# Sorting atomic items

Chapter 5

#### Distribution based sorting paradigms

# The distribution-based sorting

QuickSort is an in place algorithm, but... Consider the stack for the recursive calls. For balanced partitions: O(logn) space Worst case of unbalanced partitions:  $\Omega(n)$  calls,  $\Theta(n)$  space!! QuickSort is modified.

We can bound the recursive depth. Algorithm Bounded Based on the fact that: Quicksort does not depend on the order in which recursive calls are executed!

Small arrays can be better sorted with InsertionSort (when n is typically of the order of tens).

The modified version mixes one recursive call with an iterative while loop.

#### Algorithm Bounded(S, I, j)

| Algorithm 5.6 The binary quick-sort with bounded recursive-depth: |                                          |        |
|-------------------------------------------------------------------|------------------------------------------|--------|
| 1:                                                                | while $(j - i > n_0)$ do                 |        |
| 2:                                                                | r = pick the position of a "good pivot"; |        |
| 3:                                                                | swap $S[r]$ with $S[i]$ ;                |        |
| 4:                                                                | p = PARTITION(S, i, j);                  |        |
| 5:                                                                | if $(p \le \frac{i+j}{2})$ then          | n > no |
| 6:                                                                | BOUNDEDQS( $S, i, p - 1$ );              |        |
| 7:                                                                | i = p + 1;                               |        |
| 8:                                                                | else                                     |        |
| 9:                                                                | BOUNDEDQS $(S, p + 1, j)$ ;              |        |
| 10:                                                               | j = p - 1;                               |        |
| 11:                                                               | end if                                   |        |
| 12:                                                               | end while                                |        |
| 13:                                                               | INSERTIONSORT(S, i, j); $n \le n$        | 10     |

#### Algorithm Bounded(S, I, j)

- The recursive call is executed on the smaller part of the partition
- It drops the recursive call on the larger part of the partition in favor of another execution of the while-loop.
- Ex:

10 3 7 15 21 18 2 11

pivot =S[2]=3

Partition

2 3 10 7 15 21 18 11

Only one recursive call on S(i,p-1); For the larger part S(i+1,j) we iterate to the while loop

- Technique: Elimination of Tail Recursion
- Bounded takes O(nlogn) time in average and O(logn) space.

- 2-level model: M = internal memory size ; B = block size ;
- Split the sequence S into k = Θ(M/B) sub-sequences using k-1 pivots.
- We would like balanced partitions, that is of Θ(n/k) items each.
- Select k-1 s<sub>1</sub>, s<sub>2</sub>, ...s<sub>k-1</sub> "good pivots" is not a trivial task! (later)

Let bucket Bi the portion of S between pivot  $s_{i-1}$  and  $s_i$ . We want  $|Bi| = \Theta(n/k)$  for all buckets! So:

at the first step the size of portions n/kat the second step the size of portions  $n/k^2$ at the third step the size of portions  $n/k^3$ 

Stop when  $n/k^i \le M$ :  $n/M \le k^i$ , i is the number of recursion steps i \ge log\_k n/M = log\_{M/B} n/M

This number of steps is enough to have portions shorter than M, and sorted in internal memory!

Partition takes O(n/B) I/O's (dual to multiway Merge) : 1 input block, k output blocks (used to write into the k-partition under formation).

Find k good pivots efficiently.

Randomized strategy called oversampling.

 $\Theta(ak)$  items are sampled, a 20 parameter of the oversampling.

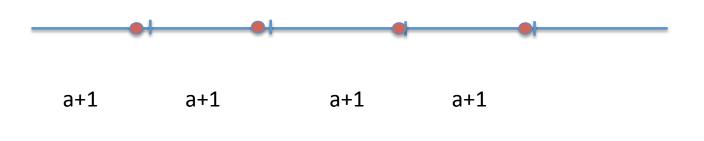
Algorithm 5.7 Selection of k – 1 good pivots via oversampling

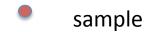
- 1: Take (a + 1)k 1 samples at random from the input sequence;
- 2: Sort them into an ordered sequence A;
- 3: For i = 1, ..., k 1, pick the pivot  $s_i = A[(a + 1)i]$ ;
- return the pivots s<sub>i</sub>;

⊖(ak) candidates
⊖(ak)log(ak) time
Select k-1 pivots
evenly distributed

Balanced selection of s<sub>i</sub> = A[(a+1)i] should provide good pivots!!

• K=5





- The larger is a the closer to  $\Theta(n/k)$
- If a=n/k the elements of set A cannot be sorted in M !
- If a = 0 the selection is fast, but unbalanced partitions are is more probable.
- Good choice for a: Θ(log k). Pivot-selection costs Θ(klog<sup>2</sup>k)

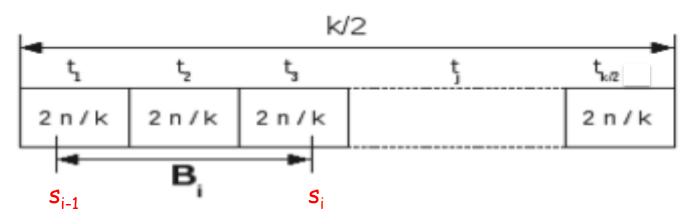
Pivot selection costs  $\Theta(ak \log ak)$ 

a=logk klogk log(klogk) = klogk (logk +loglogk)=  $\Theta(k \log^2 k)$ 

Lemma. Let  $k \ge 2$ , a + 1 = 12 ln k. A sample of (a+1)k-1 suffices to ensure that all buckets receive less than 4n/k elements, with probability at least  $\frac{1}{2}$ .

Proof. We find un upper bound to complement event: there exists 1 bucket containing more than 4n/k elements with probability at most  $\frac{1}{2}$ . Failure sampling.

Consider the sorted version of S, S'. Logically split S' in k/2 segments  $(t_1, t_2, ..., t_{k/2})$  of 2n/k elements each.



- The event is that there exists a bucket Bi with more that 4n/k items. It spans more than one segment: pivots s<sub>i-1</sub> and s<sub>i</sub> fall outside t<sub>2</sub>.
- In  $t_2$  fall less than (a+1) samples (see selection algorithm: between 2 pivots there are a+1 samples, hence in  $t_2$  there are less).
- Pr (exists B<sub>i</sub>: |B<sub>i</sub>| ≥ 4 n/k) ≤ Pr (exists t<sub>j</sub>: contains < (a+1) samples)</li>
   ≤ k/2 Pr (a specific segment contain < (a+1) samples)</li>

Since k/2 is the number of segments.

- Pr (1 sample goes in a given segment) = (2n/k)/n = 2/k
   If drawn uniformly at random from S (and S').
- Let X the number of samples going in a given segment, we want to compute:

Pr(X < a+1)

By Chernoff bound

 $\Pr\left(X < (1 - \delta) E(X) \le e^{\delta^2 / 2}E(X)\right\}$ 

Setting  $\delta = 1/3$  and assume  $a+1 = 12 \ln k$ 

 $\frac{\Pr(X < a+1) \le \Pr(X \le (1-1/3)E(X)) \le}{e^{-E(X)/18} \le e^{-(a+1)/12} = e^{-\ln k} = 1/k}$ 

• Pr (X < a+1 ) ≤ 1/k

We have already derived:

- Pr (exists  $B_i : |B_i| \ge 4 n/k) \le k/2 \times Pr$  (a segment contain (a+1) samples)
- Pr (exists  $B_i : |B_i| \ge 4 n/k) \le 1/2$  complement event of the lemma
- All buckets receives less than 4n/k elements with probability > 1/2

## Dual Pivot QuickSort

- Good strategy in practice no theoretical result.
- Empirical good results in average.

• p, q pivots l, k, g indices  $\rightarrow$  4 pieces



2.

4.

- items larger or equal to p and smaller or equal to q.
- 3. items not jet considered
  - items greater than q

#### Dual Pivot QuickSort

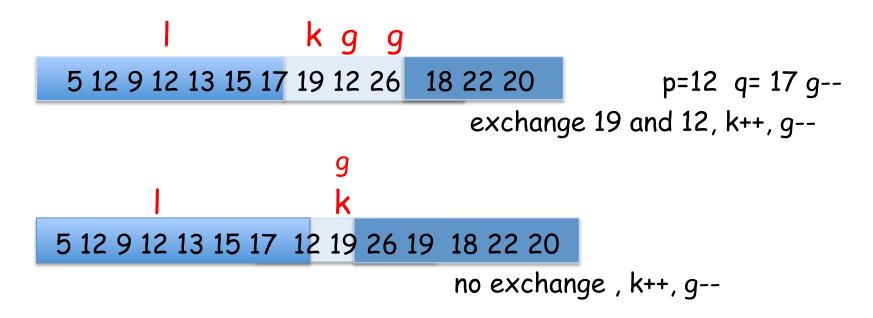
Similar to the 3-ways Partition: maintains the invariants.

- Items equal to the pivot are not treated separately.
- 2 indices move rightward , I and k, while g moves leftward.
- Termination:  $k \ge g$ .
- For item k, compare S[k] : p, if S[k]

```
else if S[k] > q decrease g while S[g] > q and g≠k
the last value of g : S[g] ≤ q
exchange S[k] and S[g]
```

The comparison with S[k] drives the phases possibly including a long shift to the left. The nesting of comparison is the key for the efficiency of the algortihm.

#### **Dual Pivot Partition**



#### Dual Pivot QuickSort

You can find the complete code description and the visualization of the algorithm on youtube by searching for Dual pivot QuickSort.

Conclusions:

Even a very old, classic algorithm such as QuickSort can be speed up and innovated!