string we are willing to reconstruct. Thus we falled in a sort of circular definition.

To circumvent this circularity it is enough to observe that f ′′ consists of at least one character
(recall that we initializedDwith all single characters) and it is f ′′[1] = n′[1] = (f ′ f ′′[1])[1] = f ′[1]
which is indeed available! So the reconstruction of n′ is possible even in this special case, by setting
n′ = f ′ f ′[1]. Hence the decompressor can correctly construct n′, insert it in D, and thus re-align
the dictionaries available at LZW’s compressor and decompressor after the reading of i′.

Table 13.3 shows the actions taken by the LZW-decoder over the stream of ids obtained from
Table 13.2. The dictionary starts with all the possible characters in the ASCII code, each one
with its value, so the new phrases take ids from 256. Notice that the special case occurs when
260 is read from the compressed sequence but the phrase 260 is not in the dictionary because it
has yet to be constructed. Nevertheless, by using the observations above, we can conclude that
n′ = f ′ f ′[1] = aba.

Dictionary-based compressors 13-7

Input Dictionary Output
- 0-255:’\0’-’\255’

97 256: a? a

97 256: aa a

257: a?

98 257: ab b

258: b?

98 258: bb b

259: b?

257 259: ba ab

260: ab?

260 261: aba aba

TABLE 13.3 LZW-decoding of the id-stream:

97,97,98,98,257,257,258,256,259,259,97.

As the LZ77 algorithm, LZW has many common-use implementations among which we point out
the popular GIF image format [9]. It assumes that the original (uncompressed) image is rectangular
and uses 8 bits per pixel, so the alphabet has size 256 and the input sequence S comes as a normal
stream of bytes, obtained by reading line-by-line the pixels of the image1. Since 8 bits are very few
to represent all possible colors of an image, each value actually is an index in a palette, whose entries
are 24-bits descriptions of the actual color (the typical RGB format). This restricts the maximum
number of different colors present in an image to 256.

Some researchers [5] explored the possibility to introduce a lossy variant of GIF compression
without changing the way the output is represented: this would give the possibility to have a shorter
format, using however standard decoders. The basic idea is in fact quite simple: instead of looking
for the longest exact match in the dictionary while parsing, we perform some kind of approximate
matching. In this way we can find longer matches, thus reducing the output size, but at the cost of
representing a slightly different image. Approximate matching of two strings of colors is done with
a measure of difference based on their actual RGB values, which must be guaranteed to not exceed
a threshold value.

13.4 On the optimality of compressors∞

The literature shows many results regarding the optimality of LZ-inspired algorithms. Ziv and
Lempel themselves demonstrated that LZ77 is optimal for a certain family of sources (see [11]),
and LZ78 asymptotically reaches the best compression ratio among finite-state compressors (see
[12]). Optimality here means that, assuming the string to compress is infinite and is produced by
a stationary ergodic source with a finite alphabet, then the compression ratio asymptotically tends
to the entropy of the underlying source. More recent results made it possible to have a quantitative
estimate of algorithms’ redundancy, which is a measure of the distance between the source’s entropy
and the compression ratio, and can thereby be seen as a measure of “how fast” the algorithm reaches
the source’s entropy.

All these measures are very interesting but unrealistic because it is actually quite unusual, if not
impossible, to know the entropy of the source which generated the string we’re going to compress.
In order to circumvent this problem a different empirical approach has been taken by introducing

1Actually the GIF format can also present the lines in an interleaved format, the details of which are out of the scope of
this brief discussion; the compression algorithm is however the same.

13-8 Paolo Ferragina

the notion of k-th order empirical entropy of a string S , denoted byHk(S). In Chapter 12 we talked
about the case k = 0, which depends on the frequencies of the individual symbols occurring in S .
With Hk(S) we wish to empower the entropy definition by considering the frequencies of k-grams
in S , thus taking into account sequences of symbols, hence the compositional structure of S .

More precisely, let S be a string over an alphabet Σ = {σ1, . . . , σh}, and let us denote by nω the
number of occurrences of the substring ω in S . We use the notation ω ∈ Σk to specify that the length
of ω is k. Given this notation, we can define

Hk(S) =
1
|S |

∑

ω∈Σk

h∑

i=1

nωσi log
(

nω
nωσi

) (13.1)

A compression algorithm is then defined to be coarsely optimal iff, for all k there exists a function
fk(n) tending to 0 as n→ ∞ and such that, for all sequences S of increasing length, it holds that the
compression ratio of the evaluated algorithm is at mostHk(S) + fk(|S |).

Plotnik et al. [6] proved the coarse optimality of LZ78; Kosaraju and Manzini [3] noticed that
the notion of coarse optimality does not necessarily imply a good algorithm because, if the entropy
of the string S approaches zero, the algorithm can compress badly. This observation makes the par
with the one we made for Huffman, related to the extra-bit needed for each encoded symbol. That
extra-bit was ok for large entropies, but it was considered bad for entropies approaching 0.

LEMMA 13.1 There exist strings for which the compression ratio achieved by LZ78 is at least
g(|S |)H0(S), with g(n) such that limn→∞ g(n) = ∞.

Proof Consider the string S = 01n−1, which has entropy H0(S) ∈ Θ(log n
n). It is easy to see that

LZ78 parses S with Θ(
√

n) phrases. Thus we get g(n) =
√

n
log n .

To circumvent these inefficiencies, Kosaraju and Manzini introduced a stricter version of opti-
mality, called λ-optimality: it applies to an algorithm whose compression ratio can be bounded by
λHk(S) + o(Hk(S)). As the previous lemma clearly demonstrates, LZ78 is not λ-optimal, how-
ever there exists a modified version of LZ78 combined with run-length compression (RLE) that is
3-optimal with respect toH0, but cannot be λ-optimal for any k ≥ 1.

Let us now turn our attention to LZ77, which seems more powerful than LZ78, given that its
dictionary is larger. The practical variant of LZ77 that uses a fixed-size compression window is not
much good, and actually worse than LZ78:

LEMMA 13.2 The LZ77 algorithm, with a bounded sliding window, is not coarsely optimal.

Proof We will show that, for each size L of the sliding window, we can find a string S for which
the compression ratio exceeds the k-th order entropy. Consider in fact the string (0k1k)n1 of length
2kn + 1, where we choose k = L − 1. Due to the sliding window, LZ77 parses S in the following
way:

0 0k−11 1k−10 0k−11 . . . 1k−10 0k−11 1k

Every phrase has then length up to k, splitting the input in Θ(n) phrases. In order to computeHk(S)
we need to work on all different k-length substrings of S , which are 2k: {0i1k−i}i=1...k ∪ {1i0k−i}i=1...k.
Now, all strings in the form 0i1k−i are always followed by a 1. Similarly, for i < k all strings 1i0k−i

Dictionary-based compressors 13-9

are always followed by a 0. Only the string 1k is followed n − 1 times by a 0, and once by a 1. So
we can split the sum over the k-grams ω within the definition ofHk(S) into 4 parts:

ω ∈ {0i1k−i}i=1...k → nω0 = 0 nω1 = n
ω ∈ {1i0k−i}i=1...k−1 → nω0 = n nω1 = 0
ω = 1k → nω0 = n − 1 nω1 = 1
else → nω0 = 0 nω1 = 0

It is now easy to calculate that

|S | Hk(S) = log n + (n − 1) log
n

n − 1
∈ Θ(log n)

and the lemma follows.

Nevertheless it does exist a modified LZ77, with no sliding window, which is coarsely optimal
and also 8-optimal with respect toH0. However it is not λ-optimal for any k ≥ 1:

LEMMA 13.3 There exist strings for which the compression ratio of LZ77, with no sliding
window, which is at least g(|S |)H1(S), with g(n) such that limn→∞ g(n) = ∞.

Proof Consider the string 10k 22k
1 101 1021 1031 . . . 10k1 of length 2k +O(k2), and compression

lower bound |S | Hk(S) = k log k + O(k). The string is parsed with k + 4 words:

1 0 0k−12 22k−11 101 1021 . . . 10k1

The problem is that the last k phrases refer back to the beginning of S , which is 2k characters away.
This generates Ω(k) long phrases, thus an overall output size of Ω(k2).

So this variant of LZ77 is better than LZ78, as expected, but not yet good as we would like to
for k ≥ 1. The next chapter will introduce the Burrows-Wheeler Transform, proposed in 1994,
which allows to surpass the inefficiencies of LZ-based methods by devising a novel approach to
data compression which achieves λ-optimality, for very small λ and simultaneously for all k ≥
0. It is therefore not surprising that the BWT-based compressor bzip2, available in most Linux
distributions, produces a more succinct output than gzip.

References

[1] Jon Bentley and Doug Mc Ilroy Data compression using long commons strings. Proc.
IEEE Data Compression Conference (DCC), 287-295, 1999.

[2] Richard Karp and Michael Rabin. Efficient randomized pattern-matching algorithms.

IBM Journal of Research and Development, 31(2):319-327, 1987.

[3] S. Rao Kosaraju and Giovanni Manzini. Compression of low entropy strings with

Lempel-Ziv algorithms. Siam Journal on Computing, 29(3):893-911, 1999.

[4] Paolo Ferragina, Igor Nitto, and Rossano Venturini. On the bit-complexity of lempel-

ziv compression. In Procs of the ACM-SIAM Symposium on Algorithms (SODA), pages

768–777, 2009.

[5] Steven Pigeon. An optimizing lossy generalization of LZW. Procs of IEEE Data Com-
pression Conference, 509, 2001.

13-10 Paolo Ferragina

[6] Eli Plotnik, Marcelo Weinberger and Jacob Ziv. Upper bounds on the probability of

sequences emitted by finite-state sources and on the redundancy of the Lempel-Ziv

algorithm. IEEE Transactions on Information Theory, 38:16-24, 1992.

[7] Kunihio Sadakane and Hiroshi Imai. Improving the speed of LZ77 compression by

hashing and suffix sorting. IEICE Trans. Fundamentals Vol. E83-A, 2000.

[8] James A. Storer and Thomas G.Szymanski. Data compression via textual substitution.

Journal of the ACM, 29(4):928-951, 1982.

[9] The Graphics Interchange Format, v89a. Compuserve Incorporated, Columbus, Ohio,

1990.

[10] Terry A. Welch. A technique for high-performance data compression. Computer, 8-19,

1984.

[11] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compres-

sion. IEEE Transactions on Information Theory, IT-23(3):337-343, 1977.

[12] Jacob Ziv and Abraham Lempel. Compression of individual sequences via variable-rate

coding. IEEE Transactions on Information Theory, IT-24(5):530-536, 1978.

14
The Burrows-Wheeler Transform

14.1 The Burrows-Wheeler Transform . 14-2
The forward transform • The backward transform

14.2 Two other simple transforms . 14-6
The Move-To-Front transform • The RLE transform

14.3 The bzip compressor . 14-11
14.4 On compression boosting∞ . 14-15
14.5 On compressed indexing∞ . 14-16

This chapter describes a lossless data compression technique devised by Michael Burrows and
David Wheeler in 1994 at the DEC Systems Research Center. This technique was published in
a Technical Report of the company [4, 8],1 and since it was rejected from the Data Compression
Conference (as Mike Burrows stated in its foreword to [9]2), the two authors decided of not pub-
lishing their paper anywhere. Fortunately, Mark Nelson drew attention to it in a Dr. Dobbs article,
and that was enough to ensure its survival.

A wonderful thing about publishing an idea is that a greater number of minds can be brought to
bear on the surrounding problems. This is what happened around the Burrows-Wheeler Transform,
whose studies exploded around the year 2000, leading me, Giovanni Manzini and S. Muthukrishnan
to celebrate a ten-years-later resume in a special issue of Theoretical Computer Science [9]. In that
volume, Mike Burrows again declined to publish the original TR but wrote a wonderful Foreword
dedicated to the memory of David Wheeler, who passed away in 2004, and finally stated: “This issue
of Theoretical Computer Science is an example of how an idea can be improved and generalized
when more people are involved. I feel sure that David Wheeler would be pleased to see that his
technique has inspired so much interesting work.”

The so called Burrows-Wheeler Transform (or BWT) offered a revolutionary alternative to dictionary-
based compressors and actually initiated a new family of compressors (such as bzip2 [18] or the
booster [6]) as well as a new powerful family of compressed indexes (such as FM-index [7], and
many variations [15]). In the following we will detail the BWT and the other two simple compressors,
i.e. Move-To-Front and Run-Length Encoding, whose combination constitutes the bzip-based com-
pressors. We will also briefly mention few theoretical issues about the BWT performance expressed
in terms of the k-th order empirical entropy of the data to be compressed.

1M. Burrows: “In the technical report that described the BWT, I gave the year as 1981, but later, with access to the
memory of his wife Joyce, we deduced that it must have been 1978.”
2Years passed, and it became clear that David had no thought of publishing the algorithm—he was too busy thinking of
new things. Eventually, I decided to force his hand: I could not make him write a paper, but I could write a paper with
him, given the right excuse.

c© Paolo Ferragina, 2009-2020 14-1

14-2 Paolo Ferragina

14.1 The Burrows-Wheeler Transform

The Burrows-Wheeler Transform (BWT) is not a compression algorithm per se, as it does not squeeze
the input size, it is a permutation (and thus, a lossless transformation) of the input symbols which are
laid down in a way that the resulting string is most suitable to be compressed via simple algorithms,
such as Move-To-Front coding (shortly MTF) and Run Length Encoding (shortly RLE), both to be
described in Section 14.2. This permutation forces some “locally homogeneous” properties in the
ordering of the symbols that can be fully deployed, efficiently and efficaciously, by the combination
MTF + RLE. A last statistical encoding step (e.g. Huffman or Arithmetic) is finally executed in order
to eventually squeeze the output bit stream. All these steps constitute the backbone of any bzip-like
compressor which will be discussed in Section 14.3.

The BWT consists of a pair of inverse transformations: a forward transform, which rearranges
the symbols in the input string; and a backward transform, which somewhat magically reconstructs
the original string from its BWT. It goes without saying that the invertibility of BWT is necessary to
guarantee the decompression of the input file!

14.1.1 The forward transform

Let s = s1s2...sn be an input string on n symbols drawn from an ordered alphabet Σ. We append to s
a special symbol $ which does not occur in Σ and it is assumed to be smaller than any other symbol
in the alphabet, according to its total ordering.3 The forward transform proceeds as follows:

1. Build the string s$.
2. Consider the conceptual matrixM of size (n + 1)× (n + 1), whose rows contain all the

cyclic left-shifts of string s$. M is called the rotation matrix of s.4

3. Sort the rows ofM reading them left-to-right and according to the ordering defined on
alphabet Σ∪{$}. The final matrix is calledM′. Since $ is smaller than any other symbol
in Σ and, by construction, appears only once, the first row ofM′ is $s.

4. Set bw(s) = (L̂, r) as the output of the algorithm, where L̂ is the string obtained by
reading the last column of M′, sans symbol $, and r is the position of $ there.

We said above thatM is a conceptual matrix because we have to avoid its explicit construction,
which otherwise would make the BWT an elegant mathematical object: the size of M is quadratic
in bw(s)’s length, so the conceptual matrix has size 248 ≈ 1000Tb just for transforming a string of
16Mb. In Section 14.3 we will actually show that M′ can be built in time and space linear in the
length of the input string s, by resorting Suffix Arrays.

An alternate enunciation of the algorithm, less frequent yet still present in the literature [19],
constructs matrix M′ by sorting the rows of M reading them right-to-left (i.e. starting from the
last symbol of every row). Then, it takes the string F̂ formed by scanning the first column of
M′ top-to-bottom and, again, skipping symbol $ and storing its position in r′. The output is then
bw(s) = (F̂, r′). This enunciation is the dual of the one given above because it is possible to formally
prove that both strings F̂ and L̂ exhibit the same local-homogeneity properties and thus compression,
to be illustrated below. In the rest of the chapter we will refer to the left-to-right sorting of M’s rows
and to (L̂, r) as the BWT of the string s, somehow forgetting the integer r.

3The step that concatenates the special symbol $ to the initial string was not part of the original version of the algorithm
as described by Burrows and Wheeler. It is here introduced with the intent to simplify the description.
4The left shift of a string aα is the string αa, namely the first symbol is moved to the end of the original string.

The Burrows-Wheeler Transform 14-3

In order to better understand the power of the Burrows-Wheeler Transform, let us consider the
following running example formulated over the string s = abracadabra. The left side of Figure
14.1 shows the rotated matrix M built over s; whereas the right side of Figure 14.1 shows sorted
matrix M′. Because the first row ofM is the only one to end with $, which is the lowest-ordered
symbol in the alphabet, row $abracadabra is the first row ofM′. The other three rows ofM′ are
the ones beginning with a, and then follow the rows starting with b, c, d and finally r, respectively.

s$
0 a bracadabra $

1 b racadraba$ a

2 r acadraba$a b

3 a cadabra$ab r

4 c adabra$abr a

5 a dabra$abra c

6 d abra$abrac a

7 a bra$abraca d

8 b ra$abracad a

9 r a$abracada b

10 a $abracadab r

11 $ abracadabr a

sort

F
$ abracadabr a 0
a $abracadab r 1
a bra$abraca d 2
a bracadabra $ 3 = r
a cadabra$ab r 4
a dabra$abra c 5
b ra$abracad a 6
b racadraba$ a 7
c adabra$abr a 8
d abra$abrac a 9
r a$abracada b 10
r acadraba$a b 11

s =abracadabra sort direction

FIGURE 14.1: Forward Burrows-Wheeler Transform of the string s = abracadabra.

If we read the first column ofM′, denoted by F, we obtain the string aaaaabbcdr which is the
sorted sequence of all symbols in s. We finally obtain L̂ by excluding the single occurrence of $
from the last column L, so L̂ = ardrcaaaabb, and set r = 3.

The example is illustrative of the locally-homogeneous property we were mentioning before: the
last 6 symbols of the last column of M form a highly repetitive string aaaabb which can be eas-
ily and highly compressed via the two simple compressors MTF + RLE (described below). The
soundness of this statement will be mathematically sustained in the following pages, here we con-
tent ourselves by observing that this repetitiveness occurs not by chance but it is induced by the
way M’s rows are sorted (left-to-right) and texts are written down by humans (left-to-right). The
nice issue here is that many real sources (they are called Markovian) do exist that generate data
sequences, other than texts, that can be turned to be locally homogeneous via the Burrows-Wheeler
Transformation, and thus can be highly compressed by bzip-like compressors.

14.1.2 The backward transform

We observe, both by construction and from the example provided above, that each column of the
sorted cyclic-shift matrixM′ (and also M) contains a permutation of s$. In particular, its first col-
umn F = aaaaabbcdr is alphabetically sorted and thus it represents the best-compressible trans-
formation of the original input block. But unfortunately F cannot be used as BWT because it is
not invertible: every text of length 11 and consisting of 5 occurrences of symbol a, 2 occurrences
of b, 1 occurrence c, d, r respectively, originates a BWT whose F is the same as the one above.
The Burrows-Wheeler transform represents, in some sense, the best column of M′ to be chosen as
transformed s in terms of reversibility and compressibility of s.

In order to prove these properties more formally, let us define a useful function that tells us how

14-4 Paolo Ferragina

to locate inM′ the predecessor of a symbol at a given index in s.

FACT 14.1 For 1 ≤ i ≤ n, let s[ki, n − 1] denote the suffix of s prefixing row i ofM′. Clearly,
row i is then followed by symbol $, and then by the prefix s[1, ki − 1] because of the leftward cyclic
shift.

For example in Figure 14.1, row 2 ofM′ is prefixed by abra, followed by $abracad.

Property 6 The symbol L[i] precedes the symbol F[i] in the string s, except for the row i such that
L[i] = $, in which case F[i] = s[1].

Proof Because of Fact 14.1 the last symbol of the row i is L[i] = s[ki − 1] and its first symbol is
F[i] = s[ki]. So the statement follows.

Intuitively, this property descends from the very nature of every row inM andM′ that is a left
cyclic-shift of s$, so if we take two extremes of each row, the symbol on the right extreme (i.e. on
L) is immediately followed by the one on the left extreme (i.e. on F) over the string s.

Property 7 All the occurrences of a same symbol c in L maintain the same relative order as in F.
This means that the kth occurrence in L of symbol c corresponds to the kth occurrence of the symbol
c in F.

Proof Given two strings t and t′, we shall use the notation t ≺ t′ to indicate that string t lexico-
graphically precedes string t′.

Fix now the symbol c. If c occurs once in s then the proof derives immediately because the
single occurrence of c in F obviously maps to the single occurrence of c in L. (Both columns are
permutations of s.) To prove the more complicate situation that c occurs at least twice in s, let us fix
two of these occurrences and pick their rows of the sorted matrixM′, say r(i) and r(j) with i < j.
We can observe few interesting things:

• row r(i) precedes lexicographically row r(j), given the ordering of M′’s rows and the
fact that i < j, by assumption;

• both rows r(i) and r(j) start with symbol c, by assumption;
• given that r(i) = cα and r(j) = c β, it is α ≺ β.

Since we are interested in the respective positions of those two occurrences of c when they are
mapped to L, we consider the two rows r(i′) and r(j′) which are obtained by rotating those two rows
leftward by one single symbol: r(i′) = α c and r(j′) = β c. This way, this rotation brings the first
symbol F[i] (resp. F[j]) into the last symbol L[i′] (resp. L[j′) of the rotated rows. Since α ≺ β, it
is r(i′) ≺ r(j′) and so the preservation of the ordering in L holds true for that pair of occurrences of
c. Given that this order-preserving property holds for every pair of occurrences of c in F/L, it holds
true for all of them.

We have now all mathematical tools to design an algorithm which reconstructs s from its bw(s) =

(L̂, r) by exploiting the so called LF-mapping, an array of n integers in the range [0, n − 1].

DEFINITION 14.1 It is LF[i] = j iff the symbol L[i] maps to symbol F[j]. This way, if L[i]
is the kth occurrence in L of symbol c, then F[LF[i]] is the kth occurrence of c in F.

The Burrows-Wheeler Transform 14-5

Algorithm 14.1 Constructing the LF-mapping from column L
1: for i = 0, 1, . . . , n − 1 do
2: C[L[i]]++;
3: end for
4: temp = 0, sum = 0;
5: for i = 0, 1, . . . , |Σ| do
6: temp = C[i];
7: C[i] = sum;
8: sum+= temp;
9: end for

10: for i = 0, 1, . . . , n − 1 do
11: LF[i] = C[L[i]];
12: C[L[i]]++;
13: end for

Building LF is pretty straightforward for symbols that occur only once, as it is the case of $, c
and d in s = abracadabra$, see Figure 14.1. But when it comes to symbols a, b and r, which
occur several times in the string s, computing LF efficiently is no longer trivial. Nonetheless it can
be solved in optimal O(n) time thanks to Property 7, as Algorithm 14.1 details. This algorithm uses
an auxiliary vector C, of size |Σ| + 1. For the sake of description, we assume that array C is indexed
by a symbol rather than by a integer.5

The first for-cycle computes, for each symbol c, the number nc of its occurrences in L, and stores
C[c] = nc. Then, the second for-cycle, turns these symbol-wise occurrences into a cumulative sum,
so that the new C[c] stores the total number of occurrences in L of symbols smaller than c, namely
C[c] =

∑
x<c nx. This is done by adopting two auxiliary variables, so that the overall working space

is still O(n). We notice that C[c] gives the first position in F where symbol c occurs. Therefore,
before the last for-cycle starts, C[c] is the landing position in F of the first c in L (we thus know
the LF-mapping for the first occurrence of every alphabet symbol). Finally, the last for-cycle scans
the column L and, whenever it encounters symbol L[i] = c, then it sets LF[i] = C[c]. This is correct
when c is met for the first time; then C[c] is incremented so that the next occurrence of c in L will
map to the next position in F (given the contiguities in F of all rows starting with that symbol). So
the algorithm keeps the invariant that LF[i] =

∑
x<c nx + k, after that k occurrences of c in L have

been processed. It is easy to derive the time complexity of such computation which is O(n).
Given the LF-mapping and the fundamental properties shown above, we are able to reconstruct

s backwards starting from the transformed output bw(s) = (L̂, r) in O(n) time and space. Clearly
it is easy from bw(s) to construct L, just insert $ at position r of L̂. The algorithm then picks the
last symbol of s, namely s[n − 1], which can be easily identified at L[0], given that the first row
of M′ is $s. Then it proceeds by moving one symbol at a time to the left in s, deploying the two
Properties above: Property 7 allows to map the current symbol occurring in L (initially L[0]) to its
corresponding copy in F; then Property 6 allows to find the symbol which precedes that copy in F
by taking the symbol at the end of the same row (i.e. the one in L). This double step, which returns
on L, allows to move one symbol leftward in s. Repeating this up to the beginning of s we are able
to reconstruct this string. The pseudo-code is reported in Algorithm 14.2.

As an example, refer to Figure 14.1 where we have that L[0] = s[n − 1] = a, and execute the

5Just implement C as a hash table, or observe that in practice any symbol is encoded via an integer (ASCII code maps to
the range 0, . . . , 255) which can be used as its index in C.

14-6 Paolo Ferragina

Algorithm 14.2 Reconstructing s from bw(s)
1: Derive column L from bw(s);
2: Compute LF[0, n − 1] from L;
3: k = 0; i = n − 1;
4: while i ≥ 0 do
5: s[i] = L[k];
6: k = LF[k];
7: i--;
8: end while

while-cycle of Algorithm 14.2. Definition 14.1 guarantees that LF[0] points to the first row starting
with a, this is the row 1. So that copy of a is LF-mapped to F[1] (and in fact F[1] = a), and the
preceding symbol in s is thus L[1] = r. These two basic steps are repeated until the whole string s is
reconstructed. Just continuing the previous running example, we have that L[1] = r is LF-mapped
to the symbol in F at position LF[1] = 10 (and indeed F[10] = r). In fact, L[1] and F[10] is the
first occurrence of symbol r in both columns L and F, respectively. The algorithm then takes as
preceding symbol of r in s the symbol L[10] = b. And so on...

THEOREM 14.1 The original string s can be reconstructed from its BWT in O(n) time and
space. Algorithm 14.2 elicits possibly one cache-miss per symbol.

Several recent results addressed the problem of reducing the number of cache misses as well as the
working space of algorithms inverting BWT. Some progress has been made in the literature (see e.g.
[17, 12, 13, 11]), but yet reductions are limited, e.g. small constants for the cache-misses, say 2÷ 4,
which get larger if the data is highly repetitive. Much has still to be discovered here!

14.2 Two other simple transforms

Let us now focus on two simple algorithms that come in very useful to design the compressor
bzip2. These algorithms are called Move-To-Front (MTF) and Run-Length Encoding (RLE). The
former maps symbols into integers, the latter maps runs of equal symbols into pairs. For the sake
of completeness we observe that RLE is a compressor indeed, because the output sequence may
be reduced in length in the presence of long runs of equal symbols; while MTF can be turned into a
compressor by encoding the run-lengths via proper integer encoders [3]. In general the compression
performance of those algorithms is very poor: BWT is magically their killer application!

14.2.1 The Move-To-Front transform

The MTF-transformation [3] implements the idea that every symbol of a string s can be replaced with
its index in a proper dynamic list LMT F containing all alphabet symbols. The string produced in
output, denoted hereafter as sMT F , is initialized to the empty string and contains as symbols integers
in the range [0, |Σ| − 1]. At each step i, we process the symbol s[i] and find its position p in LMT F .
Then p is added to the string sMT F , and LMT F is modified by moving the symbol s[i] to the front of
the list.

It is greatly advantageous to apply this processing over the column L of bw(s) because, as it
will be clear next, it transforms locally homogeneous substrings of L into a globally homogeneous
string LMT F in which abound small integers. At this point we could apply any integer compressor,

The Burrows-Wheeler Transform 14-7

s: “bananacocco”∑
: {a, b, c, n, o}

1
σ: “b”
i: 1
l: {a, b, c, n, o}
sMTF: “1”

2
σ: “a”
i: 1
l: {b, a, c, n, o}
sMTF: “11”

3
σ: “n”
i: 3
l: {a, b, c, n, o}
sMTF: “113”

4
σ: “a”
i: 1
l: {n, a, b, c, o}
sMTF: “1131”

5
σ: “n”
i: 1
l: {a, n, b, c, o}
sMTF: “11311”

6
σ: “a”
i: 1
l: {n, a, b, c, o}
sMTF: “113111”

7
σ: “c”
i: 3
l: {a, n, b, c, o}
sMTF: “1131113”

8
σ: “o”
i: 4
l: {c, a, n, b, o}
sMTF: “11311134”

9
σ: “c”
i: 1
l: {o, c, a, n, b}
sMTF: “113111341”

10
σ: “c”
i: 0
l: {c, o, a, n, b}
sMTF: “1131113410”

11
σ: “o”
i: 1
l: {c, o, a, n, b}
sMTF: “11311134101”

12
σ: “”
i:
l: {o, c, a, n, b}
sMTF: “11311134101”

FIGURE 14.2: An example of MTF-transform over the string t = bananacocco, alphabet Σ =

{a, b, c, n, o} and thus index set {0, 1, 2, 3, 4}.

described in Chapter 11, instead the bzip deploys the structural properties of LMT F to apply, in cas-
cade, RLE and finally a Statistical encoder (such as Huffman, Arithmetic, or some of their variations,
see Chapter 12).

Figure 14.2 shows a running example for MTF over the string t = bananacocco which consists
of 5 distinct symbols. It is evident that more frequent symbols are to the front of the list LMT F and
thus get smaller indices in sMT F ; this is the principle exploited in [3] to prove some compressibility
bounds for the compressor that applies δ-coding over the integers in sMT F (see Theorem 14.3 below).

We notice two local homogeneous substrings in s— “anana” and “cocco”— which show indi-
vidually some redundancy in a few symbols. This is turned by MTF into two substrings of sMT F con-
sisting of small integers. The nice thing of the MTF-mapping is that homogeneous substrings which
possibly involve different symbols (such as {a, n} and {c, o} in our running example), are changed
into the homogeneous string sMT F = 11311134101 which involves small numbers (mostly 0s and
1s) and is thus defined over a unique (integer) alphabet. The strong local-homogeneity properties of
the column L in bw(s) will make LMT F full of 0s, so that the use the single and simple compressor
RLE is worth and effective.

Inverting sMT F is easy provided that we start with the same initial list LMT F used for the MTF-
transformation of s. A running example is provided in Figure 14.3. The algorithm maps an integer
i in sMT F onto the symbol which occurs at position i in LMT F , and then moves that symbol to the
front of the list. This way the inversion algorithm mimics the transformation algorithm, by keeping
both MTF-lists synchronized.

THEOREM 14.2 Transforming a string s via MTF takes O(|s|) time and O(|Σ|) working space.

14-8 Paolo Ferragina

sMTF: “11311134101”∑
: {a, b, c, n, o}

1
i: 1
l: {a, b, c, n, o}
s: “b”

2
i: 1
l: {b, a, c, n, o}
s: “ba”

3
i: 3
l: {b, a, c, n, o}
s: “ban”

4
i: 1
l: {n, a, b, c, o}
s: “bana”

5
i: 1
l: {a, n, b, c, o}
s: “banan”

6
i: 1
l: {n, a, b, c, o}
s: “banana”

7
i: 3
l: {a, n, b, c, o}
s: “bananac”

8
i: 4
l: {c, a, n, b, o}
s: “bananaco”

9
i: 1
l: {o, c, a, n, b}
s: “bananacoc”

10
i: 0
l: {c, o, a, n, b}
s: “bananacocc”

11
i: 1
l: {c, o, a, n, b}
s: “bananacococo”

12
i:
l: {o, c, a, n, b}
s: “bananacocco”

FIGURE 14.3: An example of MTF-inversion over the string sMT F = 11311134101, starting with
the list LMT F = {a, b, c, n, o}.

A key concept for evaluating the compression performance of MTF is the one named locality of
reference, which we have previously called locally homogeneous substrings. Locality of references
in s means that the distance between consecutive occurrences of the same symbol are small. For
example the string bananacocco shows this feature in the substrings anana and cocco. We are
perfectly aware that this concept is roughly specified but, for now, let us stick onto this abstract
formulation which we will make mathematically precise next.

If the input string s exhibits locality of references, then the MTF-compressor (namely one that
MTF-transforms s and then compresses someway the integers in sMT F) performs better than the
Huffman’s compressor. This might appear surprising because Huffman’s compressor is an optimal
prefix-code; but, actually this is not surprising, because the MTF-compressor is not a prefix-code
given that a symbol may be dynamically associated to different codewords. As an example look at
Figure 14.2 and notice that symbol c gets three different numbers in sMT F— i.e. 3, 1, 0— and thus
three different codewords.

Conversely, if the input string s does not exhibits any kind of locality of reference (e.g. it is a
(quasi-)random string over the alphabet Σ), then the MTF-compressor performs much worse than
Huffman’s compressor. The following theorem (proved in [3]) makes this rough analysis precise by
combining the MTF-transform with the γ-code. It goes without saying that the upper bound stated
below could be made closer to the entropy H by substituting the γ-code with the δ-code or any other
better universal compressor for integers (see Chapter 11).

THEOREM 14.3 Let nc be the number of occurrences of a symbol c in the input string s, whose
total length is n = |s|. We denote by ρMT F(s) the average number of bits per symbol used by the
compressor that squeezes the string sMT F using the γ-code over its integers. It is ρMT F(s) ≤ 2H + 1,
namely that compressor can be no more than twice worse than the entropy of the source, and thus it
cannot be more than twice worse than the Huffman compressor.

The Burrows-Wheeler Transform 14-9

Proof Let p1, . . . , pnc be the positions in s where symbol c occurs. Clearly, between any two
consecutive occurrences of c in s, say pi and pi−1, there may exist no more than pi − pi−1 distinct
symbols (including c itself). So the index encoded by the MTF-compressor for the occurrence of c
at position pi is at most pi − pi−1. In fact, when processing position pi−1 the symbol c is moved
to the front of the list, then it can move (at most) one position back per symbol processed subse-
quently, until we reach the occurrence of c at position pi. This means that the integer emitted for
the occurrence of c at position pi is ≤ pi − pi−1 (number of symbols processed). This integer is then
encoded via γ-code, thus using no more than γ(pi − pi−1) ≤ 2(log2(pi − pi−1)) + 1 bits. As far as
the first occurrence of c is concerned, we can assume that p0 = 0, and thus encode it with at most
γ(p1) ≤ 2(log2 p1) + 1 bits. Overall the cost in bits for storing the occurrences of c in string s is

≤γ(p1) +

nc∑

i=2

γ(pi − pi−1)

≤2 log2(p1) + 1 +

nc∑

i=2

(
2 log2(pi − pi−1) + 1

)

≤
nc∑

i=1

(
2 log2(pi − pi−1) + 1

)
.

(14.1)

By applying Jensen’s inequality we can move the logarithm function outside the summation, so
that a telescopic sum comes out:

≤ nc

2 log2

1
nc

nc∑

i=1

(pi − pi−1)

 + 1

= nc

(
2 log2

(
pnc

nc

)
+ 1

)

≤ nc

(
2 log2

(
n
nc

)
+ 1

)
(14.2)

where the last inequality comes from the simple observation that pnc ≤ n. If now we sum for
every symbol c ∈ Σ and divide for the string length n, because the Theorem is stated as number of
bits per symbol in s, we get:

ρMT F(s) ≤ 2

∑

c∈Σ

nc

n
log2

(
n
nc

) + 1 ≤ 2H + 1 (14.3)

The thesis follows because H lower bounds the average codeword length of Huffman’s code.

There do exist cases for which the MTF-based compressor performs much better than Huffman’s
compressor.

LEMMA 14.1 The compressor based on the combination of MTF-transform and γ-code can
be better than Huffman compressor by the unbounded factor Ω(log n), where n is the length of the
string to be compressed.

Proof Take the string s = 1n2n · · · nn defined over an alphabet of size n and having length |s| = n2.
Since every symbol occurs n times, the distribution is uniform and thus Huffman uses for each

14-10 Paolo Ferragina

symbol log2 n bits. The overall compression of s by Huffman takes Θ(|s| log n) = Θ(n2 log n) bits.
We used the asymptotic notation because constants here do not matter.

If we adopt the MTF-transform we get the string sMT F = 0n 10n−1 20n−1 30n−1 · · · . Applying the
γ-code, with the warning that integer i is encoded as γ(i + 1) since i may be null, we get an output
bit sequence of length O(n2 + n log n). This is due to the fact that the Θ(n2) integers equal to 0 are
encoded as γ(1) = 1, thus taking 1 bit, whereas all other integers (they are n− 1 and smaller than n)
are encoded with O(log n) bits each.

14.2.2 The RLE transform

This is a very simple transform which maps every maximal contiguous substring of ` occurrences
of symbol c into a pair 〈`, c〉. As an example, suppose we have to compress the following string
which represents a line of pixels of a monochromatic bitmap (where W stands for “white” and B for
“Black”).

WWWWWWWWWWWBWWWWWWWWWWWWBBBBBWWWWWW

We can take the first block of W and compress in the following way:

WWWWWWWWWWW︸ ︷︷ ︸
〈11,W〉

BWWWWWWWWWWWWBBBBBWWWWWW

We can proceed in the same way until the end of the line is encountered, thus obtaining the
sequence of pairs 〈11,W〉, 〈1, B〉, 〈12,W〉, 〈5, B〉, 〈6,W〉. It is easy to see that the encoding is lossless
and simple to reverse. A remarkable observation is that if |Σ| = 2, as in the previous example, we
can simply emit individual numbers (which indicate the run length) rather than pairs, plus the first
symbol of the string to compress (W in the example), and still be able to decode back to the original
string. In the previous example we could emit: W, 11, 1, 12, 5, 6.
RLE is actually more than a transform because it can be turned into a simple compressor by

combining it with an integer encoder (as we did for MTF). Its best known context of application
is fax transmission [19]: a sheet of paper is viewed as a binary (i.e. monochromatic) bitmap, this
bitmap is first transformed by XORing two consecutive lines of pixels, then every output line is
RLE-transformed and, finally, the integers are compressed via Huffman or Arithmetic (recall that
in binary images, the alphabet has size two). Provided that the paper to be faxed is pretty regular,
the XORed lines will be full of 0s, and thus their RLE-transformation will originate few runs, whose
compression will be significant. Nothing prevents to apply this argument to colored images, but the
XORing of contiguous lines will get less 0s. More sophisticated methods are needed in this setting!

RLE can perform better or worse than the Huffman scheme: this depends on the message we want
to encode. The following lemma shows that RLE can be much better than Huffman, by adopting the
same string we used to prove Lemma 14.1.

LEMMA 14.2 The compressor based on the combination of the RLE-transform and the γ-code
can be better than Huffman’s compressor by the unbounded factor Ω(n), where n is the length of the
string to be compressed.

Proof Take the string s = 1n2n · · · nn, and recall from the proof of Lemma 14.1 that Huffman’s
code takes Θ(n2 log n) bits to compress it. If we apply the RLE-transform on the string s we get the
string sRLE = 〈1, n〉 〈2, n〉 〈3, n〉 · · · 〈n, n〉. The γ-code over the integers of sRLE will use O(log n) bits
per pair and thus O(n log n) bits overall.

The Burrows-Wheeler Transform 14-11

But there are cases, of course, in which RLE-compressor can perform much worse than Huffman’s.
Just consider a string s in which runs are short, namely any English text!

14.3 The bzip compressor

As we anticipated in the previous sections, the compressor bzip hinges on the sequential combi-
nation of three transforms— i.e. BWT, MTF and RLE— which produce an output that is suitable to
be highly squeezed by a classical statistical compressor— such as Huffman, Arithmetic, or some
of their variations. The most time consuming step in this sequence is the computation/inversion of
the BWT, both at compression/decompression time respectively. This is not just in terms of number
of operations, which are O(n) for all transforms and the statistical compressor, but because of the
pattern of memory accesses that is very scattered thus inducing a lot of cache misses. This is an
issue that we will comment more deeply next.

The key property that makes bzip work well is the local homogeneity of the string produced
by the Burrows-Wheeler transform. To convince yourself of this property let us consider the input
string s and one of its substrings w, which is assumed to occur nw times in s. Say c1, . . . , cnw are
the symbols preceding the occurrences of w in s. Now given the way bw(s) is computed, we can
conclude that all rows prefixed by the substring w in M′ (they are of course nw) are contiguous, but
possibly shuffled depending on the symbols which follow w in each of those rows. In any case,
the symbols ci which precede w are contiguous in L (shuffled, accordingly), and thus constitute a
substring of L. If the string s is Markovian, in the sense that symbols are emitted based on their
previous ones (like linguistic texts), then the symbols ci are expected to be a few distinct ones, and
this property holds the more the longer is w. Given that w can be of any length, we say that L is
locally homogeneous because, as we observed, picking any of its substrings it will possibly show
few distinct symbols. This homogeneity is the core property that makes the subsequent steps in
bzip very effective in compressing L.

For the sake of clearness, let us consider the following example which runs bzip over the
string s defined as the concatenation for three times of the string mississippi. This way a
high repetitiveness is induced over s. The first step consists of computing bw(s), for space rea-
sons we do not detail this computation but just show the result that can be checked by hands:
L = ippp ssss ssmm miip ppii isss sssi iiii i, where groups of 4 symbols simplify the
reading, and r = 15 (counting from 0). The next step is to apply the MTF-transform to L starting
with a list LMT F = {i,m, p, s} which consists of the distinct symbols appearing in s. The storage of
r (using 4-8 bytes) and of LMT F (plainly) occurs in the preamble of the compressed file. The result
of MTF is the string LMT F = 0200 3000 0030 0303 0010 0300 0001 0000 0. Notice that runs
of equal symbols generate runs of 0, except for the first symbol of the run which is mapped to an
integer which represents its position in LMT F at the time of its processing.

The first specialty introduced by bzip is that RLE in not applied onto LMT F but on a slightly differ-
ent string in which all numbers, except 0, are increased by one: LMT F+ = 0300 4000 0040 0404 0040

0400 0002 0000 0. The ratio behind this change relies on the way runs of 0 are encoded. In fact
bzip does not apply RLE to runs of all possible symbols, rather it applies a restricted variant, called
RLE0, which squeezes only the runs consisting of 0s. So the construction of LMT F+, instead of
LMT F , can be looked as a smart way to reserve the integers 0 and 1 for the binary encoding of the
0-runs. More precisely, the run 00000 consisting of 5 occurrences of 0s is encoded according to the
following scheme, known as Wheeler’s code: the length is increased by 1, hence 5 + 1 = 6, then
the binary encoding of 6 is returned, hence 110, and finally the first bit (surely 1) is removed thus
outputting the binary sequence 10. The first increment guarantees that the (increased) run-length is
at least 2, and thus it is represented in at least 2 binary digits in which the first one is surely a 1. So
the 1-bit removal leaves at least one bit to be output. Decoding Wheeler’s code is easy, just repeat

14-12 Paolo Ferragina

0.143

Bzip Lzma Lzo
0.022

0.648

0.082
Zip

1

0

0.5

seconds

0.048
Bzip Lzma Lzo

0.000∗

1.285

0.049
Zip

1

0.5

∗ less than the discretization of the machine

150.20

Bzip Lzma Lzo
3.84

547.90

24.49

Zip

550

225

compression
Divine Comedy monochromatic image Gcc

↓ le
ss

is
b
et
te
r

FIGURE 14.4: Compression speed (lower is better)

the above steps in reverse order.
The key property of Wheeler’s code is that the output bit sequence consists of no more digits than

numbers in LMT F+, so this step can be considered as a preliminary compression, which is more and
more effective as longer and longer are the 0-runs in LMT F+. The binary output for the sequence
of our running example above is: RLE0 = 0314 1041 4031 4141 0210. It is evident that the
decompressor can easily identify the run’s encodings because they consist of maximal sequences of
0s and 1s; recall that these numbers have been reserved explicitly for this purpose.

Finally RLE0 is compressed by using a Statistical compressor that operates on an alphabet which
consists of integers in the range [0, |Σ|]. We observe that the alphabet size is |Σ| + 1, rather than |Σ|,
because of the increment we did onto the non-null numbers in LMT F to derive LMT F+. The reader can
look at the home page of bzip2 [18] for further details, especially regarding the statistical-encoding
step.

Just to have an idea of the power of the BW-Transform, we report here few experiments that
compare a BWT-based compressor6 against a few other well-known compression algorithms such
as LZMA (Lempel-Ziv-Markov chain algorithm)7, LZO1A (LZ-Oberhumer zip)8, and the classic
ZIP9. Tests were run in a commodity PC with 2GB RAM (using ramfs), AMD Athlon(tm)X2 Dual-
Core QL-64, running Linux. We used three datasets of different type and size: La Divina Commedia,
a raw monochromatic non-compressed image, and the package gcc-4.4.3. These experiments are
not intended to provide an official comparison among these compressors, rather to give the reader a
flavor of the differences in performance among them.

From Figures 14.4–14.6 we can easily draw some conclusions. First of all, LZMA is bad on these
datasets; it has ever the worst compression time and it does not reach the best compression rate.
bzip2 seems to be quite in the middle: sometimes it takes a lot of time to compress, but it reaches
the best compression rate. By considering the decompression time, bzip2 slows down too much as
the size of the file grows, and this is not a surprise because of its algorithmic structure. Perhaps the

6We used http://www.bzip.org, version 1.0.5-r1
7We used the “lzip” package from http://www.nongnu.org, version 1.10
8We used the version 1.02 rc1-r1. LZO1A takes care about long matches and long literal runs so that it produces good
results on high redundant data and deals acceptably with non-compressible data.
9We used the package from http://www.info-zip.org/, version 3.0.

The Burrows-Wheeler Transform 14-13

99%
96%

99% 98%

68%

Bzip Lzma Lzo

35%

64%
59%

Zip

50%

100%

0%

85%

69%

87%
80%

compression rate

Divine Comedy

monochromatic image

Gcc package

Key

↑ m
or
e
is

b
et
te
r

FIGURE 14.5: Compression savings (higher is better)

best solution seems to be zip: it takes short time to compress/decompress and reaches a very good
compression rate. LZO is the fastest algorithm we tested, but unfortunately its compression ratio
seems to be not appealing, and this is due to the fact that it was engineered for speed rather than for
space savings. We restate here that these considerations are not definitive for those compressors,
they are just suitable for giving a glimpse on them about these three datasets. For more official and
robust comparisons we refer the reader to the page of Matt Mahoney.10

34.42

Bzip Lzma Lzo

1.70

8.89

Zip

40

20

3.54

0.073

Bzip Lzma Lzo
0.000∗

0.020

0.001
Zip

0.1

0

0.05

seconds

∗ less than the discretization of the machine

0.009

Bzip Lzma Lzo
0.000∗

0.010

Zip

0.01

0.005

0.009

Divine Comedy monochrome image Gcc
decompression

↓ le
ss

is
b
et
te
r

FIGURE 14.6: Decompression speed (lower is better)

We are left with the problem of constructing the Burrows-Wheeler forward transform given that,
as we observed above, we cannot construct explicitly the rotation matrixM, and a fortiori its sorted
version M′, because this would take Θ(n2) working space for a text s of length n. That is the
why most BWT-based compressors exploit some “tricks” in order to avoid the construction of these

10http://mattmahoney.net/dc/dce.html

14-14 Paolo Ferragina

suffix index sorted suffix value M′ L
abracadabra$ 0 $ 11 $abracadabra a
bracadabra$ 1 a$ 10 a$abracadabr r
racadabra$ 2 abra$ 7 abra$abracad d
acadabra$ 3 abracadabra$ 0 abracadabra$ $
cadabra$ 4 acadabra$ 3 acadabra$abr r
adabra$ 5 adabra$ 5 adabra$abrac c
dabra$ 6 bra$ 8 bra$abracada a

abra$ 7 bracadabra$ 1 bracadabra$a a
bra$ 8 cadabra$ 4 cadabra$abra a

ra$ 9 dabra$ 6 dabra$abraca a
a$ 10 ra$ 9 ra$abracadab b
$ 11 racadabra$ 2 racadabra$ab b

FIGURE 14.7: Suffix Array versus sorted rotated matrix M′ over the string s = abracadabra$.

matrices. One such “trick” involves the usage of Suffix Arrays, which were described in Chapter 10,
where we also detailed several algorithms to build them efficiently. The construction of BWT deploys
one of them11 and this use motivates the increased interest in the literature about the Suffix-Array
construction problem (see e.g. [14, 16, 1]).

To see why Suffix Arrays and BWT are connected, let us consider the following example. Take
the string abracadabra$ and compute its Suffix Array [11, 10, 7, 0, 3, 5, 1, 4, 6, 9, 2]. Figure 14.7
summarizes these data structures for the running example at hand. The first four columns show the
suffixes of the string s and its suffix array SA. The fifth column shows the corresponding sorted-
rotated matrix M′ with its last column L. It is easy to notice that sorting suffixes is equivalent to
sorting rows of M, given the presence of the sentinel symbol $. The reader can check that the
formula below ties SA with L:

L[i] =

{
s[SA[i] − 1] if SA[i] , 0
$ otherwise

This means that every symbol L[i] equals to the symbol of s that precedes the suffix SA[i] which
prefixes the ith row of M′. If, however, that suffix is the whole string s (thus SA[i] = 0), then $ will
be used as preceding symbol.
So, given the suffix array of string s, it takes only linear time to derive the string L. We have
therefore proved the following:

THEOREM 14.4 Let us given an input string s, constructing bw(s) takes a time/IO complexity
which is the one of Suffix Array construction. By using the Skew Algorithm, the overall cost of
building bw(s) is optimal in several model of computations. In particular, this is O(n) for the RAM
model and O(Sort(n)) for the external-memory model, where Sort is the I/O-cost of sorting n
atomic items in a model in which M is the size of the internal memory and B is the disk-page size.

11M. Burrows: “So I enlisted his help in finding ways to execute the algorithm’s sorting step efficiently, which involved
considering constant factors as much as asymptotic behavior. We tried many things, only some of which made it into the
paper, but we met my goals: we showed that the algorithm could be made fast enough to see practical use on modern
machines...”.

The Burrows-Wheeler Transform 14-15

We conclude this section by observing that, in practice, bw(s) is costly to be computed so that
its implementations divide the input text into blocks and then apply the transform block-wise. This
is the reason why these compressors are called block-wise compressors. Likewise dictionary-based
compressors, the size of the block impacts onto the trade-off compression ratio versus compression
speed; but, unlike dictionary-based compressors, this impacts unfavorably also onto the decompres-
sion speed which is slowed down when working on larger and larger blocks. Anyway, the current
implementation of bzip2 allows to specify the size of the block at compression time with the pa-
rameter -1, . . ., -9, that actually indicate a block of size 100Kb, . . ., 900Kb.

14.4 On compression boosting∞

Let us first recall the notion of entropy as a measure of uncertainty (or information) associated with
a random source S emitting n symbols {x1, . . . , xn} with probabilities p(xi):

H(S) =

n∑

i=1

p(xi) × 1
log p(xi)

The previous formula is often called 0th order entropy, and it is indicated with H0, because it is
computed with respect to the probabilities of the single symbols emitted by the source S , without
exploiting any context (or equivalently, exploiting an empty context, hence of length 0). Given
that we are dealing with compressors and real strings, most evaluations of their performance drop
probabilities in favor of frequencies: hence p(xi) is the ratio between the number of occurrences of
xi in the input string s and the total length of s, say |s|. Clearly, in this setting any string containing
n/2 symbols a and n/2 symbols b has entropy H0 = 1 independently of the fact that it is either a
random string or the regular string an/2bn/2.

A more precise modeling of the information content of a string s (of of its uncertainty) can be
obtained by measuring the entropy over blocks of k-symbols. This is called kth order (empirical)
entropy of the string s, and can be computed as follows:

Hk(s) =
1
|s|

∑

w∈Ak

|ws| H0(ws)

where ws represents the set of all symbols that follow w in s. Clearly Hk(s) ≤ H0(s), but it can
be much smaller, and for |s| and k that go to∞ this value converges to the entropy of the source that
emitted s.

We are interested in this formula because it suggests a way to design a compressor that achieves
Hk(s) starting from a compressor that achieves H0 of its input strings. This kind of algorithm is
called a Compression Booster because it is able to boost a compression performance up to H0 into
a compression performance up to Hk. The algorithmic tool to achieve this is, surprisingly, the
Burrows-Wheeler Transform [6]. In order to illustrate this innovative and powerful idea, let us
consider a generic 0-order statistical compressor C0 whose performance, in bits per symbol, over a
string t is bounded by H0(t) + f (|t|). We notice that function f (|t|) = 2/(|t|) for the Arithmetic coding
and it is f (|t|) = 1 for Huffman coding (see Chapter 12).

In order to turn C0 into an effective kth order compressor Ck, we proceed as follows.

• Compute the Burrows-Wheeler Transform bw(s) of the input string s.
• Take all possible substrings w of the string t, and partition the column L in such a way

that Lw is formed by the last symbols of rows prefixed by w.
• Compress each Lw with C0, and concatenated the output bit sequences by alphabetically

increasing w (or, equivalently, by occurrence of Lw in L).

14-16 Paolo Ferragina

It is immediate to notice that Lw is a substring of L, and not a subsequence, because rows prefixed
by w in M′ are contiguous. Given the LCP-array of string s the partitioning of L takes linear time
(see Chapter 10) and thus it does not impact onto the efficiency of the final compressor Ck. As far as
the compression performance per symbol is concerned, we easily derive that it can be bounded as:

1
|s|

∑

ws∈Σk

|ws| (H0(ws) + f (|ws|) = Hk(s) + O(|Σ|k)

where we have applied the definition of Hk(s) onto the summation of the H0(ws), and the fact that
f (|ws|) ≤ 1. It is clear that the more effective is the 0-th order compressor, the more it is closer to
H0, the more evanishing is the term f (|ws|) and thus negligible is the additive term O(|Σ|k). In [6] the
authors showed that one actually does not need to fix k, since it does exist a Compression Booster
which identifies in optimal O(|s|) time a partition of L which achieves a compression ratio which is
better than the one obtained by Ck, for any possible k ≥ 0. The algorithm is elegant and not much
involved, but it would require some space to be described in sufficient details, so that we refer the
interested reader to that paper.

14.5 On compressed indexing∞

We have already highlighted the bijective correspondence between the rows of the rotated matrix M
and the suffixes of the string s, as well as the strong relationship between the string L and the suffix
array built on s (see Figure 14.7). This is relationship is at the core of FM-index’s design, which has
been the first compressed full-text index to achieve efficient substring search and space occupancy
up to the k-th order empirical entropy of the indexed string. Given these features we can look at
the FM-index as the compressed version of a suffix array, or as the searchable version of bzip-
compressed format. The nature of these notes does not allow to dig into the technical details of the
FM-index, so in the rest of this chapter we will just fly over its technicalities and concentrate on the
main algorithmic ideas; the interested reader may look at the seminal paper [7] and the survey [15].

In order to simplify the presentation we distinguish between three basic operations, which under-
lie the design of many search toolbox:

• Count(P) returns the range of rows [f irst, last] in M (and thus suffixes in the suffix
array) which are prefixed by the string P. The value (last − f irst + 1) accounts for the
number of these pattern occurrences.

• Locate(P) returns the list of all positions in s where P occurs (possibly unsorted).
• Extract(i, j) returns the substring s[i, j] by accessing its compressed representation in

FM-index.

For example, in Figure 14.7 for the pattern P = ab we have f irst = 2 and last = 3 for a total of
two occurrences. These two rows correspond, as the picture clearly illustrates, to the two suffixes
s[0,] and s[7,] which are prefixed by P.

Let us start from the description of Count(P). The retrieval of the rows f irst and last is not
implemented via a binary search, as it occurred in Suffix Arrays (see Chapter 10), but it uses a
peculiar search method which deploys the column L, the array C (which counts in C[c] the number
of occurrences in s of all symbols smaller than c) and an additional data structure which supports
efficiently the very basic counting Rank(c, k) which reports the number of occurrences of the symbol
c in the string prefix L[0, k − 1]. All data structures L, C and Rank can be stored compressed and
still retrieve efficiently their entries: namely access L[i] or C[c], or answer Rank(c, k). The literature

The Burrows-Wheeler Transform 14-17

Algorithm 14.3 Counting the occurrences of pattern P[0, p − 1] in s
1: i = p − 1, c = P[p − 1];
2: f irst = C[c], last = C[c + 1] − 1;
3: while (f irst ≤ last) and i ≥ 1 do
4: c = P[i − 1];
5: f irst = C[c] + Rank(c, f irst − 1);
6: last = C[c] + Rank(c, last) − 1;
7: i = i − 1;
8: end while
9: return (f irst, last).

offers many solutions for this problem (see e.g. some classic results [7, 10, 2, 15]), here we report
some of them (possibly not the best ones at the time we write these notes):

LEMMA 14.3 Let s[0, n − 1] be a string over alphabet Σ and let L be its BW-Transform.

• For |Σ| = O(polylog(n)), there exists a data structure which supports Rank queries on
L in O(1) time using nHk(s) + o(n) bits of space, for any k = o(log|Σ|n), and retrieves any
symbol L in the same time bound.

• For general Σ, there exists a data structure which supports Rank queries on L in O(log log |Σ|)
time, using nHk(s) + o(n log |Σ|) bits of space, for any k = o(log|Σ|n), and retrieves any
symbol of L in the same time bound.

This means that Rank can be implemented in constant, or almost constant time and in space which
is very much close to the k-th order entropy of the string s we wish to index. The array C takes only
O(|Σ|) space, which is negligible for real alphabets. This means that this ensemble of data structures
is very compact indeed.

We are left to show how this ensemble allows us to implement Count(P). Algorithm 14.3, usually
called backward search, reports the pseudo-code of such implementation which takes O(p) optimal
time, working in p constant-time phases numbered from p − 1 to 0. Each phase preserves the
following invariant: At the i-th phase, the parameter “first” points to the first row of the sorted
rotated matrix M′ prefixed by P[i, p − 1] and the parameter “last” points to the last row of M′

prefixed by P[i, p − 1]. Initially the invariant is true by construction: F[C[c]] is the first row in
M′ starting with c, and F[C[c + 1] − 1] is the last row in M′ starting with c (recall that rows are
numbered from 0).12 As running example take P = ab, so at the beginning we have: C[b] = 6 and
C[b + 1] = C[c] = 8 in Figure 14.7 and thus [6, 7] is the range of rows prefixes by b before that the
backward-search starts.

At each subsequent phase, Algorithm 14.3 has found the range of rows [f irst, last] prefixed by
P[i, p − 1]. Then it determines the new range of rows [f irst, last] prefixed by P[i − 1, p − 1] =

P[i − 1] P[i, p − 1] by proceeding as follows. First it determines the first and last occurrence of
the symbol c = P[i − 1] in the substring L[f irst, last] by deploying the function Rank properly
queried. Specifically Rank(c, f irst − 1) counts how many occurrences of c precede position f irst
in L, and Rank(c, last) counts how many occurrences of c precede position last in L. These values
are then used to compute the LF-mapping of those first/last occurrences of c. In fact Property 7 and

12We adopt the shorthand notation that C[c + 1] is the entry storing the counting for the symbol following c in the
alphabet.

14-18 Paolo Ferragina

Definition 14.1 imply the equality LF[i] = C[L[i]] + Rank(L[i], i). This means that the computation
of the LF-mapping can occur efficiently and succinctly provided that we store compactly the data
structure that implements Rank(c, k). For a formal proof that this mapping actually retrieves the new
range of rows [f irst, last] prefixed by P[i − 1, p − 1] we refer the reader to the seminal publication
[7]. Here we make an example to convince experimentally the reader that everything works fine.
Refer again to Figure 14.7 and consider, as before, the pattern P = ab and the range [6, 7] of
rows in M′ prefixes by P[2] = b. Now pick the previous pattern symbol P[1] = a, Algorithm
14.3 computes Rank(a, 5) = 1 and Rank(a, 7) = 3 because L[0, f irst − 1] contains 1 occurrences
of a and L[0, last] contains 3 occurrences of a. So the algorithm computes the new range as:
f irst = C[a] +Rank(a, 5) = 1 + 1 = 2, last = C[a] +Rank(a, 7)− 1 = 1 + 3− 1 = 3, which is indeed
the contiguous range of rows prefixed by the pattern P = ab.

After the final phase (i.e. i = 0), f irst and last will delimit the rows of M′ containing all the
suffixes prefixed by P. Clearly if last < f irst the pattern P does not occur in s. The following
theorem summarizes what we have sketched.

THEOREM 14.5 Given a string s[0, n−1] drawn from an alphabet Σ, there exists a compressed
index that takes O(p × trank) time to support Count(P[0, p − 1]), where trank is the time cost of
a single Rank operation over the BW-transform L of string s. The space usage is bounded by
nHk(s) + o(n log |Σ|) bits, for any k = o(log|Σ| n).

The interesting corollary of the Theorem above is that, by plugging Lemma 14.3, we get an
implementation of Count(P) which takes optimal O(p) time and compressed space. However this
solution suffers of I/O-inefficiency because every phase elicits some cache/IO misses due to the
jumping around L and Rank. Several efforts have been dedicated in the literature to make FM-index
cache-oblivious or cache-aware but yet an equally elegant solution for those issues is still missing.

Let us now describe the implementation of the location of pattern occurrences via procedure
Locate(P). For a fixed parameter µ, we sample the rows i of M′ which correspond to suffixes
that start at positions of the form pos(i) = jµ, for j = 0, 1, 2, Each such pair 〈i, pos(i)〉 is
stored explicitly in a data structure P that supports membership queries in constant time (on the
row-component). Now, given a row index r, the value pos(r) can be derived immediately if r ∈ P is
a sampled row; otherwise, the algorithm computes j = LF t(r), for t = 1, 2, . . ., until j is a sampled
row and thus is found in P. In this case, pos(r) = pos(j) + t. The sampling strategy ensures that
a row in P is found in at most µ iterations, and thus the occ occurrences of the pattern P can be
located via O(µ × occ) queries to the Rank-data structure.

THEOREM 14.6 Given a string s[0, n−1] drawn from an alphabet Σ, there exists a compressed
index that takes O(µ occ) time and O(n

µ
log n) bits of space to support Locate(P), provided that the

range [f irst, last] of rows prefixed by P is available.

By fixing µ = log1+ε n, the solution above takes poly-logarithmic time per occurrence and sub-
linear space (in bits). Trade-offs are possible and they were investigated [5].

Not much surprising is that Count(P) can be adapted to implement the last basic operation sup-
ported by FM-index: Extract(i, j). Let r be the row of M′ prefixed by the suffix s[j, n − 1], and
assume that the value of r is known. The algorithm sets s[j] = F[r] and then starts a cycle which
sets s[j − 1 − t] = L[LF t[r]], for t = 0, 1, . . . , j − i − 1. The main idea underlying this cycle is that
we repeatedly compute the LF-mapping (implemented via the Rank-data structure) of the current
symbol, so jumping backward in s starting from s[j− 1] (in fact s[j] is found via F-array). We stop
after j − i − 1 steps, when we have reached s[i]. This approach reminds the one we have taken in

The Burrows-Wheeler Transform 14-19

BWT-inversion, the difference relies in the fact that the array LF is not explicitly available, but its
entries are generated on-the-fly via Rank-computations. This guarantees still constant-time access
to LF-array, but succinct space storage (thanks to Lemma 14.3).

Given the appealing asymptotical performance and structural properties of the FM-index, several
authors have investigated its practical behavior by performing an extensive set of experiments. We
invite the reader to check paper [5] and to look at the Pizza&Chili’s site13 which offers many
implementations of compressed indexes, not just FM-index. Experiments have shown that the FM-
index is compact (its space occupancy is close to the one achieved by bzip), it is fast in counting the
number of pattern occurrences (few micro-secs per pattern’s symbol), and the cost of their retrieval
is reasonable when they are few (about 100k occurrences/sec). In addition the FM-index allows to
trade space occupancy for search time by choosing the amount of auxiliary information stored into
it (i.e. parameter µ and few other parameters arising in the implementation of Rank). As a result
the FM-index combines compression and full-text indexing: like bzip it encapsulates a compressed
version of the original file (accessible via Extract); like suffix trees and suffix arrays it allows to
search for arbitrary patterns (via Count and Locate). Everything works by looking only at a small
portion of the compressed file, thus avoiding its full decompression.

References

[1] Donald Adjeroh, Tim Bell, and Amar Mukherjee. The Burrows-Wheeler Transform:
Data Compression, Suffix Arrays, and Pattern Matching. Springer, 2008.

[2] Jérémy Barbay, Meng He, J. Ian Munro and S. Srinivasa Rao. Succinct indexes for

strings, binary relations and multi-labeled trees. Proceedings of ACM-SIAM Symposium
on Discrete Algorithms (SODA), 680-689, 2007.

[3] Jon L. Bentley, David D. Sleator, Robert E. Tarjan, and Victor K. Wei. A locally

adaptive data compression scheme. Communication of the ACM, 29(4):320–330, 1986.

[4] Mike Burrows and David J. Wheeler. A block-sorting lossless data compression algo-

rithm. Technical Report 124, Digital Systems Research Center (SRC), 1994.

[5] Paolo Ferragina, Rodrigo Gonzalez, Gonzalo Navarro, Rossano Venturini. Compressed

Text Indexes: From Theory to Practice. ACM journal on Experimental Algorithmics,
vol. 13, art. 12, Febbraio 2009.

[6] Paolo Ferragina, Raffaele Giancarlo, Giovanni Manzini, Marinella Sciortino. Compres-

sion boosting in optimal linear time. Journal of the ACM, 52(4):688–713, 2005.

[7] Paolo Ferragina and Giovanni Manzini. Indexing compressed texts. Journal of the
ACM, 52(4):552–581, 2005.

[8] Paolo Ferragina and Giovanni Manzini. Burrows-wheeler transform. In Ming-Yang

Kao, editor, Encyclopedia of Algorithms. Springer US, 2008.

[9] Paolo Ferragina, Giovanni Manzini, S. Muthukrishnan, co-editors. Special Issue on the
Burrows-Wheeler Transform. Theoretical Computer Science, 387(3), 2007.

[10] Paolo Ferragina, Giovanni Manzini, Veli Mäkinen and Gonzalo Navarro. Compressed

representations of sequences and full-text indexes. ACM Transactions on Algorithms,
3(20), 2007.

[11] Juha Karkkainen, Dominik Kempa, and Simon J. Puglisi. Slashing the time for BWT

inversion. Proc. IEEE Data Compression Conference, 99–108, 2012.

13http://pizzachili.dcc.uchile.cl/

14-20 Paolo Ferragina

[12] Juha Karkkainen and Simon J. Puglisi. Medium-space algorithms for inverse BWT.

Proc. European Symposium on Algorithms, LNCS 6346, 451–462, 2010.

[13] Juha Karkkainen and Simon J. Puglisi. Cache-friendly Burrows-Wheeler inversion.

Proc. International Conference on Data Compression, Communication and Processing,

38–42, 2011.

[14] Giovanni Manzini and Paolo Ferragina. Engineering a lightweight suffix array con-

struction algorithm. Algorithmica, 40(1):33–50, 2004.

[15] Gonzalo Navarro and Veli Mäkinen. Compressed full-text indexes. ACM Computing
Surveys, 39(1), 2007.

[16] Simon J. Puglisi, William F. Smyth, and Andrew Turpin. A taxonomy of suffix array

construction algorithms. Procs of the Prague Stringology Conference, 1–30, 2005.

[17] Julian Seward. Space-time tradeoffs in the inverse B-W transform. In Proc. IEEE Data
Compression Conference, 439–448, 2001.

[18] Julian Seward. The bzip2 home page. http://sources.redhat.com/bzip2.

[19] Ian H. Witten, Alistair Moffat and Timothy C. Bell. Managing Gigabytes: Com-

pressing and Indexing Documents and Images, Second Edition. Morgan Kaufmann,

1999.

15
Compressed Data Structures

15.1 Compressed representation of arrays 15-1
A succinct solution, via Rank and Select • A
compressed solution, via Elias-Fano coding

15.2 Succint representation of trees . 15-9
Binary trees • Arbitrary trees

15.3 Succint representation of graphs . 15-16
Succinct storage of Web graphs • Using k2-trees for
succinct graph storage

In this chapter we address the problem of storing classic data structures, such as arrays, trees and
graphs in compressed space and still be able to support their query operations fast or even optimally
as they uncompressed versions.

15.1 Compressed representation of arrays

Let us assume that we are given a dictionary of stringsD such that there are n strings whose lengths
sum up to a total of m characters. We map the dictionary onto a single string T [1,m] (without sepa-
rators between words), and wish to support two query operations. The first query is Access string(i)
which asks to retrieve the i-th string in T . The second query operation is Which string(x) which
asks to retrieve the starting position of the string in T that includes the character T [x].

If we use, as usual, an array A[1, n] of pointers to strings, then Access string(i) boils down to
return A[i], whereas Which string(x) boils down to find the successor of x in A. The first operation
thus costs O(1) time and the second operation costs O(log n) time. The space occupancy of this
solution would be O(n log m) bits.

The goal of this chapter is to introduce the paradigm of pointerless programming via the use of
succinct data structures built on proper binary arrays that allow to support the previous operations
in constant time.

Using the example above as paradigmatic, we build a binary array B[1,m] where we set B[i] = 1
if T [i] is the first character of a string inD. Given this mapping, Access string(i) requires to search
for the i-th bit set to 1 in B; whereas Which string(x) requires to search for the first bit set to 1 on
the left of B[x] (included). Both operations could be implemented via a rightward or leftward scan
of B, but this could be costly. We aim at designing data structures that take O(1) time for the two
operations and occupy o(m) extra space, in addition to B. Notice that this solution would be better
than the pointer-based one whenever m = o(n log m) and, thus, when the strings have an average
length m/n smaller than O(log m).

This seems a very restrictive condition but it will turn out to be particularly effective in the context
of the Elias-Fano’s code (see Chapter 11), as it will allow to derive a compressed data structure

c© Paolo Ferragina, 2009-2020 15-1

15-2 Paolo Ferragina

whose space occupancy will be closer to the entropy of B’s content, thus overcoming the limitation
stated above.

15.1.1 A succinct solution, via Rank and Select

For achieving the goals stated above we introduce two new primitives and their corresponding data
structures, called Rank and Select.

DEFINITION 15.1 Let B[1,m] be a binary array. The Rank of an index i in B relative to a

bit b ∈ {0, 1} represents the number of bits b occurring in B[1, i]. Formally, Rank1(i) =
i∑

j=1
B[i],

whereas Rank0(i) = i − Rank1(i).

DEFINITION 15.2 Let B[1,m] be a binary array. The Select of an index i in B relative to a
bit b ∈ {0, 1} represents the position of the i-th occurrence of b in B and it is denoted Selectb(i).

Example 15.1

Let B =

1 2 3 4 5 6 7 8 9 10 11

0 0 1 0 1 0 0 1 0 1 0 compute Rank1(6) and Select1(3).

• The query Rank1(6) is asking for the number of 1s encountered in the first 6 positions of
B. In particular, the portion of the array to count the 1s is the one highlighted:

B =

1 2 3 4 5 6 7 8 9 10 11

0 0 1 0 1 0 0 1 0 1 0 , then Rank1(6) = 2.
• For what concerns the second query Select1(3), it is equivalent to ask for the position of

the third occurrence of the bit 1 in the whole array, hence Select1(3) = 8.

B =

1 2 3 4 5 6 7 8 9 10 11

0 0 1 0 1 0 0 1 0 1 0
1 2 3

.

Implementation of Rank

In order to build the succint data structure to support the Rank operation, we split the binary array
B into big blocks of size Z each, and then we partition each big block into small blocks of size
z, where we assume for simplicity of exposition that z divides Z. Formally, the i-th big block is
B[Z ·(i−1)+1,Z ·i] and the j-th small block inside the i-th big block is B[Z ·(i−1)+1,Z ·(i−1)+1+z· j].

Each big block is stored with an additional information about the number of 1s seen in the prefix
of array B until the end of this big block, and this is called absolute rank and denoted as ri, for the
i-th big block. Each small block is stored with additional information about the number of 1s from
the beginning of its enclosing big block to the last position of that small block, and this is called
relative rank and denoted by ri, j, where the first index indicates the big block and the second index
indicates the small block to which the value refers to.

The space occupancy of absolute ranks is the number of big blocks times the space needed to
store one rank, namely O(m

Z · log m) bits, in fact each rank is smaller than B’s size m. By the same
argument, the space needed to store relative ranks is O

(
m
Z · Z

z

)
· log Z, in fact each relative rank is

smaller than the size Z of the big block that it refers to, and thus can be stored in O(log Z) bits.

Compressed Data Structures 15-3

r1 r2 r3

· · · 1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 · · ·

r2,1 r2,2 r2,3

0 1 1 0 0 1 0 0 1

Z = 9 Z = 9

z = 3 z = 3 z = 3

FIGURE 15.1: Implementation of Rank. In this example, we set Z = 9 and z = 3, although they are
not related to the value m, for graphical reasons.

Now, let us set Z = log2m and z = 1
2 · log m, then the total space occupancy is

space = O
(

m
Z
·
(
log m +

Z
z

log Z
))

= O
(

m

log2m
·
(
log m +

log�2m
1
2 ·���log m

· log log2 m
))

= O
(

m

log2m
·
(
log m + 4 · log m · log log m

))

= O
(

m

log�2m
·���log m ·

(
1 + 4 · log log m

))

= O
(

m log log m
log m

)
= o(m)

(15.1)

It is easy to convince ourselves that we can obtain the Rank of elements at the end of each block
(being either small or big) in O(1) time. In the first case, this number is exactly the absolute rank of
that element. In the second case, this number is obtained by summing the absolute rank of the big
block on the left and the relative rank on that position (which ends a small block, by assumption).

At this point, we showed how to answer a query on the last element of each block, what about
queries on elements inside small blocks?

The solution we propose involves precomputing all the possibilities in advance and store them in
a table R, as shown in Table 15.1. By means of this table, we may compute Rank1(x) as follows.
Suppose B[x] is included in the (j + 1)-th small block inside the (i + 1)-th big block of the binary
array B. The small block is thus B[bstart, bend], where bstart = Z · i+1+z · j and bend = Z · i+z · (j+1).
The computation of Rank1(x) proceeds as follows.

1. Pick the absolute rank of the big block on the left, namely ri;
2. Pick the relative rank of the small block on the left, namely ri+1, j;
3. Sum these two quantities to the value at row given by the configuration B[bstart, bend]

and at column x − bstart + 1 in the lookup table R.

Notice that the indexes i, j can be computed as i =
⌊

x
Z

⌋
and j =

⌊
x mod Z

z

⌋
and we set r0 = 0,

r0,∗ = 0. This procedure takes 3 memory accesses, thus O(1) time. Surprisingly enough, storing

15-4 Paolo Ferragina

R pos
block 1 2 3

000 0 0 0
001 0 0 1
010 0 1 1
011 0 1 2
100 1 1 1
101 1 1 2
111 1 2 3

TABLE 15.1 Lookup table R of precomputed ranks for all possible small blocks of size z = 3. Here

Rpos[block] denotes the rank of the element in relative position pos inside the block of shape block.

table R is not as costly as it could seem, given the setting of z.

THEOREM 15.1 The space occupancy of the Rank data structure is o(m), thus it is sublinear
in B’s size.

Proof Recalling that z = (1/2) log m = log m1/2 = log
√

m, we have:

space = #rows · #pos in a block · #bits needed to store the rank

= 2z · z · log z = 2log
√

m ·
(1
2
· log m

)
· log

(1
2
· log m

)

= O(
√

m · (log m) · (log log m)) = o(m)

(15.2)

An attentive reader may notice that the last column of the lookup table is redundant because of
the information stored in ri, j, thus it can be dropped, even if this does not change the asymptotic
space occupancy.

Example 15.2

Given the array B shown in Figure 15.1, we illustrate the computation of Rank1(x), where B[x] is
the element indicated by a downward arrow in Figure 15.2.

1. Find the big block which contains B[x], namely block i + 1 = 2 and retrieve ri = r2−1 =

r1;
2. Find the small block which contains B[x], namely block j + 1 = 3 and retrieve ri, j =

r2,3−1 = r2,2;
3. Find the position of B[x] inside the third small block, in the example it is position 2;
4. Compute the result as r1 +r2,2 +R2[[0, 0, 1], 2], where the latter value is displayed circled

in Table 15.2.

Implementation of Select

The implementation of the Select operation follows the main two-level design of the Rank data
structure, but the splitting of B in big and small blocks is driven now by the number of bits set to 1.

Compressed Data Structures 15-5

r2 r3

· · · 1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 · · ·

r2,1 r2,3

0 1 1 0 0 1 0 0 1

r1©

r2,2©

B[x]

Z = 9 Z = 9

B[x]

z = 3 z = 3 z = 3

FIGURE 15.2: Graphic explanation of the execution of the Rank operation, where the absolute and
relative ranks used in the computation are circled.

R pos
block 1 2 3

000 0 0 0
001 0 0© 1
010 0 1 1
011 0 1 2
100 1 1 1
101 1 1 2
111 1 2 3

TABLE 15.2 Table of precomputed ranks, where the row corresponding to the

block 001 is highlighted. In the example commented in text, the rank of the second element is required,

which is circled.

Let us set K = log2 m and denote Z the size in bits of a big block which contains K bits set to 1.
Clearly Z changes block by block, but in order to do not jeopardize the reading we avoid subscripts
in Z and clarify things in text.

Notice that the size of a big block is surely Z ≥ K, by definition, hence the starting position of
a big block can be stored in O(m

K log m) = o(m) bits. A big block is called sparse if it contains
“few” 1s with respect to its size, namely Z > K2. On the other hand, a big block is called dense if it
contains “a lot of” 1s with respect to its size, namely Z ≤ K2.

If a big block is sparse, then we store explicitly the positions of the 1s, while if a big block is
dense, we proceed recursively for another level by splitting it into small blocks that contain k =

(log log m)2 bits set to 1. We denote the number of entries of a small block by z. Observe that
the starting position of a small block inside a dense big block can be stored relative to the starting
position of its enclosing big block in O(m

k log Z) = o(m) bits.

Finally, by mimicking what was done for the Rank data structure we store explicitly the positions
of the 1s of the sparse small blocks (namely, the ones such that z > k2 = (log log m)4) using a relative
encoding with respect to the beginning of the enclosing (dense) big block, while we pre-compute
the table of all answers to Select in the other case of dense small blocks (namely, the ones such that
z ≤ k2 = (log log m)4). This approach will ensure that, in all cases for z and Z, the overall space

15-6 Paolo Ferragina

occupancy of the Select data structure is o(m).

THEOREM 15.2 The space complexity of Select data structure is o(m), thus it is sublinear in
B’s size.

Proof First of all, recall that the size of a big block is surely Z ≥ K, by definition, hence the
starting position of all big blocks can be stored in O(m

K log m) = o(m) bits.
Let us now discuss the space taken by the data structure for the two possible configurations of a

big block:

Sparse: the positions of the 1s are stored explicitly, so we need to compute how many sparse
big blocks there are and how many 1s (aka pointers) we have to point to. And this gives
the space occupied by the sparse big blocks:

*≤ m

K �2
· (�K · log m) (1)

=
m

log m
= o(m) (15.3)

where
*≤ follows from the observation that the number of sparse big blocks is maximum

when each of them has size K2, while (1)
= follows from the definition K = log2m.

Dense: Notice that in this case the big block has size upper bounded by K2. This means
that the starting position of one of its small blocks can be stored relative to the starting
position of that enclosing big block in O(log Z) = o(log log m) bits, for an overall storage
cost of these small blocks inside the big blocks equal to O(m

k log Z) = o(m) bits.
In order to solve the Select query inside the dense big blocks we distinguish two sub-
cases, which deal with the two possible configurations of the small blocks (either sparse
or dense), which we call Dense-Sparse and Dense-Dense in order to remind the two
scenarios.

Dense-Sparse: following the same strategy used for sparse big blocks, we multiply the
number of sparse small blocks with the total space occupied by pointers, which
index the relative position of the 1s inside the dense big block enclosing that sparse
small block. And this gives the space occupied by the sparse small blocks (inside
dense big blocks):

*≤ m

k�2
· (�k · log K2) =

m
k
· log K2

(1)
=

m · 2 · log log2m

(log log m)2 =
m · 4 ·����log log m

(log log m)�2

=
4m

log log m
= o(m)

(15.4)

Where
*≤ follows from the same observation made for sparse big blocks, namely

that these latter have size at least k2 and thus their number is upper bounded by
m/k2. The (1)

= is due to the fact that k = (log log m)2 and K = log2m.

Dense-Dense: The 1s in these blocks are indexed by storing their positions in a lookup
table, in the same vein as we proceeded for the small blocks of the Rank data

Compressed Data Structures 15-7

structure. Hence the space occupancy of the dense small blocks (inside dense big
blocks) can be estimated as follows (big-Oh is omitted for ease of reading):

(#rows) · (#bits to represent a small block) · (#bits to store the relative rank in small block)

*≤ 2k2 · k2 · log k2 (1)
= 2

(
(log log m)2

)2

·
(
(log log m)2

)2 · log
((

log log m
)2
)2

= 2(log log m)4 · (log log m)4 · 4 · (log log log m) = o(m)
(15.5)

where
*≤ is explained by observing that a dense small block is shorter than k2,

and its enclosing dense big block is shorter than K2 (so the relative pointer takes
O(log K2) bits). Then (1)

= follows by noting that k = (log log m)2 and K = log2 m.

The total amount of space required by the Select data structure is therefore the sum of three quanti-
ties upper bounded by o(m).

r1 r2 r3

· · · 1 1 0 1 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 1 · · ·

r2,1 r2,2

0 1 1 0 0 0 1

Dense Sparse

z = 3 z = 4

FIGURE 15.3: Implementation of Select. In this example K = 3 and k = 2. Comments in text.

In the example of Figure 15.3 we assume K = 3 and k = 2, which do not correspond to the values
assumed in defining the Select solution, but they allow us to plot easily the example. Notice that the
second (highlighted) big block is dense because its size is Z = 7 < 9 = K2; whereas the subsequent
big block is sparse because its size is Z = 10 > 9 = K2. Moreover, the first small block is dense
because its size is z = 3 < 4 = k2, while the second small block contains less than k bits equal to
1s, because k does not divide K, and thus it is a sparse small block and the positions of its 1s can be
stored explicitly.

Let us deal with the implementation of the Select operation., and consider the query Select1(i).
We proceed as follows:

1. Compute j =
⌊

i
K

⌋
, hence B j+1 is the big block including the i-th bit set to 1.

2. If B j+1 is sparse, then we have stored explicitly the result of Select1(i), and we are done.
3. Otherwise, we retrieve the starting position of B j+1, which is stored explicitly, let us call

it s j+1.
4. Then we compute i′ = i mod K, and thus the goal is to do a (relative) Select inside

B j+1 for the i′-th bit set to 1.

15-8 Paolo Ferragina

5. Compute j′ =
⌊

i′
k

⌋
, hence B j+1, j′+1 is the small block including the i′-th bit set to 1 of

B j+1.
6. We retrieve the starting position of B j+1, j′+1, which is stored relatively to the beginning

of B j+1, let us call it s′j+1.
7. At this point we use either the relative pointers and sum them to s j+1, if B j+1, j′+1 is

sparse, or we access the table with the small bucket configuration and the value i′ and
sum the retrieved value to s j+1 + s′j+1.

Actually, given the tiny size of the Dense-Dense small blocks we can think to avoid the table
storage and just resort a scan. In practice would be surely more efficient, for any reasonable value
of m.

15.1.2 A compressed solution, via Elias-Fano coding

Let us assume that we have transformed the binary array B[1,m] into a vector X[1, n], where in
position i is stored the index of the i-th 1 in B, formally X[i] = Select1(i). Resorting Exam-

ple 15.1, we have that B =

1 2 3 4 5 6 7 8 9 10 11

0 0 1 0 1 0 0 1 0 1 0 , then the array X =

1 2 3 4

3 5 8 10 .
The intuition behind this algorithm is to store only a compressed version of X, oblivious of B,

which allows efficient queries.
To achieve this, we compress the array X via Elias-Fano encoding (see Chapter 11), since the array

X is an increasing sequence of positive integers by construction. Thanks to Elias-Fano encoding we
obtain two arrays L and H from X, as shown in Figure 15.4.

L =

1 2 3 4

11 01 00 10 H =

1 2 3 4 5 6 7 8

1 0 1 0 1 1 0 0

FIGURE 15.4: Elias-Fano on X, where n = 4, b = dlog2 11e = 4, u = 10 + 1 = 11 and l =
⌈
log u

n

⌉
=⌈

log 11
4

⌉
= 2 and h = 2.

The rationale behind this representation of B is that we can compute Select1(B, i) by means of
Access(i) operation executed over the array X, compressed via Elias-Fano encoding. Access(i) can
be implemented in constant time by building a Select data structure over H hence taking additional
o(|H|) = o(n) bits (see Chapter 11). L was already known to be accessed in constant time, whereas
the decoding of the higher bits of Access(i) can be also done in constant time by the Select data
structure. So that Select1(B, i) takes O(1) time in the worst case.

THEOREM 15.3 The Elias-Fano encoding over the array of positions obtained from B[1,m],
augmented with a Select1 data structure built on the array H, allows Select1(B, i) to be implemented
in O(1) time and 2n + n dlog2

m
n e + o(n) bits.1

1The trick here to get m − 1 and not m as maximum integer to be encoded by Elias-Fano, is to consider the positions in
B to count from 0 instead of 1.

Compressed Data Structures 15-9

As far as Rank1(i) query on B is concerned, we proceed by searching for the largest element
X[x] ≤ i and return x. This consists of just executing NextGEQ(i + 1) over X which returns the
smallest integer X[y] ≥ i + 1. The result for Rank1(i) is then x = y − 1.

THEOREM 15.4 The Elias-Fano encoding over the array of positions obtained from B[1,m],
augmented with a Select0 and a Select1 data structures built on the array H, allows Rank1(B, i) to
be implemented in O(log(m/n)) time and 2n + n dlog2

m
n e + o(n) bits.

A simpler approach that does not use the extra space for the Select0 data structure, but uses only
the extra space for Select1, consists of executing a binary search over X for i as depicted in the
pseudocode below.

Algorithm 15.1 Implementing Rank1(B, i) via a binary search: binaryRank1(l, r, i)
1: if r < l then
2: return r;
3: end if
4: q =

⌊
r+l
2

⌋
;

5: sel = Select1(B, q);
6: if sel < i then
7: binaryRank1(q + 1, r, i);
8: end if
9: if sel > i then

10: binaryRank1(l, q − 1, i);
11: end if
12: if sel == i then
13: return q;
14: end if

THEOREM 15.5 The Elias-Fano encoding over the array of positions obtained from B[1,m],
augmented with a Select1 data structure built on the array H, allows Rank1(B, i) to be implemented
in O(log n) time and 2n + n dlog2

m
n e + o(n) bits.

We may observe that when n increases, the number of extra bits per element, namely 2+ log m
n de-

creases and converges to 2. Vice versa, when n decreases the number of extra bits goes to Θ(log m),
like classic pointers. In general, the number of extra bits is close to the optimal way to encode
equally spaced gaps of the n items in m positions.

15.2 Succint representation of trees

In this section we address the problem of storing a tree in compressed form and still be able to
perform some operations over its structure efficiently in time.

15.2.1 Binary trees

The classic approach for representing a binary tree is storing two pointers (one per child) for each
node (being it internal or a leaf) and this takes Θ(n · log n) bits, where n is the total number of nodes
and leaves of the tree. This representation allows to support left and right child queries in O(1) time.

15-10 Paolo Ferragina

FIGURE 15.5: Trivial storage of a binary tree.

It goes without saying that additional space is needed to answer more sophisticated queries, in
particular we need additional Θ(n log n) bits for answering parent queries or to perform subtree size
queries. In the former case, we need to add an extra information to the node given by the pointer to
its parent; in the latter case, the extra information is the subtree size.

From a theoretical point of view we notice that a lower bound for storing a binary tree is 2n,
because there are at most 22n distinct binary trees on n nodes2 (including leaves) and thus we need
at least log2 22n = 2n bits to distinguish one from the other.

We are going to show how to match the space lower bound via Rank and Select data structures
and still achieve constant time navigational queries. This brilliant idea is due to G. Jacobson and
dates back to 1989 [3]. The intuition is to turn the binary tree into a binary array, via three steps (see
Figure 15.7 for an illustrative example).

1. Complete all non-binary nodes with NULL leaves (thus leaves too);
2. Label each node with 1 if it was present in the original tree, 0 if it was added;
3. Visit the tree per levels from left to right and write in an array B the binary labels en-

countered.

It is easy to show that the final tree has 2n + 1 nodes (including leaves) and thus B occupies 2n + 1
bits.

As for the query operations are concerned, we label each node of the original tree T with a bold
integer from 1 to n and each node of the completed tree T ′ with integers from 1 to 2n + 1, as shown
in Figure 15.7. It is important to keep in mind that this labeling is added to the array B but only for
illustrative purposes, in fact these labels are not present in the implementation.

The first key algorithmic idea is that, with the aid of Rank and Select data structures built
on B (thus adding o(n) bits of space), we can move from one labeling to the other as follows:
j = Select1(i) and i = Rank1(j). The former comes from the fact that the 1s are assigned to the
nodes of the original tree, so that j = Select1(i) gives the position of that node in B jumping the zeros

2This result comes from the fact that we can explore a binary tree transforming it into a balanced sequence of { and }
parenthesis. A { is printed when a node is visited and a } is printed as soon as that node (and its subtree) has been fully
visited in a pre-order traversal of the tree. In this context each binary tree of n nodes is identified by a sequence of n
pairs of parentheses that are correctly matched. Such configurations are Cn−1 = 1

n ·
(
2·(n−1)

n−1

)
≈ 4n−1

(n−1)
3
2
√
π

, called Catalan

number, that is Θ(22n) asymptotically.

Compressed Data Structures 15-11

Step 1 Step 2 Step 3

1

1

1

0 1

0 0

0

1

1

0 0

1

1

0 0

0

Step 4

B =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 1 1 1 0 1 1 0 1 0 0 1 0 0 0 0 0

FIGURE 15.6: Example of construction of the binary array B from tree T , where NULL leaves are
represented as squares. Notice that n = 8, and the complete binary tree at the end of the process
consists of 17 nodes (including leaves).

due to the added NULL leaves. The reverse, i.e. i = Rank1(j), comes from the complementarity of
Rank and Select operations.

Now we are ready to implement three navigational operations, by noticing that in the complete
binary tree a node numbered x has left child 2x and right child 2x + 1 (i.e. the Heaps’ rule). In any
case, nodes are represented with their numberings in the original tree, so that the operations below
will jump back and forth the numbering of the original tree and the one of the complete binary tree.

Left child: We start from a node represented by its (bold) numbering x in the original tree T.
We proceed by first computing x = 2 · x which is the numbering of the left child in the
complete tree T . And then turn it to the corresponding value in the original tree, namely
left child(x) = Rank1(2 · x).

Right child: Similarly as above, we have right child(x) = Rank1(2 · x + 1).
Parent: By inverting the reasoning behind the computation of the right and left child we have

parent(x) = bSelect1(x)/2c.
An attentive reader may notice that sometimes the result of left child and right child may

be NULL. The semantics of such a result is that the queried node is a leaf, thus we discover such a
situation by checking the corresponding bit B[2x] = 0 or B[2x + 1] = 0.

THEOREM 15.6 A binary tree of n nodes can be represented in 2n+1+o(n) bits and supports
queries for parent, left child and right child in constant time.

Note that this implementation is independent of the nature of the auxiliary data stored in trees’

15-12 Paolo Ferragina

11

22

44

8 79

14 15

5

33

56

10 11

67

8
12

16 17

13

B =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 1 1 1 0 1 1 0 1 0 0 1 0 0 0 0 0
1 2 3 4 5 6 7 8

FIGURE 15.7: Example of the two labellings over the complete tree T ′ and the array B. The
indexes above the array refer to the complete binary tree, while the indexes below represent the
bold numbering of the original tree.

nodes. It is enough to implement an additional array A[1, n] which stores in A[i] the auxiliary
information associated to node i in T . The numbering of T ’s nodes can then be used to access this
auxiliary infos.

Example 15.3

Given the binary tree T , perform the following queries, using only the binary array B obtained from
T as indicated above:

a. left child(3) = 5;
b. right child(4) = 7;
c. parent(8) = 6;

We remark that the queries to retrieve left or right child need a Rank1 operation, while the parent
query takes the index of the node in the complete binary tree and thus requires a Select1 operation.

a. left child(3) = Rank1(2 ·3) = Rank1(6) = 5 (here the left child exists because B[6] = 1),
where

B =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 1 1 1 0 1 1 0 1 0 0 1 0 0 0 0 0
1 2 3 4 5 6 7 8

;

b. right child(4) = Rank1(2 · 4 + 1) = Rank1(9) = 7 (here the right child exists because
B[9] = 1), where

B =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 1 1 1 0 1 1 0 1 0 0 1 0 0 0 0 0
1 2 3 4 5 6 7 8

;

c. parent(8) = bSelect1(8)/2c =
⌊

12
2

⌋
= 6 (here the parent exists because B[Select1(6)] =

B[7] = 1), where

Compressed Data Structures 15-13

B =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 1 1 1 0 1 1 0 1 0 0 1 0 0 0 0 0
1 2 3 4 5 6 7 8

15.2.2 Arbitrary trees

We now explore another implementation of trees, which is powerful enough to manage arbitrary
trees and perform the following queries in constant time, by means still of Rank and Select data
structures:

• parent;
• first child (from left);
• next sibling (on the right).
• degree;

The solution is called LOUDS which stands for Level Order Degree Sequence, where U is added
for pronounciation reasons. This approach is based on the intuition that a tree is uniquely determined
by its degree sequence written in BFS order. We should remark that LOUDS supports more queries
than Jacobson’s approach, but yet not the subtree size query. LOUDS works as follows:

1. Append a “dummy root” of degree 1, and then label each node with its degree;
2. Visit the tree level-wise and from left-to-right (i.e. BFS order), and store the sequence

of degrees into an array A;
3. Encode the array A in unary thus creating a binary array B.

A running example of LOUDS for a tree of fan-out at most three is provided in Figure 15.8.

THEOREM 15.7 The space needed by LOUDS for storing an arbitrary tree of n nodes (and
leaves) is 2n + 1.

Proof The proof follows by counting the number of bits stored in the array B.

Number of 0s in B: it is n because the 0s correspond to the children of a node (every node is a
child, except for the dummy root).

Number of 1s in B: it is n + 1 because every unary sequence is ended by a 1 and encodes the
degree of a tree node, included the dummy root.

The array B has two properties, which are evident from the way nodes are ”numbered” in BFS-order,
and be checked in Figure 15.8:

• Prop. 1 – The node k in the tree corresponds to the k-th 0 in B;
• Prop. 2 – The children of node k correspond to the 0s following the k-th 1 in array B.

Given these two properties we are left with showing how to implement the four queries mentioned
above in constant time (i.e. parent, left child, next sibling, degree).

Degree: deg(x) = Select1(x + 1) − (Select1(x) + 1) (here we used Prop. 2);
Parent: parent(x) = Rank1(Select0(x)) = Select0(x) − x (here we used first Prop. 1 and then

Prop. 2);

15-14 Paolo Ferragina

Start Step 1

3

2

0 1

0

0 3

0 2

0 0

0

Step 2

A =

1 2 3 4 5 6 7 8 9 10 11 12

3 2 0 3 0 1 0 2 0 0 0 0
Step 3

dummy root

1

2

5 6

10

3 4

7 8

11 12

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0 1 0 0 0 1 0 0 1 1 0 0 0 1 1 0 1 1 0 0 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10 11 12

1 3 2 0 3 0 1 0 2 0 0 0 0

1 2 3 4 5 6 7 8 9 10 11 12

B =

nodes
degree

children

FIGURE 15.8: Example of construction of the array B from tree T . The values above the array
represent the indexes, while below we find three lists, that are displayed for teaching purposes, but
not stored: the first one is the number of the node which degree is expressed in unary from that
position to the next dashed line. The second list the degree, while the third one represents, for each
0 entry in B, the child(ren) of the node of a given degree.

First child: From the computation of deg(x) we know that the unary sequence encoding the
degree of x is located between the positions Select1(x) + 1 and Select1(x + 1). So if
deg(x) = 0 we return NULL; otherwise we jump to the first 0 of that unary sequence,
which is Select1(x) + 1 and then return the corresponding node numbering by applying

Compressed Data Structures 15-15

the Rank computation (Prop. 2). Notice that Rank0(Select1(x) + 1) = Select1(x) + 1− x.

first child(x) =

NULL if deg(x) = 0
Select1(x) + 1 − x otherwise

(15.6)

Next sibling: Let us denote the position in B of the queried node x as y = Select0(x) (Prop.
1). Hence its sibling is represented by the adjacent bit, i.e. y + 1, if that is 0 otherwise it
does not exists. Formally,

next sibling(x) =

Select0(x) + 1 if that bit is 0
NULL otherwise

(15.7)

Example 15.4

Given the tree T , perform the following queries, using only the binary array B obtained from T :

a. deg(4) = 3;
b. parent(5) = 2;
c. first child(9) = NULL;
d. first child(8) = 11;
e. next sibling(12) = NULL;
f. next sibling(11) = 12.

a. deg(4) = Select1(5) − (Select1(4) + 1) = 14 − (10 + 1) = 3, since

B =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0 1 0 0 0 1 0 0 1 1 0 0 0 1 1 0 1 1 0 0 1 1 1 1 1 ;

b. parent(5) = Select0(5) − 5 = 7 − 5 = 2, since

B =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0 1 0 0 0 1 0 0 1 1 0 0 0 1 1 0 1 1 0 0 1 1 1 1 1 ;

c. first child(9). Since deg(9) = Select1(9 + 1) − Select1(9) − 1 = 22 − 21 − 1 = 20, the
answer is NULL;

B =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0 1 0 0 0 1 0 0 1 1 0 0 0 1 1 0 1 1 0 0 1 1 1 1 1 ;

d. first child(8). Since deg(8) = Select1(8 + 1) − Select1(8) − 1 = 21 − 18 − 1 = 2, the first
child of 8 does exist. Hence we compute first child(8) = Select1(8)+1−8 = 18+1−8 =

11, since

B =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0 1 0 0 0 1 0 0 1 1 0 0 0 1 1 0 1 1 0 0 1 1 1 1 1 ;

e. next sibling(12). First compute y = Select0(12) = 20. Since B[y + 1] = B[21] = 1 the
answer is NULL;

B =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0 1 0 0 0 1 0 0 1 1 0 0 0 1 1 0 1 1 0 0 1 1 1 1 1 .

f. next sibling(11). First compute y = Select0(11) = 19. Since B[19 + 1] = B[20] = 0, the
answer is 20 + 1 = 21.

B =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0 1 0 0 0 1 0 0 1 1 0 0 0 1 1 0 1 1 0 0 1 1 1 1 1 .

15-16 Paolo Ferragina

15.3 Succint representation of graphs

In this section we address a common problem in the context of managing large graphs (especially
in the Web and Social Networks), that is designing specialized graph algorithms that run directly
on compressed graphs instead of the original uncompressed ones. We will consider two orthogonal
approaches, the first one is focused on improving the storage performance on adjacency lists, while
the second one is a sophisticate graph compression, based on k2-trees.

Let us start by introducing some useful notation: we are given a graph G = (V, E), where V =

{u1, . . . , un} is the set of nodes and E = {(u1, v1), . . . , (um, vm)} is the set of edges. We overload the
symbol E to denote the adjacency matrix of the graph, namely:

E[u, v] =

{
1 (u, v) ∈ E
0 Otherwise

A naı̈ve representation of a graph consists of storing the adjacency list of each node, via a se-
quence of increasing integers represented with Θ(log n) bits each. See an illustrative example in
Table 15.3, where we say that y is a successor of x iff (x, y) ∈ E.

Node Outdegree Successors

· · · · · · · · ·
15 11 13, 15, 16, 17, 18, 19, 23, 24, 203, 315, 1034
16 10 15, 16, 17, 22, 23, 24, 315, 316, 317, 3041
17 0
18 5 13, 15, 16, 17, 50
· · · · · · · · ·

TABLE 15.3 Naive

representation of graphs by adjacency lists.

As already shown in Section 15.1.2, Elias-Fano compression may be used in the context of suc-
cinct representations of increasing integer sequences and support random access operations to their
elements in constant time. So, this is surely a well deserved approach to apply on the adjacency lists
of graphs for which no special property can be proved, and thus deployed, about their structure. The
next two subsections investigate the case of special graphs, where special compression approaches
can be exploited to get further space savings.

15.3.1 Succinct storage of Web graphs

In this section we describe one of the most known approaches to compress a special class of graphs,
such as the Web graph [1] (but not the Social Networks), which satisfies a locality and a similarity
properties. Locality means that most outgoing links from a node u point to nodes v such that |u − v|
is small. Similarity means that, if u, v have close labels, that they share many outgoing links. These
two properties are satisfied by the Web graph provided that Web pages (hence, nodes) are numbered
according to their reverse URLs3. It is very well known that pages frequently point to pages in
the same host, and pages of the same host point to same pages: this means that the locality and
similarity properties are satisfied.

3This means that the host-string is reversed, but the path is ket unchanged: hence,
www.corriere.it/esteri/page.html is reversed as it.corriere.www/esteri/page.html.

Compressed Data Structures 15-17

Step #1. Gap coding

The locality property suggests that each list of successors should be represented by using a list of
gaps so that the successors of a node x, i.e. S (x) = (s1, . . . , sk), can be rewritten as the sequence of
integers (s1, s2 − s1, s3 − s2, . . . , sk − sk−1). Table 15.4 shows an example of gap encoding over the
list of successors shown in Table 15.3.

Node Outdegree Successors

· · · · · · · · ·
15 11 13, 2, 1, 1, 1, 1, 4, 1, 179, 112, 719
16 10 15, 1, 1, 5, 1, 1, 291, 1, 1, 2724
17 0 -
18 5 13, 2, 1, 1, 33
· · · · · · · · ·

TABLE 15.4 Representation using

positive gaps.

This technique allows to use subsequently encodings of the gaps, such as unary, γ or δ (we refer
the reader to Chapter 11).

Step #2. Reference compression

The similarity property suggests to represent the adjacency list S (x) as the “modified” version of
some previous, but close, list S (y), called the reference list. The difference x − y = r > 0 is called
the reference number. If r = 0, then it means that the list is encoded as is, without applying this
compression step. It goes without saying that the choice of r is critical, since a large value of r is
likely to produce better compression ratios, but the price for this space improvement is a slower and
more memory-consuming compression phase.

Given y, we build a binary sequence of |S (y)| bits, each one indicating whether the corresponding
successor of y is (= 1) or is not (= 0) also a successor of x. This bit sequence is called copy list.

Then the difference list of integers S (x) S (y) is called the list of extra nodes which are stored
explicitly. An example of reference compression is shown in Table 15.5.

In order to reconstruct the original adjacency list of a node x a merge operation should be per-
formed over the list of extra nodes and the referred adjacency list S (y).

Node Outd Ref Copy list Extra nodes

· · · · · · · · · · · · · · ·
15 11 0 - 13, 15, 16, 17, 18, 19, 23, 24, 203, 315, 1034
16 10 1 01110011010 22, 316, 317, 3041
17 0 - -
18 5 3 11110000000 50
· · · · · · · · · · · · · · ·

TABLE 15.5 Representation using copy lists. The node 15 is not subject to reference compression,

whereas the nodes 16 and 16 have their successors lists compressed with respect to the one of 15.

Differential compression

15-18 Paolo Ferragina

An attentive reader may have noticed that the copy lists are an alternating sequence of 1s and 0s
blocks. Hence, each such block is compressed by storing its length encoded in negated unary, i.e.
1x−10 to encode the integer x > 0.

Moreover, if we encode the content of the first block, i.e. 0 or 1, we do not need to specify
the content of the subsequent blocks but only their length since they are alternating. As a result
this second compression step consists of writing the first bit of the copy list, and then write the
alternating sequence of block lengths encoded in negated unary. This binary sequence is called
copy block.

We add to this information the count of the number of blocks, and apply the further trick that the
last block is omitted because its value can be deduced from the block count and from the outdegree
of the reference node. The resulting scheme is exemplified in Table 15.6.

Node Outd Ref #blocks Copy blocks Extra nodes

· · · · · · · · · · · · · · · · · ·
15 11 0 - - 13,15,16,17,18,19,23,24,203,315,1034
16 10 1 7 0,0,2,1,1,0,0 22,316,317,3041
17 0 - - - -
18 5 3 2 1, 3 50
· · · · · · · · · · · · · · · · · ·

TABLE 15.6

Representation using copy blocks.

Step #3: Using intervals

Experiments have shown that the extra nodes show increasing sequences of consecutive integers,
which may be represented by intervals properly encoded. This scheme is applied only on sequences
whose length is not below a certain threshold Lmin, and consists of two compression steps:

List of integer intervals: each interval is represented by its left extreme and by its length,
where the left extreme is compressed by using the differences between itself and the
right extreme of the previous interval, decremented of 2 units. This decrement follows
from the observation that there must be at least one integer between the end of an interval
and the beginning of the next one, otherwise they could have been merged into one; and
also, we wish to encode integers starting from 0. Interval lengths are decremented by
the threshold Lmin.

List of residuals: these residuals are the integers that were not included in the previous list
and are compressed using the classic gap technique.

An example of this compression is shown in Table 15.7.

15.3.2 Using k2-trees for succinct graph storage

In this section we present a simple, yet elegant and effective solution for storing generic graphs [2, 4]
based on a succinct representation of the adjacency matrix. It exploits the sparsity of such matrix
and the locality property (which implies some sorts of clustering).

The adjacency matrix A of a graph G is represented by a k2-ary tree, whose height is h = dlogk ne.
Assume that n = k2, we divide the matrix in exactly k2 square submatrices Ak,1, . . . , Ak,k and branch a
root node into k children. Those children are labeled with 1 if the corresponding submatrix contains

Compressed Data Structures 15-19

Node Outd Ref #blocks Copy blocks #intervals Lextremes Length Residuals

· ·
15 11 0 - - 2 0,2 0,3 5,189,111,178
16 10 1 7 0,0,2,1,1,0,0 1 292 0 12,3018
17 0 - - - - - - -
18 5 3 1 1,3 0 - - 50
· ·

TABLE 15.7 Representation using intervals (Lmin = 2).

at least one digit 1, with 0 otherwise. The procedure is repeated recursively in each child labeled
with 1 until all submatrices are filled with 0s or they have size 1.

1 1 0 0

0 1 0 0

0 0 1 1

0 0 1 0

1

1

1 1 0 1

0 0 1

1 1 1 0

FIGURE 15.9: Example of k2-ary tree over 4 × 4 adjacency matrix, where k = 2 and leaves are
represented as squares.

It goes without saying that for a larger value of k the number of levels decreases, while the
branching factor increases. As usual, there is a trade off between these two quantities, triggered by
the choice of k. It should be pointed out that the assumption of n = k2 can be relaxed, by padding
the matrix in its bottom or right part, in order to make it have the width of the smallest power of k
bigger than n.

This representation of the adjacency matrix allows fast retrieval of neighbours of a certain node
(aka the positions of the 1s in the corresponding row) and the reverse neighbours (same operation
on the transpose matrix). The intuition behind this is that, starting from the root, we percolate the
tree in a top down fashion, following those edges that lead to elements of a certain row. Notice that
the previous representation of the Web Graph needs the explicit encoding of the adjacency matrix
and its transpose to support the retrieval of in- and out-degrees.

The nice idea behind the use of k2-trees is that they may be efficiently stored using a variant of
LOUDS algorithm (see Section 15.2.2) that makes use of two arrays: T is a bit array that stores the
labels of all internal nodes of the tree serialized in BFS-order, and L stores the bits of the lowest
level in rightward order. Finally, Rank1 and Select1 data structures are built over the binary array T ,
in order to access the 1s in constant time (see Section 15.1.1). The array L is not indexed because
leaves have no children.

In the running example of Figure 15.9, the arrays T and L have the following shape

T =

1 2 3 4

1 0 0 1 , L =

1 2 3 4 5 6 7 8

1 1 0 1 1 1 1 0

We observe that, given a position i in T such that T [i] = 1, the position of the j-th child of

15-20 Paolo Ferragina

the i-th node in the tree (according to numbering induced by the BFS-traversal) can be found in
T [Rank1(T, i) · k2 + j], because we need to take into account all the subtrees on the left of the i-th
node and then add the queried child-offset.

At this point, we are ready to sketch the idea underlying the algorithm that decodes the adjacency
list R of a certain node. Let us assume we are sitting on a row R ≥ 1 of the matrix A, among the k2

matrices of the next recursive level we have that that row is spanned by the sub-matrices of ”macro-
row” dR/(n/k)e and occupied the relative position among them equal to (R − 1) mod (n/k) + 1.
Referring to the following Figure 15.10, where n/k = 8 and R = p0 = 15, the relative position of
the row at the first recursive level is p1 = 15 mod 8 = 7 for the sub-matrices of the dR/(n/k)e =

d15/8e = 2nd macro-row. And so on...

R→

}
p2

p1

p0

FIGURE 15.10: Example where n = 16 and k = 2. In this case p0 = 15, p1 = 5, p2 = 3, p3 = 1,
p4 = 1.

The authors of this solution proved that the worst case time complexity of percolating such k2-tree
is O(n), since there may be a case in which we need to expand all sub-matrices until the leaves, the
average time complexity is O(

√
m), where m is the number of 1s. This means that, the more sparse

is the matrix, the faster is the decoding of one adjacency list. Moreover, it was shown that the space
needed to store a graph, made of n nodes and m edges, using k2-trees is O(k2m · (1 + logk2

n2

m)) bits.
The proof is carried out by splitting the computation into two parts:

Bottom part of the tree: let us assume we have split the matrix into submatrices until we
found m submatrices, each containing one bit set to 1. These matrices are obviously m
and the length of the path leading from their root to the leaves is O(logk2

n2

m). At each
level of each path, they are m, there are exactly k2 nodes (k2 − 1 leaves) but only one
child is expanded (the sub-matrix containing the single 1).

Top part of the tree: The top part of the k2-tree starting from the root and ending before the
m sub-matrices above is a perfectly balanced tree, thus consisting of O(m) nodes at the
last level, each with O(k2) children.

References

Compressed Data Structures 15-21

[1] Paolo Boldi and Sebastiano Vigna. The Webgraph framework I: Compression tech-

niques. In Proceedings of the International Conference on World Wide Web, pages 595–

602, 2004.

[2] Nieves R. Brisaboa, Susana Ladra, and Gonzalo Navarro. k2-trees for com-

pact web graph representation. In Proceedings of String Processing and Information
Retrieval, pages 18–30, 2009.

[3] Guy Jacobson. Space-efficient static trees and graphs. In Proceedings of the 30th Annual
Symposium on Foundations of Computer Science, pages 549–554, 1989.

[4] Gonzalo Navarro. Compact Data Structures: A Practical Approach. Cambridge Univer-

sity Press, New York, NY, USA, 1st edition, 2016.

	Prologo
	A warm-up!
	A cubic-time algorithm
	A quadratic-time algorithm
	A linear-time algorithm
	Another linear-time algorithm
	Few interesting variants

	Random Sampling
	Disk model and known sequence length
	Streaming model and known sequence length
	Streaming model and unknown sequence length

	List Ranking
	The pointer-jumping technique
	Parallel algorithm simulation in a 2-level memory
	A Divide&Conquer approach

	Sorting Atomic Items
	The merge-based sorting paradigm
	Lower bounds
	The distribution-based sorting paradigm
	Sorting with multi-disks

	Set Intersection
	Merge-based approach
	Mutual Partitioning
	Doubling search
	Two-level storage approach

	Sorting Strings
	A lower bound
	RadixSort
	Multi-key Quicksort
	Some observations on the I/O-model

	The Dictionary Problem
	Direct-address tables
	Hash Tables
	Universal hashing
	Perfect hashing, minimal, ordered!
	A simple perfect hash table
	Cuckoo hashing
	Bloom filters

	Searching Strings by Prefix
	Array of string pointers
	Interpolation search
	Locality-preserving front coding
	Compacted Trie
	Patricia Trie
	Managing Huge Dictionaries

	Searching Strings by Substring
	Notation and terminology
	The Suffix Array
	The Suffix Tree
	Some interesting problems

	Integer Coding
	Elias codes: and
	Rice code
	PForDelta code
	Variable-byte code and (s,c)-dense codes
	Interpolative code
	Elias-Fano code
	Concluding remarks

	Statistical Coding
	Huffman coding
	Arithmetic Coding
	Prediction by Partial Matching

	Dictionary-based compressors
	LZ77
	LZ78
	LZW
	On the optimality of compressors

	The Burrows-Wheeler Transform
	The Burrows-Wheeler Transform
	Two other simple transforms
	The bzip compressor
	On compression boosting
	On compressed indexing

	Compressed Data Structures
	Compressed representation of arrays
	Succint representation of trees
	Succint representation of graphs

