Algorithm Engineering 20 January 2021 - time 45 minutes

Question \#1 [ranks 4]. Simulate the behavior of the algorithm MultiKey-Quicksort on the following array of 5 strings $S=[b u s$, bath, abacus, aargh, cat], by assuming that the pivot string is always the first one of the recursive set of strings.

Question \#2 [ranks 5]. Given the integer sequence $S=(1,2,3,4,6,8,9)$, show how Interpolative Coding compresses the "first three" integers according to its algorithm.

Question \#3 [ranks 4]. Let us given the probabilities: $p(a)=1 / 2, p(b)=p(c)=1 / 4$. Decompress the first 2 symbols of the Arithmetic coded bit sequence: 111.

Question \#4 [ranks 4]. Perform the intersection between the two sets S1 = \{1, 8\} and $S 2=\{1,2,5,7,10,15,20\}$ via the algorithm based on "binary search with exponential jumps" (or, doubling search).

Question \#5 [rank 3+3+4+3]. Given the binary strings $S=\{001,10010,10011,101\}$.

- Build the Patricia Trie for S
- Show how to search for the lexicographic position of the string P=110 among the strings of the set S.
- Propose a succinct encoding of the Patricia Trie of S that allows navigation in constant time per traversed edge.
- Simulate the downward search for $\mathrm{P}=110$ in this succinct encoding.

