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A warm-up!

“Everything should be made as
simple as possible, but not
simpler.”
Albert Einstein
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Let us consider the following problem, surprisingly simple in its statement but not that much for
what concerns the design of its optimal solution.

Problem. We are given the performance of a stock at NYSE expressed as a sequence of
day-by-day di↵erences of its quotations. We wish to determine the best buy-&-sell strategy
for that stock, namely the pair of days hb, si that would have maximized our revenues if we
would have bought the stock at (the beginning of) day b and sold it at (the end of) day s.

The specialty of this problem is that it has a simple formulation, which finds many other useful
variations and applications. We will comment on them at the end of this lecture, now we content
ourselves by mentioning that we are interested in this problem because it admits a sequence of
algorithmic solutions of increasing sophistication and elegance, which imply a significant reduction
in their time complexity. The ultimate result will be a linear-time algorithm, i.e. linear in the
number n of stock quotations. This algorithm is optimal in terms of the number of executed steps,
because all day-by-day di↵erences must be looked at in order to determine if they must be included
or not in the optimal solution, actually, one single di↵erence could provide a one-day period worth
of investment! Surprisingly, the optimal algorithm will exhibit the simplest pattern of memory
accesses— it will execute a single scan of the available stock quotations— and thus it will o↵er
a streaming behavior, particularly useful in a scenario in which the granularity of the buy-&-sell
actions is not restricted to full-days and we must possibly compute the optimal time-window on-the-
fly as quotations oscillate. More than this, as we commented in the previous lecture, this algorithmic
scheme is optimal in terms of I/Os and uniformly over all levels of the memory hierarchy. In fact,
because of its streaming behavior, it will execute n/B I/Os independently of the disk-page size B,
which may be thus unknown to the underlying algorithm. This is the typical feature of the so called
cache-oblivious algorithms [4], which we will therefore introduce at the right point of this lecture.

This lecture will be the prototype of what you will find in the next pages: a simple problem
to state, with few elegant solutions and challenging techniques to teach and learn, together with
several intriguing extensions that can be posed as exercises to the students or as puzzles to tempt
your mathematical skills!

Let us now dig into the technicalities, and consider the following example. Take the case of 11
days of exchange for a given stock, and assume that D[1, 11] = [+4,�6,+3,+1,+3,�2,+3,�4,+1,
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�9,+6] denotes the day-by-day di↵erences of quotations of that stock. It is not di�cult to convince
yourself that the gain of buying the stock at day x and selling it at day y is equal to the sum of the
values in the sub-array D[x, y], namely the sum of all its fluctuations. As an example, take x = 1
and y = 2, the gain is +4 � 6 = �2, and indeed we would loose 2 dollars in buying the morning of
the first day and selling the stock at the end of the second day. Notice that the starting value of the
stock is not crucial for determining the best time-interval of our investment, what is important are
its variations. In other words, the problem stated above boils down to determine the sub-array of
D[1, n] which maximizes the sum of its elements. In the literature this problem is indeed known as
the maximum sub-array sum problem.

Problem Abstraction. Given an array D[1, n] of positive and negative numbers, we want
to find the sub-array D[b, s] which maximizes the sum of its elements.

It is clear that if all numbers are positive, then the optimal sub-array is the entire D: this is the
case of an always increasing stock price, and indeed there is no reason to sell it before the last day!
Conversely, if all numbers are negative, then we can pick the one-element window containing the
largest (negative) value: if you are imposed to buy this poor stock, then do it in the day it looses the
smallest value and sell it soon! In all other cases, it is not at all clear where the optimum sub-array is
located. In the example, the optimum spans D[3, 7] = [+3,+1,+3,�2,+3] and has gain +8 dollars.
This shows that the optimum neither includes the best exploit of the stock (i.e. +6) nor it consists of
positive values only. The structure of the optimum sub-array is not simple but, surprisingly enough,
not very complicated as we will show in Section 2.3.

2.1 A cubic-time algorithm

We start by considering an ine�cient solution which translates in pseudo-code the formulation of the
problem given above. This algorithm is detailed in Figure 2.1, where the pair of variables <bo, so>
identifies the current sub-array of maximum sum, whose value is stored in MaxSum. Initially MaxSum
is set to the dummy value �1, so that it is immediately changed whenever the algorithm executes
Step 8 for the first time. The core of the algorithm examines all possible sub-arrays D[b, s] (Steps
2-3) computing for each of them the sum of their elements (Steps 4-7). If a sum larger than the
current maximal value is found (Steps 8-9), then TmpSum and its corresponding sub-array are stored
in MaxSum and <bo, so>, respectively.

Algorithm 2.1 The cubic-time algorithm
1: MaxS um = �1
2: for (b = 1; b  n; b++) do
3: for (s = b; s  n; s++) do
4: TmpS um = 0
5: for (i = b; i  s; i++) do
6: TmpS um+ = D[i];
7: end for
8: if (MaxS um < TmpS um) then
9: MaxS um = TmpS um; bo = b; so = s;

10: end if
11: end for
12: end for
13: return hMaxS um, bo, soi;
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The correctness of the algorithm is immediate, since it checks all possible sub-arrays of D[1, n]
and selects the one whose sum of its elements is the largest (Step 8). The time complexity is cubic,
i.e. ⇥(n3), and can be evaluated as follows. Clearly the time complexity is upper bounded by O(n3)
because we can form no more than n2

2 pairs <b,s> out of n elements,1 and n is an upper-bound to
the cost of computing the sum of each sub-array. Let us now show that the time cost is also ⌦(n3),
so concluding that the time complexity is strictly cubic. To show this lower bound, we observe
that D[1, n] contains (n � L + 1) sub-arrays of length L, and thus the cost of computing the sum
for all of their elements is (n � L + 1) ⇥ L. Summing over all values of L, we would get the exact
time complexity. But here we are interested in a lower bound, so we can evaluate that cost just
for the subset of sub-arrays whose length L is in the range [n/4, n/2]. For each such L, we have
that n � L + 1 > n/2 and L � n/4, so the cost above is (n � L + 1) ⇥ L > n2/8. Since we have
n
2 � n

4 + 1 > n/4 of those Ls, the total cost for analysing that subset of sub-arrays is lower bounded
by n3/32 = ⌦(n3).

It is natural now to ask ourselves how much fast in practice is the designed algorithm. We im-
plemented it in Java and tested on a commodity PC. As n grows, its time performance reflects in
practice its cubic time complexity, evaluated in the RAM model. More precisely, it takes about 20
seconds to solve the problem for n = 103 elements, and about 30 hours for n = 105 elements. Too
much indeed if we wish to scale to very large sequences (of quotations), as we are aiming for in
these lectures.

2.2 A quadratic-time algorithm

The key ine�ciency of the cubic-time algorithm resides in the execution of Steps 4-7 of the pseudo-
code in Figure 2.1. These steps re-compute from scratch the sum of the sub-array D[b, s] each time
its extremes change in Steps 2-3. But if we look carefully at the for-cycle of Step 3 we notice that
the size s is incremented by one unit at a time from the value b (one element sub-array) to the value
n (the longest possible sub-array that starts at b). Therefore, from one execution to the next one of
Step 3, the sub-array to be summed changes from D[b, s] to D[b, s + 1]. It is thus immediate to
conclude that the new sum for D[b, s + 1] does not need to be recomputed from scratch, but can be
computed incrementally by just adding the value of the new element D[s + 1] to the current value
of TmpSum (which inductively stores the sum of D[b, s]). This is exactly what the pseudo-code of
Figure 2.2 implements: its two main changes with respect to the cubic algorithm of Figure 2.1 are
in Step 3, that nulls TmpSum every time b is changed (because the sub-array starts again from length
1, namely D[b, b]), and in Step 5, that implements the incremental update of the current sum as
commented above. Such small changes are worth of a saving of ⇥(n) additions per execution of
Step 2, thus turning the new algorithm to have quadratic-time complexity, namely ⇥(n2).

More precisely, let us concentrate on counting the number of additions executed by the algorithm
of Figure 2.2; this is the prominent operation of this algorithm so that its evaluation will give us an
estimate of its total number of steps. This number is2

n
X

b=1

(1 +
n
X

s=b

1) =
n
X

b=1

(1 + (n � b + 1)) = n ⇥ (n + 2) �
n
X

b=1

b = n2 + 2n � n(n � 1)
2

= O(n2).

This improvement is e↵ective also in practice. Take the same experimental scenario of the pre-
vious section, this new algorithm requires less than 1 second to solve the problem for n = 103

1For each pair < b, s >, with b  s, D[b, s] is a possible sub-array, but D[s, b] is not.
2We use below the famous formula, discovered by the young Gauss, to compute the sum of the first n integers.
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Algorithm 2.2 The quadratic-time algorithm
1: MaxS um = �1;
2: for (b = 1; b  n; b++) do
3: TmpS um = 0;
4: for (s = b; s  n; s++) do
5: TmpS um += D[s];
6: if (MaxS um < TmpS um) then
7: MaxS um = TmpS um; bo = b; so = s;
8: end if
9: end for

10: end for
11: return hMaxS um, bo, soi;

elements, and about 28 minutes to manage 106 elements. This means that the new algorithm is able
to manage more elements in “reasonable” time. Clearly, these timings and these numbers could
change if we use a di↵erent programming language (Java, in the present example), operating sys-
tem (Windows, in our example), and processor (the old Pentium IV, in our example). Nevertheless
we believe that they are interesting anyway because they provide a concrete picture of what it does
mean a theoretical improvement like the one we showed in the above paragraphs on a real situation.
It goes without saying that the life of a coder is typically not so easy because theoretically-good
algorithms many times hide so many details that their engineering is di�cult and big-O notation
often turn out to be not much “realistic”. Do not worry, we will have time in these lectures to look
at these issues in more detail.

2.3 A linear-time algorithm

The final step of this lecture is to show that the maximum sub-array sum problem admits an elegant
algorithm that processes the elements of D[1, n] is a streaming fashion and takes the optimal O(n)
time. We could not aim for more!

To design this algorithm we need to dig into the structural properties of the optimal sub-array.
For the purpose of clarity, we refer the reader to Figure 2.1 below, where the optimal sub-array is
assumed to be located at two positions bo  so in the range [1, n].

FIGURE 2.1: An illustrative example of Properties 1 and 2.

Let us now take a sub-array that starts before bo and ends at position bo � 1, say D[x, bo � 1]. The
sum of the elements in this sub-array cannot be positive because, otherwise, we could merge it with
the (adjacent) optimal sub-array and thus get the longer sub-array D[x, so] having sum larger than
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the one obtained with the (claimed) optimal D[bo, so]. So we can state the following:

Property 1. The sum of the elements in a sub-array D[x, bo � 1], with x < bo, cannot be (strictly)
positive.

Via a similar argument, we can consider a sub-array that is a prefix of the optimal D[bo, so], say
D[bo, y] with y  so. This sub-array cannot have negative sum because, otherwise, we could drop
it from the optimal solution and get a shorter array, namely D[y + 1, so] having sum larger than the
one obtained by the (claimed) optimal D[bo, so]. So we can state the following other property:

Property 2. The sum of the elements in a sub-array D[bo, y], with y  so, cannot be (strictly)
negative.

We remark that any one of the sub-arrays considered in the above two properties might have sum
equal to zero. This would not a↵ect the optimality of D[bo, so], it could only introduce other optimal
solutions being either longer or shorter than D[bo, so].

Let us illustrate these two properties on the array D[1, 11] = [+4,�6,+3,+1,+3,�2,+3,�4,+1,
�9,+6]. Here the optimum sub-array is D[3, 7] = [+3,+1,+3,�2,+3]. We note that D[x, 2] is
always negative (Prop. 1), in fact for x = 1 the sum is +4 � 6 = �2 and for x = 2 the sum is �6. On
the other hand the sum of all elements in D[3, y] is positive for all prefixes of the optimum sub-array
(Prop. 2), namely y  7. We also point out that the sum of D[3, y] is positive even for some y > 7,
take for example D[3, 8] for which the sum is 4 and D[3, 9] for which the sum is 5. Of course, this
does not contradict Prop. 2.

Algorithm 2.3 The linear-time algorithm
1: MaxS um = �1
2: TmpS um = 0; b = 1;
3: for (s = 1; s  n; s++) do
4: TmpS um += D[s];
5: if (MaxS um < TmpS um) then
6: MaxS um = TmpS um; bo = b; so = s;
7: end if
8: if (TmpS um < 0) then
9: TmpS um = 0; b = s + 1;

10: end if
11: end for
12: return hMaxS um, bo, soi;

The two properties above lead to the simple Algorithm 2.3. It consists of one unique for-cycle
(Step 3) which keeps in TmpSum the sum of a sub-array ending in the currently examined position
s and starting at some position b  s. At any step of the for-cycle, the candidate sub-array is
extended one position to the right (i.e. s++), and its sum TmpSum is increased by the value of the
current element D[s] (Step 4). Since the current sub-array is a candidate to be the optimal one, its
sum is compared with the current optimal value (Step 5). Then, according to Prop. 1, if the sub-array
sum is negative, the current sub-array is discarded and the process “restarts” with a new sub-array
beginning at the next position s + 1 (Steps 8-9). Otherwise, the current sub-array is extended to the
right, by incrementing s. The tricky issue here is to show that the optimal sub-array is checked in
Step 5, and thus stored in < bo, so >. This is not intuitive at all because the algorithm is checking
n sub-arrays out of the ⇥(n2) possible ones, and we want to show that this (minimal) subset of
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candidates actually contains the optimal solution. This subset is minimal because these sub-arrays
form a partition of D[1, n] so that every element belongs to one, and only one checked sub-array.
Moreover, since every element must be analyzed, we cannot discard any sub-array of this partition
without checking its sum!

Before digging into the formal proof of correctness, let us follow the execution of the algorithm
over the array D[1, 11] = [+4,�6,+3,+1,+3,�2,+3,�4,+1,�9,+6]. Remember that the optimum
sub-array is D[3, 7] = [+3,+1,+3,�2,+3]. We note that D[x, 2] is negative for x = 1, 2, so the
algorithm surely zeroes the variable TmpSum when s = 2 in Steps 8-9. At that time, b is set to 3 and
TmpSum is set to 0. The subsequent scanning of the elements s = 3, . . . , 7 will add their values to
TmpSum which is always positive (see above). When s = 7, the examined sub-array coincides with
the optimal one, we thus have TmpSum = 8, so Step 5 stores the optimum location in < bo, so >. It is
interesting to notice that, in this example, the algorithm does not re-start the value of TmpSum at the
next position s = 8 because it is still positive (namely, TmpSum = 4); this means that the algorithm
will examine sub-arrays longer than the optimal one, but all having a smaller sum, of course. The
next re-starting will occur at position s = 10 where TmpSum = �4.

It is easy to realize that the time complexity of the algorithm is O(n) because every element is
examined just once. More tricky is to show that the algorithm is correct, which actually means that
Steps 4 and 5 eventually compute and check the optimal sub-array sum. To show this, it su�ces
to prove the following two facts: (i) when s = bo � 1, Step 8 resets b to bo; (ii) for all subsequent
positions s = bo, . . . , so, Step 8 never resets b so that it will eventually compute in TmpSum the sum
of all elements in D[bo, so], whenever s = so. It is not di�cult to see that Fact (i) derives from
Property 1, and Fact (ii) from Property 2.

This algorithm is very fast in the same experimental scenario mentioned in the previous sections,
it takes less than 1 second to process millions of quotations. A truly scalable algorithm, indeed,
with many nice features that make it appealing also in a hierarchical-memory setting. In fact, this
algorithm scans the array D from left to right and examines each of its elements just once. If D
is stored on disk, these elements are fetched in internal memory one page at a time. Hence the
algorithm executes n/B I/Os, which is optimal. It is interesting also to note that the design of
the algorithm does not depend on B (which indeed does not appear in the pseudo-code), but we can
evaluate its I/O-complexity in terms of B. Hence the algorithm takes n/B optimal I/Os independently
of the the page size B, and thus subtly on the hierarchical-memory levels interested by the algorithm
execution. Decoupling the use of the parameter B between algorithm design and algorithm analysis
is the key issue of the so called cache-oblivious algorithms, which are a hot topic of algorithmic
investigation nowadays. This feature is achieved here in a basic (trivial) way by just adopting a
scan-based approach. The literature [4] o↵ers more sophisticated results regarding the design of
cache-oblivious algorithms and data structures.

2.4 Another linear-time algorithm

There exists another optimal solution to the maximum sub-array sum problem which hinges on a
di↵erent algorithm design. For simplicity of exposition, let us denote by S umD[y0, y00] the sum of
the elements in the sub-array D[y0, y00]. Take now a selling time s and consider all sub-arrays that
end at s: namely we are interested in sub-arrays having the form D[x, s], with x  s. The value
S umD[x, s] can be expressed as the di↵erence between S umD[1, s] and S umD[1, x � 1]. Both of
these sums are indeed prefix-sums over the array D and can be computed in linear time. As a result,
we can rephrase our maximization problem as follows:

max
s

max
bs

SumD[b, s] = max
s

max
bs

(SumD[1, s] � SumD[1, b � 1]).
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We notice that if b = 1 the second term refers to the empty sub-array D[1, 0]; so we can assume
that S umD[1, 0] = 0. This is the case in which D[1, s] is the sub-array of maximum sum among all
the sub-arrays ending at s (so no prefix sub-array D[1, b � 1] is dropped from it).

The next step is to pre-compute all prefix sums P[i] = S umD[1, i] in O(n) time and O(n) space
via a scan of the array D: Just notice that P[i] = P[i � 1] + D[i], where we set P[0] = 0 in order
to manage the special case above. Hence we can rewrite the maximization problem in terms of
the array P, rather than S umD: maxbs(P[s] � P[b � 1]). The cute observation now is that we can
decompose the max-computation into a max-min calculation over the two variables b and s

max
s

max
bs

(P[s] � P[b � 1]) = max
s

(P[s] �min
bs

P[b � 1]).

The key idea is that we can move P[s] outside the inner max-calculation because it does not
depend on the variable b, and then change a max into a min because of the negative sign. The final
step is then to pre-compute the minimum minbs P[b � 1] for all positions s, and store it in an array
M[0, n� 1]. We notice that, also in this case, the computation of M[i] can be performed via a single
scan of P in O(n) time and space: set M[0] = 0 and then derive M[i] as min{M[i � 1], P[i]}. Given
M, we can rewrite the formula above as maxs(P[s] � M[s � 1]) which can be clearly computed in
O(n) time given the two arrays P and M. Overall this new approach takes O(n) time and O(n) extra
space.

As an illustrative example, consider again the array D[1, 11] = [+4,�6,+3,+1,+3,�2,+3,�4,+1,
�9,+6]. We have that P[0, 11] = [0,+4,�2,+1,+2,+5,+3,+6,+2,+3,�6, 0] and M[0, 10] =
[0, 0,�2,�2,�2,�2,�2,�2,�2,�2,�6]. If we compute the di↵erence P[s] � M[s � 1] for all
s = 1, . . . , n, we obtain the sequence of values [+4,�2,+3,+4,+7,+5, +8,+4,+5,�4,+6], whose
maximum (sum) is +8 that occurs (correctly) at the (final) position s = 7. It is interesting to note
that the left-extreme bo of the optimal sub-array could be derived by finding the position bo � 1
where P[bo � 1] is minimum: in the example, P[2] = �2 and thus bo = 3.

Algorithm 2.4 Another linear-time algorithm
1: MaxS um = �1; bo = 1;
2: TmpS um = 0; MinTmpS um = 0;
3: for (s = 1; s  n; s++) do
4: TmpS um += D[s];
5: if (MaxS um < TmpS um � MinTmpS um) then
6: MaxS um = TmpS um � MinTmpS um; so = s; bo = btmp;
7: end if
8: if (TmpS um < MinTmpS um) then
9: MinTmpS um = TmpS um; btmp = s + 1;

10: end if
11: end for
12: return hMaxS um, bo, soi;

We conclude this section by noticing that the proposed algorithm executes three passes over the
array D, rather than the single pass of Algorithm 2.3. It is not di�cult to turn this algorithm to
make one-pass too. It su�ces to deploy the associativity of the min/max functions, and use two
variables that inductively keep the values of P[s] and M[s � 1] as the array D is scanned from left
to right. Algorithm 2.4 implements this idea by using the variable TmpSum to store P[s] and the
variable MinTmpSum to store M[s � 1]. This way the formula maxs(P[s] � M[s � 1]) is evaluated
incrementally for s = 1, . . . , n, thus avoiding the two passes for pre-calculating the arrays P and
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M and the extra-space needed to store them. One pass over D is then enough, and so we have re-
established the nice algorithmic properties of Algorithm 2.3 but with a completely di↵erent design!

2.5 Few interesting variants1

As we promised at the beginning of this lecture, we discuss now few interesting variants of the
maximum sub-array sum problem. For further algorithmic details and formulations we refer the
interested reader to [1, 2]. Note that this is a challenging section, because it proposes an algorithm
whose design and analysis are sophisticated!

Sometimes in the bio-informatics literature the term “sub-array” is substituted by “segment”, and
the problem takes the name of “maximum-sum segment problem”. In the bio-context the goal is to
identify segments which occur inside DNA sequences (i.e. strings of four letters A, T, G, C) and
are rich of G or C nucleotides. Biologists believe that these segments are biologically significant
since they predominantly contain genes. The mapping from DNA sequences to arrays of numbers,
and thus to our problem abstraction, can be obtained in several ways depending on the objective
function that models the GC-richness of a segment. Two interesting mappings are the following
ones:

• Assign a penalty �p to the nucleotides A and T of the sequence, and a reward 1� p to the
nucleotides C and G. Given this assignment, the sum of a segment of length l containing
x occurrences of C+G is equal to x � p ⇥ l. Biologists think that this function is a
good measure for the CG-richness of that segment. Interestingly enough, all algorithms
described in the previous sections can be used to identify the CG-rich segments of a
DNA sequence in linear time, according to this objective function. Often, however,
biologists prefer to define a cuto↵ range on the length of the segments for which the
maximum sum must be searched, in order to avoid the reporting of extremely short or
extremely long segments. In this new scenario the algorithms of the previous sections
cannot be applied, but yet linear-time optimal solutions are known for them (see e.g.
[2]).
• Assign a value 0 to the nucleotides A and T of the sequence, and a value 1 to the nu-

cleotides C and G. Given this assignment, the density of C+G nucleotides in a segment
of length l containing x occurrences of C and G is x/l. Clearly 0  x/l  1 and every
single occurrence of a nucleotide C or G provides a segment with maximum density
1. Biologists consider this as an interesting measure of CG-richness for a segment,
provided that a cuto↵ range on the length of the searched segments is imposed. This
problem is more di�cult than the one stated in the previous item, nevertheless it posses
optimal (quasi-)linear time solutions which are much sophisticated and for which we
refer the interested reader to the pertinent bibliography (e.g. [1, 3, 5]).

These examples are useful to highlight a dangerous trap that often occurs when abstracting a real
problem: apparently small changes in the problem formulation lead to big jumps in the complexity
of designing e�cient algorithms for them. Think for example to the density function above, we
needed to introduce a cuto↵ lower-bound to the segment length in order to avoid the trivial solu-
tion consisting of single nucleotides C or G! With this “small” change, the problem results more
challenging and its solutions sophisticated.

Other subtle traps are more di�cult to be discovered. Assume that we decide to circumvent the
single-nucleotide outcome by searching for the the longest segment whose density is larger than
a fixed value d. This is, in some sense, a complementary formulation of the problem stated in the
second item above, because maximization is here on the segment length and a (lower) cut-o↵ is
imposed on the density value. Surprisingly it is possible to reduce this density-based problem to a
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sum-based problem, in the spirit of the one stated in the first item above, and solved in the previous
sections. Algorithmic reductions are often employed by researchers to re-use known solutions and
thus do not re-discover again and again the “hot water”. To prove this reduction it is enough to
notice that:

SumD[x, y]
y � x + 1

=

y
X

k=x

D[k]
y � x + 1

� t ()
y
X

k=x

(D[k] � t) � 0.

Therefore, subtracting to all elements in D the density-threshold t, we can turn the problem stated
in the second item above into the one that asks for the longest segment that has sum larger or
equal than 0. Be careful that if you change the request from the longest segment to the shortest
one whose density is larger than a threshold t, then the problem becomes trivial again: Just take the
single occurrence of a nucleotide C or G. Similarly, if we fix an upper bound S to the segment’s
sum (instead of a lower bound), then we can change the sign to all D’s elements and thus turn the
problem again into a problem with a lower bound t = �S . So let us stick on the following general
formulation:

Problem. Given an array D[1, n] of positive and negative numbers, we want to find the
longest segment in D whose sum of its elements is larger or equal than a fixed threshold t.

We notice that this formulation is in some sense a complement of the one given in the first item
above. Here we maximize the segment length and pose a lower-bound to the sum of its elements;
there, we maximized the sum of the segment provided that its length was within a given range. It
is nice to observe that the structure of the algorithmic solution for both problems is similar, so we
detail only the former one and refer the reader to the literature for the latter.

The algorithm proceeds inductively by assuming that, at step i = 1, 2, . . . , n, it has computed
the longest sub-array having sum larger than t and occurring within D[1, i � 1]. Let us denote the
solution available at the beginning of step i with D[li�1, ri�1]. Initially we have i = 1 and thus the
inductive solution is the empty one, hence having length equal to 0. To move from step i to step
i + 1, we need to compute D[li, ri] by possibly taking advantage of the currently known solution.

It is clear that the new segment is either inside D[1, i � 1] (namely ri < i) or it ends at position
D[i] (namely ri = i). The former case admits as solution the one of the previous iteration, namely
D[li�1, ri�1], and so nothing has to be done: just set ri = ri�1 and li = li�1. The latter case is more
involved and requires the use of some special data structures and a tricky analysis to show that the
total complexity of the solution proposed is O(n) in space and time, thus turning to be optimal!

We start by making a simple, yet e↵ective, observation:

FACT 2.1

If ri = i then the segment D[li, ri] must be strictly longer than the segment D[li�1, ri�1]. This
means in particular that li occurs to the left of position Li = i � (ri�1 � li�1).

The proof of this fact follows immediately by the observation that, if ri = i, then the current step
i has found a segment that improves the previously known one. Here “improved” means “longer”
because the other constraint imposed by the problem formulation is boolean since it refers to a
lower-bound on the segment’s sum. This is the reason why we can discard all positions within the
range [Li, i], in fact they originate intervals of length shorter or equal than the previous solution
D[li�1, ri�1].

Reformulated Problem. Given an array D[1, n] of positive and negative numbers, we
want to find at every step the smallest index li 2 [1, Li) such that SumD[li, i] � t.



2-10 Paolo Ferragina

We point out that there could be many such indexes li, here we wish to find the smallest one
because we aim at determining the longest segment.

At this point it is useful to recall that SumD[li, i] can be re-written in terms of prefix-sums of
array D, namely SumD[1, i] � SumD[1, li � 1] = P[i] � P[li � 1] where the array P was introduced
in Section 2.4. So we need to find the smallest index li 2 [1, Li) such that P[i] � P[li � 1] � t. The
array P can be pre-computed in linear time and space.

It is worth to observe that the computation of li could be done by scanning P[1, Li � 1] and
searching for the leftmost index x such that P[i] � P[x] � t. We could then set li = x + 1 and have
been done. Unfortunately, this is ine�cient because it leads to scan over and over again the same
positions of P as i increases, thus leading to a quadratic-time algorithm! Since we aim for a linear-
time algorithm, we need to spend constant time “on average” per step i. We used the quotes because
there is no stochastic argument here to compute the average, we wish only to capture syntactically
the idea that, since we want to spend O(n) time in total, our algorithm has to take constant time
amortized per steps. In order to achieve this performance we first need to show that we can avoid
the scanning of the whole prefix P[1, Li � 1] by identifying a subset of candidate positions for x.
Call Ci, j the candidate positions for iteration i, where j = 0, 1, . . .. They are defined as follows:
Ci,0 = Li (it is a dummy value), and Ci, j is defined inductively as the leftmost minimum of the sub-
array P[1,Ci, j�1 � 1] (i.e. the sub-array to the left of the current minimum and/or to the left of Li).
We denote by c(i) the number of these candidate positions for the step i, where clearly c(i)  Li
(equality holds when P[1, Li] is decreasing).

For an illustrative example look at Figure 2.2, where c(i) = 3 and the candidate positions are
connected via leftward arrows.

FIGURE 2.2: An illustrative example for the candidate positions Ci, j, given an array P of prefix
sums. The picture is generic and reports only Li for simplicity.

Looking at Figure 2.2 we derive three key properties whose proof is left to the reader because it
immediately comes from the definition of Ci, j:

Property a. The sequence of candidate positions Ci, j occurs within [1, Li) and moves leftward,
namely Ci, j < Ci, j�1 < . . . < Ci,1 < Ci,0 = Li.

Property b. At each iteration i, the sequence of candidate values P[Ci, j] is increasing with j =
1, 2, . . . , c(i). More precisely, we have P[Ci, j] > P[Ci, j�1] > . . . > P[Ci,1] where the indices move
leftward according to Property (a).

Property c. The value P[Ci, j] is smaller than any other value on its left in P, because it is the
leftmost minimum of the prefix P[1,Ci, j�1 � 1].

It is crucial now to show that the index we are searching for, namely li, can be derived by looking
only at these candidate positions. In particular we can prove the following:
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FACT 2.2
At each iteration i, the largest index j⇤ such that SumD[Ci, j⇤ + 1, i] � t (if any) provides us with

the longest segment we are searching for.

By Fact 2.1 we are interested in segments having the form D[li, i] with li < Li, and by properties
of prefix-sums, we know that SumD[Ci, j + 1, i] can be re-written as P[i] � P[Ci, j]. Given this and
Property (c), we can conclude that all segments D[z, i], with z < Ci, j, have a sum smaller than
SumD[Ci, j +1, i]. Consequently, if we find that SumD[Ci, j +1, i] < t for some j, then we can discard
all positions z to the left of Ci, j + 1 in the search for li. Therefore the index j⇤ characterized in
Fact 2.2 is the one giving correctly li = Ci, j⇤ + 1.

There are two main problems in deploying the candidate positions for the e�cient computation of
li: (1) How do we compute the Ci, js as i increases, (2) How do we search for the index j⇤. To address
issue (1) we notice that the computation of Ci, j depends only on the position of the previous Ci, j�1
and not on the indices i or j. So we can define an auxiliary array LMin[1, n] such that LMin[i] is the
leftmost position of the minimum within P[1, i � 1]. It is not di�cult to see that Ci,1 = LMin[Li],
and that according to the definition of C it is Ci,2 = LMin[ LMin[Li] ] = LMin2[Li]. In general, it is
Ci,k = LMink[Li]. This allows an incremental computation:

LMin[x] =

8

>

>

>

<

>

>

>

:

0 if x = 0
x � 1 if P[x � 1] < P[ LMin[x � 1] ]
LMin[x � 1] otherwise

The formula above has an easy explanation. We know inductively LMin[x � 1] as the leftmost
minimum in the array P[1, x � 2]: initially we set LMin[0] to the dummy value 0. To compute
LMin[x] we need to determine the leftmost minimum in P[1, x � 1]: this is located either in x � 1
(with value P[x � 1]) or it is the one determined for P[1, x � 2] of position LMin[x � 1] (with value
P[LMin[x � 1]]). Therefore, by comparing these two values we can compute LMin[x] in constant
time. Hence the computation of all candidate positions LMin[1, n] takes O(n) time.

We are left with the problem of determining j⇤ e�ciently. We will not be able to compute j⇤ in
constant time at each iteration i but we will show that, if at step i we execute si > 1 steps, then we are
advancing in the construction of the longest solution. Specifically, we are extending the length of
that solution by⇥(si) units. Given that the longest segment cannot be longer than n, the sum of these
extra-costs cannot be larger than O(n), and thus we are done! This is called amortized argument
because we are, in some sense, charging the cost of the expensive iterations to the cheapest ones.
The computation of j⇤ at iteration i requires the check of the positions LMink[Li] for k = 1, 2, . . .
until the condition in Fact 2.2 is satisfied; in fact, we know that all the other j > j⇤ do not satisfy
Fact 2.2. This search takes j⇤ steps and finds a new segment whose length is increased by at least
j⇤ units, given Property (a) above. This means that either an iteration i takes constant time, because
the check fails immediately at LMin[Li] (so the current solution is not better than the one computed
at the previous iteration i � 1), or the iteration takes O( j⇤) time but the new segment D[Li, ri] has
been extended by j⇤ units. Since a segment cannot be longer than the entire sequence D[1, n], we
can conclude that the total extra-time cannot be larger than O(n).

We leave to the diligent reader to work out the details of the pseudo-code of this algorithm, the
techniques underlying its elegant design and analysis should be clear enough to approach it without
any di�culties.
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