
Random Sampling 

Chapter 3 



Randomized algorithm 
•  An algorithm is called randomized if its behavior is 

determined not only by its input but also by the values 
produced by a random-number generator. (Cormen et 
al.) 

•  Example: Randomized QuickSort 

A (pseudo) random –number generator is a function 
Random (a,b) randomly generating a number in the range 
[a,b].  



Sampling 

•  Sampling is a general technique for tackling massive 
amount of data. 

•  Example: To compute the median packet size of 
some IP packets, we could just sample some and use 
the median of the sample as an estimate for the 
true median. Statistical arguments relate the size 
of the sample to the accuracy of the estimate.  



Random Sampling problem 
•  Problem: Given a sequence of item S = (i1, i2, …, in) and a 

positive integer m ≤ n, the goal is to select a subset of 
m items uniformly at random. 
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Random Sampling problem 
•  Problem: Given a sequence of item S = (i1, i2, …, in) and a 

positive integer m ≤ n, the goal is to select a subset of 
m items uniformly at random. 

•  Uniformity: any item in S has to be sampled with 
probability 1/n. 

 
In the 2-level model, we assume n>M (the size of 
memory), hence the input size n is known a priori and 
occupies n/B pages. 
 



2-level model and known sequence length 
S[1,n] is a file on disks. Size n is known.  
S cannot be modified 
Algorithm 1 
1.  Initialize S’[1,n] = S[1,n]; 
2.  For s=0,1, …, m-1 do { 
3.      p = Random(1, n-s);  
4.   select the item (pointed by) S’[p]; 
5   swap S’[p] and S’[n-s] ; 
} 
Because of the swap (instruction 5) S’[1, n -s] contains at  
Each iteration the items not jet selected.  
(S’ can be an array of pointers to S’s items). Result in S[n-m+1, n] 
 
In any case too much space Θ(nlogn) 
and time  Θ(m)  and Θ(m)  I/O’s operations. 



2-level model and known sequence length 

S[1,n] is a file on disk. Size n is known.  
S cannot be modified 
Algorithm 2 
1.  Initialize dictionary D = ø 
2. While |D| < m do { 
3.      p = Random(1, n);  
5   If p is not in  D insert it; 
} 
Extra space Ο(m). 
time  Ο(m)  average time: D implemented as hash table 
I/O’s operations: min(m, n/B)). 



2-level model and known sequence length 

Algorithm 2 
Extra space Ο(m) 
average time Ο(m) : D implemented as hash table the 
cost of searching, inserting is constant in average. 
The cost of re-sampling is also constant in average: 
The probability of extracting an already sampled 
element is |D|/n ≤ m/n < ½. 
We can assume m < n/2, otherwise we can consider the 
complement problem that selects the items not in D. 
I/O’s operations: min(m, n/B) since D contains the 
positions and not the real items that must be collected 
from S. 



2-level model and known sequence length 

Substituting the hash table with a balanced search tree  
changes the time to O(mlogm) worst case. 
All the rest is unchanged but at the end D is sorted and 
this can help. 
 
Last solution avoids the dictionary and uses sorting as 
basic block. 
(for instance quick-sort built in any programming 
language) 
 



2-level model and known sequence length 

Algorithm 3 
1.  D = ø 
2. While ( |D| < m do ) { 
3.      X = randomly select m positions from [1,n]; 
4.      Sort X and eliminate duplicates; 
5.      Set D as the resulting  X;	


6.  } 
How many times is repeated the while?  
Depends on the number of duplicates. 
Compute the probability to do just 1 iteration. 
 



2-level model and known sequence length 

Birthday problem: 
How many people we must have in the same room in 
order to have a probability larger than ½ that at 
least 2 of them have the same birthday? 
Here:    people=items     birthday=position in S 
                    same birthday=duplicate 
 
Compute the probability of the event: 
A duplicate among m randomly chosen items does 
not occur ( m people does not have the some 
birthday). 
 



2-level model and known sequence length 
Probability that a duplicate among m randomly 
chosen items does not occur: 
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  the probability of a duplicate is around 0.4 
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2-level model and known sequence length 

Algorithm 3 
Extra space Ο(m) 
An average constant number of sorting steps:  
O(mlogm) average time if m< M. (otherwise an external 
memory sorted must be employed). 
 
I/O’s operations: min(m, n/B) 
For Sorting can be used also Bucket Sort. The M 
elements are random integers in [1,n]. We use m slots of 
n/m elements. Item ij is stored in bucket jm/n . Each 
bucket contains O(1) items in average since the m items 
are uniformly sampled. 
So we have  average time: O(m). 
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Data Stream Model 
•  Stream: m elements form universe of size n, e. g., 
 

(x1, x2, …, xm) = 3,5,3,7,5,4, … 
•  Goal:  Compute a function of stream, e.g. the median, 

number of distinct elements, longest increasing 
sequence. 

•  Features 
1.  Limited working memory, sublinear in n and m 
2.  Access data sequentially 
3.  Process each data quickly 

Origins in the 70s but become popular in the last 10 years 
because of growing theory and very applicable. 



Why’s it become popular? 
•  Practical Appeal: 
•  Faster networks, cheaper data storage, ubiquitous 

data logging result in massive data to be processed. 
•  Applications to network monitoring, query planning, 

I/O efficiency for massive data, sensor networks 
aggregation…. 

•  Theoretical Appeal: 
•  Easy to state problems but hard to solve. 
•  Links to communication complexity, compressed 

sensing, embeddings, pseudo-random generators, 
approximation… 



Streaming model and known sequence 
length 

•  No pre-processing is possible 
•  Every item is considered once, so the algorithm must 

immediately decide whether or not include the item in 
the set. 

•  Algorithms are simple but the probabilistic analysis 
more involved. 

•  Why is different from the disk model? 
    The Alg. must decide immediately whether or not the 
     item must be included or not in the solution. 
•  We want 

–  A uniform sample from range [1,n] 
–  the sample size equal to m 



Streaming model and known sequence 
length 

•  Consider first the case m=1 (select one item from S) 

•  The alg. selects S[j] with probability P(j) properly  
   defined: P(1)=1/n, P(2)= 1/(n-1), P(3)= 1/(n-2), ecc. ecc. 

•  Item j is selected with probability P(j) =1/(n-j+1); 

•  If it occurs it stops. Eventually item n is selected 
with prob. 1 

How to draw an item with probability p? Draw a random 
real r in [0,1] and then compare it against p. If r≤p 
select the item.  



Streaming model and known sequence 
length 

•  The condition m=1 is guaranteed 
•  We must show that the probability of sampling S[j] is  
    1/n independently of j: 
•  n-j+1 is the number of the remaining elements in the  
    sequence and every one of them must be sampled  
    uniformely .  
•  By induction. 
•  The first j-1 items have probability 1/n each 
    to be sampled then the probability of not sampling  

 anyone of them is 1-(j-1)/n. It results that the  
     probability to sample ij is  
                   

     1-(j-1)/n x 1/(n-j+1)=1/n 



Streaming model and known sequence 
length 

Case m ≥ 1 
Algorithm 4 
1.  s = 0; 
2.  for ( j=1; j≤n; j++) { 
3.      p = Random [0,1]; 
4.      if (p ≤ m-s/(n-j+1)) { 
5.              select S[j]; 
6.               s++ 
7.          } 
8.  } 
	


P(j) is now set to m-s/(n-j+1), s is number of elements 
already selected before S[j].  
 



Streaming model and known sequence 
length 

	

P(j) is now set to m-s/(n-j+1), s is number of elements  
             already selected before S[j].  
	

	



      P(j) is formulated in this way because equals the probability P that   
            S[j] is included in a random sample of size m-s taken from S[j,n]   
             of n-j+1 items. 
 

 P=   number of ways of selecting m-s elements including S[j] * 

                         all ways of selecting m-s elements 
  n-j 
   m-s-1                                                 b 
_______  = m-s                       recall    a    =  b! 
    n-j+1        n-j+1                                          a! (b-a)! 
     m-s 
 
•  number of ways of selecting m-s elements including S[j] equals the number of waysof m-

s-1 items taken from S[j+1,n] of n-j items with item S[j]. 

 



Streaming model and known sequence 
length 

Algorithm 4 takes O(n/B) I/Os into 2-level model 
O(n) time, n random samples (random generation)  
O(m) space. 
 
The space is needed to store the m sampled items, 
since the stream flows away. 
 
It is possible solve the problem with only  m<n random  
samples! 
Idea : generate random jumps instead of indices.  
(How many elements to skip over before selecting the next item).  
Simple algorithm : exponential complexity 
Complex algorithm: linear time  



Streaming model and unknown sequence 
length 

N unknown ; different strategies 
First solution: Heap H of size m and a number generator  
RANDOM (0,1); H is a min-heap containing the items with max r  
values 
 
Algorithm5 
1.  Initialize the heap H with m dummy pairs (-∞, 0); 
2.  for each item S[j] { 
3.      rj = Random (0,1); 
4.      m = minimum key in H; 
5.      if (rj > m) { 
5.             extract from H the minimum key; 
6.             Insert (rj, S[j])  in H; 
7.          } 
8.  } 
9.  Return H; 
	


 



Streaming model and unknown sequence 
length 

Algorithm 5 associates a random key to each item and  
maintains in the heap the top key m items 
 
Takes O(1) to detect min H. O(logm) to extract and  
Insert in H, 
 
Algorithm 5 takes O(n/B) I/Os, O(nlogm) time, generates 
n random number and O(m) space. 
 
The next solution is the so called reservoir sampling (Knuth  
1997),  better than Algorithm 5 both in time and space.  
 
Reservoir array R[1,m] to keep the candidate sample.  
At each step: 
•    S[j] is included in R with prob.P(j) =m/j  
•    an item at random is kicked out  from R with prob.  
      1/m 
 
 
 

	


 



Streaming model and unknown sequence 
length 

Algorithm 6:   Reservoir Sampling 
1.  Initialize array R[1,m] = S[1,m]; 
2.  for each next item S[j] { 
3.      h = Random (1,j); 
4.     if (h ≤ m) { 
5.          set R[h] =S[j]; 
6.      } 
7.  } 
8.  Return  R; 
 
Since h is chosen between 1 and j the prob. that h is ≤ m 
is m/j what we wished to set for P(j). 
	


 



Streaming model and unknown sequence 
length 

Analysis Reservoir Sampling 
 
Since h is chosen between 1 and j, the prob. ( h ≤ m) = 
m/j    as we wished to set for P(j). 
If S[j] is chosen, an item is kicked out from R with  
prob=1/m since the item is selected at random. 
 
Theorem:The m selected items are drawn uniformly at  
Random from S, that is with prob. m/n. 
 
Proof. By induction. 
Base: n=m hence every item must be selected with prob  
m/m=1. This is true by step 1 of the algorithm. 
  
	


 



Streaming model and unknown sequence 
length Analysis Reservoir Sampling 

 
Inductive step: n>m ;           n-1          n 
1.  True for S[n]: this item is inserted in R  with prob. m/n  (step 4 of 

alg.). 

2.  Consider the selection of the items S[1,…,n-1]. Any item  
      has prob  m/(n-1) to be selected by inductive hypothesis.  
      It stays in R if 
             - S[n] is selected and the item it is not kicked out. 

  - S[n] is not selected or  
 
      S[n] is not selected with prob 1-m/n. Hence  
               m xm-1+1-m  = n-1 
               n     m      n       n 
3.  Overall an item belongs to R iff 
 

  -  it was in R at step n-1 
  -     it was not kicked out at step n  

                   m/(n-1) x n-1/n  =m/n  



Streaming model and unknown sequence 
length 

Analysis Reservoir Sampling 
 
Algorithm 6 takes O(n/B) I/Os, O(n) time, n random  
number and exactly m space. 
 
Hence it is time, space and I/Os optimal for the stream  
model of computation 
 
 
 
 


