
3
Random Sampling

“So much of life, it seems to me,
is determined by pure
randomness.”
Sidney Poitier

3.1 Disk model and known sequence length 3-1
3.2 Streaming model and known sequence length 3-4
3.3 Streaming model and unknown sequence length . . 3-6

This lecture attacks a simple-to-state problem which is the backbone of many randomized algo-

rithms, and admits solutions which are algorithmically challenging to design and analyze.

Problem. Given a sequence of items S = (i1, i2, . . . , in) and a positive integer m ≤ n, the

goal is to select a subset of m items from S uniformly at random.

Uniformity here means that any item in S has to be sampled with probability 1/n. Items can be

numbers, strings or general objects either stored in a file located on disk or streaming through a

channel. In the former scenario, the input size n is known and items occupy n/B pages, in the

latter scenario, the input size may be even unknown yet the uniformity of the sampling process

must be guaranteed. In this lecture we will address both scenarios aiming at efficiency in terms of

I/Os, extra-space required for the computation (in addition to the input), and amount of randomness

deployed (expressed as number of randomly generated integers). Hereafter, we will make use of a

built-in procedure Rand(a,b) that randomly selects a number within the range [a, b]. The number,

being either real or integer, will be clear from the context. The design of a good Rand-function

is a challenging task, however we will not go into its details because we wish to concentrate in

this lecture on the sampling process rather than on the generation of random numbers; though, the

interested reader can refer to the wide literature about (pseudo-)random number generators.

Finally we notice that it is desirable to have the positions of the sampled items in sorted order

because this speeds up their extraction from S both in the disk setting (less seek time) and in the

stream-based setting (less passes over the data). Moreover it reduces the working space because it

allows to extract the items efficiently via a scan, rather than using an auxiliary array of pointers to

items. We do not want to detail further the sorting issue here, which gets complicated whenever

m > M and thus these positions cannot fit into internal memory. In this case we need a disk-based

sorter, which is indeed an advanced topic of a subsequent lecture. If instead m ≤ M we could deploy

the fact that positions are integers in a fixed range and thus use radix sort or any other faster routine

available in the literature.

3.1 Disk model and known sequence length

We start by assuming that the input size n is known and that S [1, n] is stored in a file on disk which

cannot be modified because it may be the input of a more complicated problem that includes the

c© Paolo Ferragina, 2009-2012 3-1

3-2 Paolo Ferragina

current one as a sub-task. The first algorithm we propose is very simple, and allows us to arise some

issues that will be attacked in the subsequent solutions.

Algorithm 3.1 Drawing from all un-sampled positions

1: Initialize the auxiliary array S ′[1, n] = S [1, n];

2: for s = 0, 1, . . . ,m − 1 do

3: p = Rand(1, n − s);

4: select the item (pointed by) S ′[p];

5: swap S ′[p] with S ′[n − s].

6: end for

At each step the algorithm selects one item from S ′, and replaces it with the last item of that

sequence. This way S ′ contains the items not yet selected, stored contiguously. We point out that

S ′ cannot be a pure copy of S but it must be implemented as an array of pointers to S ’s items. The

reason is that these items may have variable length (e.g. strings) so their retrieval in constant time

could not be obtained via arithmetic operations, as well as the replacement step might be impossible

due to difference in length between the item at S ′[p] and the item at S ′[n − s]. Pointers avoid these

issues but occupy Θ(n log n) bits of space, which might be a non negligible space when n gets large

and might turn out even larger than S if the average length of S ’s objects is shorter than log n.1

Another drawback of this approach is given by its pattern of memory accesses, which acts over

O(n) cells in purely random way, taking Θ(m) I/Os. This may be slow when m ≈ n, so in this case

we would like to obtain O(n/B) I/Os which is the cost of scanning the whole S .

Let us attack these issues by proposing a series of algorithms that incrementally improve the

I/Os and the space resources of the previous solution, up to the final result that will achieve O(m)

extra space, O(m) average time and O(min{m, n/B}) I/Os. We start by observing that the swap of

the items in Step 5 of Algorithm 3.1 guarantees that every step generates one distinct item, but

forces to duplicate S and need Ω(m) I/Os whichever is the value of m. The following Algorithm

3.2 improves the I/O- and space-complexities by avoiding the item-swapping via the use of an

auxiliary data structure that keeps track of the selected positions in sorted order and needs only

O(m) space.

Algorithm 3.2 Dictionary of sampled positions

1: Initialize the dictionary D = ∅;

2: while (|D| < m) do

3: p = Rand(1, n);

4: if p < D insert it;

5: end while

Algorithm 3.2 stops when D contains m (distinct) integers which constitute the positions of

the items to be sampled. According to our observation made at the beginning of the lecture, D
may be sorted before S is accessed on disk to reduce the seek time. In any case, the efficiency of

1This may occur only if S contains duplicate items, otherwise a classic combinatorial argument applies.

Random Sampling 3-3

the algorithm mainly depends on the implementation of the dictionary D, which allows to detect

the presence of duplicate items. The literature offers many data structures that efficiently support

membership and insert operations, based either on hashing or on trees. Here we consider only an

hash-based solution which consists of implementing D via a hash table of size Θ(m) with collisions

managed via chaining and a universal hash function for table access [1]. This way each membership

query and insertion operation over D takes O(1) time on average (the load factor of this table is

O(1)), and total space O(m). Time complexity could be forced to be worst case by using more

sophisticated data structures, such as dynamic perfect hashing, but the final time bounds would

always be in expectation because of the underlying re-sampling process.

However this algorithm may generate duplicate positions, which must be discarded and re-

sampled. Controlling the cost of the re-sampling process is the main drawback of this approach,

but this induces a constant-factor slowdown on average, thus making this solution much appealing

in practice. In fact, the probability of having extracted an item already present in D is |D|/n ≤
m/n < 1/2 because, without loss of generality, we can assume that m < n/2 otherwise we can solve

the complement of the current problem and thus randomly select the positions of the items that are

not sampled from S . So we need an average of O(1) re-samplings in order to obtain a new item for

D, and thus advancing in our selection process. Overall we have proved the following:

FACT 3.1 Algorithm 3.2 based on hashing with chaining requires O(m) average time and

takes O(m) additional space to select uniformly at random m positions in [1, n]. The average de-

pends both on the use of hashing and the cost of re-sampling. An additional sorting-cost is needed

if we wish to extract the sampled items of S in a streaming-like fashion. In this case the overall

sampling process takes O(min{m, n/B}) I/Os.

If we substitute hashing with a (balanced) search tree and assume to work in the RAM model

(hence we assume m < M), then we can avoid the sorting step by performing an in-visit of the

search tree in O(m) time. However, Algorithm 3.2 would still require O(m log m) time because

each insertion/membership operation would take O(log m) time. We could do better by deploying

an integer-based dictionary data structure, such as a van Emde-Boas tree, and thus take O(log log n)

time for each dictionary operation. The two bounds would be incomparable, depending on the

relative magnitudes of m and n. Many other trade-offs are possible by changing the underlying

dictionary data structure, so we leave to the reader this exercise.

The next step is to avoid a dictionary data structure and use sorting as a basic block of our

solution. This could be particularly useful in practice because comparison-based sorters, such as

qsort, are built-in in many programming languages. The following analysis will have also another

side-effect which consists of providing a more clean evaluation of the average time performance of

Algorithm 3.2, rather than just saying re-sample each item at most O(1) times on average.

Algorithm 3.3 Sorting

1: D = ∅;

2: while (|D| < m) do

3: X = randomly draw m positions from [1, n];

4: Sort X and eliminate the duplicates;

5: Set D as the resulting X;

6: end while

The cost of Algorithm 3.3 depends on the number of times the sorting step is repeated and thus

3-4 Paolo Ferragina

do exist duplicates in the sampled items. We argue that a small number of re-samplings is needed.

So let us compute the probability that Algorithm 3.3 executes just one iteration: this means that

the m sampled items are all distinct. This analysis is well known in the literature and goes under the

name of birthday problem: how many people do we need in a room in order to have a probability

larger than 1/2 that at least two of them have the same birthday. In our context we have that people

= items and birthday = position in S . By mimicking the analysis done for the birthday problem, we

can estimate the probability that a duplicate among m randomly-drawn items does not occur as:

m!
(

n

m

)

nm
=

n(n − 1)(n − 2) · · · (n − m + 1)

nm
= 1 × (1 − 1

n
) × (1 − 2

n
) × · · · (1 − m − 1

n
)

Given that ex ≥ 1 + x, we can upper bound the above formula as:

e0 × e−1/n × e−2/n × · · · e−(m−1)/n = e−(1+2+···+(m−1))/n = e−m(m−1)/2n

So the probability that a duplicate does not occur is at most e−m(m−1)/2n and, in the case of the

birthday paradox in which n = 365, this is slightly smaller than one-half already for m = 23.

In general we have that m =
√

n elements suffices to make the probability of a duplicate at least

1 − 1√
e
≈ 0.4, thus making our algorithm need re-sampling. On the positive side, we notice that if

m �
√

n then ex can be well approximated with 1+ x, so e−m(m−1)/2n is not only an upper-bound but

also a reasonable estimate of the collision probability and it could be used to estimate the number

of re-samplings needed to complete Algorithm 3.3.

FACT 3.2 Algorithm 3.3 requires a constant number of sorting steps on average, and O(m)

additional space, to select uniformly at random m items from the sequence S [1, n]. This is O(m log m)

average time and min {m, n/B} worst-case I/Os if m ≤ M is small enough to keep the sampled posi-

tions in internal memory. Otherwise an external-memory sorter is needed. The average depends on

the re-sampling, integers are returned in sorted order for streaming-like access to the sequence S .

Sorting could be speeded up by deploying the specialty of our problem, namely, that items to be

sorted are m random integers in a fixed range [1, n]. Hence we could use either radix-sort or, even

better for its simplicity, bucket sort. In the latter case, we can use an array of m slots each identifying

a range of n/m positions in [1, n]. If item i j is randomly selected, then it is inserted in slot b jn/mc.
Since the m items are randomly sampled, each slot will contain O(1) items on average, so that we

can sort them in constant time per bucket by using insertion sort or the built-in qsort.

FACT 3.3 Algorithm 3.3 based on bucket-sort requires O(m) average time and O(m) addi-

tional space, whenever m ≤ M. The average depends on the re-sampling. Integers are returned in

sorted order for streaming-like access to the sequence S .

We conclude this section by noticing that all the proposed algorithms, except Algorithm 3.1,

generate the set of sampled positions using O(m) space. If m ≤ M the random generation can occur

within main memory without incurring in any I/Os. Sometimes this is useful because the random-

ized algorithm that invokes the random-sampling subroutine does not need the corresponding items,

but rather their positions.

3.2 Streaming model and known sequence length

We next turn to the case in which S is flowing through a channel and the input size n is known

and big (e.g. Internet traffic or query logs). We will turn to the more general case in which n

Random Sampling 3-5

is unknown at the end of the lecture, in the next section. This stream-based model imposes that

no preprocessing is possible (as instead done above where items’ positions were re-sampled and/or

sorted), every item of S is considered once and the algorithm must immediately and irrevocably take

a decision whether or not that item must be included or not in the set of sampled items. Possibly

future items may kick out that one from the sampled set, but no item can be re-considered again in

the future. Even in this case the algorithms are simple in their design but their probabilistic analysis

is a little bit more involved than before. The algorithms of the previous section offer an average

time complexity because they are faced with the re-sampling problem: possibly some samples have

to be eliminated because duplicated. In order to avoid re-sampling, we need to ensure that each

item is not considered more than once. So the algorithms that follow implement this idea in the

simplest possible way, namely, they scan the input sequence S and consider each item once for all.

This approach brings with itself two main difficulties which are related with the guarantee of both

conditions: uniform sample from the range [1, n] and sample of size m.

We start by designing an algorithm that draws just one item from S (hence m = 1), and then

we generalize it to the case of a subset of m > 1 items. This algorithm proceeds by selecting the

item S [j] with probability P(j) which is properly defined in order to guarantee both two properties

above.2 In particular we setP(1) = 1/n, P(2) = 1/(n−1), P(3) = 1/(n−2) etc. etc., so the algorithm

selects the item j with probability P(j) = 1
n− j+1

, and if this occurs it stops. Eventually item S [n]

is selected because its drawing probability is P(n) = 1. So the proposed algorithm guarantees the

condition on the sample size m = 1, but more subtle is to prove that the probability of sampling

S [j] is 1/n, independently of j, given that we defined P(j) = 1/(n − j + 1). The reason derives

from a simple probabilistic argument because n − j + 1 is the number of remaining elements in the

sequence and all of them have to be drawn uniformly at random. By induction, items i1, i2, . . . , i j−1

have probability to be sampled 1/n; so it is 1 − j−1

n
the probability of not selecting anyone of them.

As a result, the probability to sample i j is (1 − j−1

n
) × 1

n− j+1
= 1/n.

Algorithm 3.4 Scanning and selecting

1: s = 0;

2: for (j = 1; j ≤ n; j++) do

3: p = Rand(0, 1);

4: if (p ≤ m−s
n− j+1

) then

5: select S [j];

6: s++;

7: end if

8: end for

Algorithm 3.4 works for an arbitrarily large sample m ≥ 1. The difference with the previous

algorithm lies in the probability of sampling S [j] which is now set to P(j) = m−s
n− j+1

where s is

the number of items already selected before S [j]. Notice that if we already got all samples, it is

s = m and thus P(j) = 0, which correctly means that Algorithm 3.4 does not generate more

than m samples. On the other hand, it is easy to convince ourselves that Algorithm 3.4 cannot

generate less than m items, say y, given that the last m − y items of S would have probability 1 to

2In order to draw an item with probability p, it suffices to draw a random real r ∈ [0, 1] and then compare it against p. If

r ≤ p then the item is selected, otherwise it is not.

3-6 Paolo Ferragina

be selected and thus they would be surely included in the final sample (according to Step 4). As far

as the uniformity of the sample is concerned, we show that P(j) equals the probability that S [j] is

included in a random sample of size m given that s samples lie within S [1, j − 1]. We can rephrase

this as the probability that S [j] is included in a random sample of size m− s taken from S [j, n], and

thus from n − j + 1 items. This probability is obtained by counting how many such combinations

include S [j], i.e.
(

n− j

m−s−1

)

, and dividing by the number of all combinations that include or not S [j],

i.e.
(

n− j+1
m−s

)

. Substituting to
(

b

a

)

= b!
a! (b−a)!

we get the formula for P(j).

FACT 3.4 Algorithm 3.4 takes O(n/B) I/Os, O(n) time, n random samples, and O(m) addi-

tional space to sample uniformly m items from the sequence S [1, n] in a streaming-like way.

We conclude this section by pointing out a sophisticated solution proposed by Jeff Vitter [2] that

reduces the amount of randomly-generated numbers from n to m, and thus speeds up the solution

to O(m) time and I/Os. This solution could be also fit into the framework of the previous section

(random access to input data), and in that case its specialty would be the avoidance of re-sampling.

Its key idea is not to generate random indicators, which specify whether or not an item S [j] has to

be selected, but rather generate random jumps that count the number of items to skip over before

selecting the next item of S . Vitter introduces a random variable G(v,V) where v is the number

of items remaining to be selected, and V is the total number of items left to be examined in S .

According to our previous notation, we have that v = m− s and V = n− j+1. The item S [G(v,V)+1]

is the next one selected to form the uniform sample. It goes without saying that this approach avoids

the generation of duplicate samples, but yet it incurs in an average bound because of the cost of

generating the jumps according to the following distribution:

P(G = g) =

(

V − g − 1

v − 1

)

/

(

V

v

)

In fact the key problem here is that we cannot tabulate (and store) the values of all binomial co-

efficients in advance, because this would need space exponential in V = Θ(n). Surprisingly Vit-

ter solved this problem in O(1) average time, by adapting in an elegant way the von Neumann’s

rejection-acceptance method to the discrete case induced by G’s jumps. We refer the reader to [2]

for further details.

3.3 Streaming model and unknown sequence length

It goes without saying that the knowledge of n was crucial to compute P(j) in Algorithm 3.4. If

n is unknown we need to proceed differently, and indeed the rest of this lecture is dedicated to detail

two possible approaches.

The first one is pretty much simple and deploys a min-heap H of size m plus a real-number

random generator, say Rand(0,1). The key idea underlying this algorithm is to associate a random

key to each item of S and then use the heap H to select the items corresponding to the top-m keys.

The pseudo-code below implements this idea, we notice that H is a min-heap so it takes O(1) time

to detect the minimum key among the current top-m ones. This is the key compared with r j in order

to establish whether or not S [j] must enter the top-m set.

Since the heap has size m, the final sample will consists of m items. Each item takes O(log m)

time to be inserted in the heap. So we have proved the following:

FACT 3.5 Algorithm 3.5 takes O(n/B) I/Os, O(n log m) time, generates n random numbers,

Random Sampling 3-7

Algorithm 3.5 Heap and random keys

1: Initialize the heap H with m dummy pairs 〈−∞, ∅〉;
2: for each item S [j] do

3: r j = Rand(0, 1);

4: m = the minimum key in H ;

5: if (r j > m) then

6: extract the minimum key;

7: insert 〈r j, S [j]〉 in H ;

8: end if

9: end for

10: return H

and uses O(m) additional space to sample uniformly at random m items from the sequence S [1, n]

in a streaming-like way and without the knowledge of n.

We conclude the lecture by introducing the elegant reservoir sampling algorithm, designed by

Knuth in 1997, which improves Algorithm 3.5 both in time and space complexity. The idea is

similar to the one adopted for Algorithm 3.4 and consists of properly defining the probability

with which an item is selected. The key issue here is that we cannot take an irrevocable decision

on S [j] because we do not know how long the sequence S is, so we need some freedom to change

what we have decided so far as the scanning of S goes on.

Algorithm 3.6 Reservoir sampling

1: Initialize array R[1,m] = S [1,m];

2: for each next item S [j] do

3: h = Rand(1, j);

4: if h ≤ m then

5: set R[h] = S [j];

6: end if

7: end for

8: return array R;

The pseudo-code of Algorithm 3.6 uses a “reservoir” array R[1,m] to keep the candidate sam-

ples. Initially R is set to contain the first m items of the input sequence. At any subsequent step j,

the algorithm makes a choice whether S [j] has to be included or not in the current sample. This

choice occurs with probability P(j) = m/ j, in which case some previously selected item has to be

kicked out from R. This item is chosen at random, hence with probability 1/m. This double-choice

is implemented in Algorithm 3.6 by choosing an integer h in the range [1, j], and making the

substitution only if h ≤ m. This event has probability m/ j: exactly what we wished to set for P(j).

For the correctness, it is clear that Algorithm 3.6 selects m items, it is less clear that these items

are drawn uniformly at random from S , which actually means with probability m/n. Let’s see why

by assuming inductively that this property holds for a sequence of length n − 1. The base case in

which n = m is obvious, every item has to be selected with probability m/n = 1, and indeed this is

what Step 1 does by selecting all S [1,m] items. To prove the inductive step (from n − 1 to n items),

we notice that the uniform-sampling property holds for S [n] since by definition that item is inserted

in R with probabilityP(n) = m/n (Step 4). Computing the probability of being sampled for the other

3-8 Paolo Ferragina

items in S [1, n − 1] is more difficult to see. Each of these items has probability m/(n − 1) of being

in the reservoir R, by the inductive hypothesis. This item remains in the reservoir if either S [n] is

not picked (which occurs with probability 1− m
n

) or if it is not kicked out by the picked S [n] (which

occurs with probability m
n
× m−1

m
). Summing up these terms we get that (n − 1)/n is the probability

that an item is not kicked out from the reservoir. Overall an item belongs to the reservoir R at the

n-th step of Algorithm 3.6 iff it was in the reservoir at the (n − 1)-th step and it is not kicked out

at the n-th step: namely, m/(n − 1) × (n − 1)/n = m/n. To understand this formula assume that we

have a reservoir of 1000 items, so the first 1000 items of S are inserted in R by Step 1. Then the

item 1001 is inserted in the reservoir with probability 1000/1001, the item 1002 with probability

1000/1002, and so on. Each time an item is inserted in the reservoir, a random element is kicked

out from it, hence with probability 1/1000. After n steps the reservoir R contains 1000 items, each

sampled from S with probability 1000/n.

FACT 3.6 Algorithm 3.6 takes O(n/B) I/Os, O(n) time, n random numbers, and exactly m

additional space, to sample uniformly at random m items from the sequence S [1, n] in a streaming-

like way and without the knowledge of n. Hence it is time, space and I/O-optimal in this model of

computation.

References

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein. Intro-

duction to Algorithms. Chapter 11: ”Hashing”, The MIT press, third edition, 2009.

[2] Jeffrey Scott Vitter. Faster methods for random sampling. ACM Computing Surveys,

27(7):703–718, 1984.

