
7
Suffix Array Construction

7.1 Notation and terminology . 7-1
7.2 The suffix array . 7-2
7.3 The substring-search problem . 7-3
7.4 Suffix Array Construction Algorithms 7-5

The Skew Algorithm • The GBS Algorithm

7.5 Lcp construction . 7-12

In this lecture we will be interested in solving the following problem, also known as full-text search-

ing.

The substring-search problem. Given a text string T [0, n − 1], drawn from an alphabet

of size σ, retrieve (or just count) all text positions where a query pattern P[0, p− 1] occurs

as a substring of T .

It is evident that this problem can be solved by brute-forcedly comparing P against every substring

of T , thus taking O(np) time in the worst case. But it is equivalently evident that this scan-based

approach is unacceptably slow when applied to massive text collections, which is the scenario in-

vestigated in these lectures, such as genomic databases or search engines. This suggests the usage

of a so called indexing data structure which is built over T before that searches start. A setup cost is

required for this construction, but this cost is amortized over the subsequent pattern searches, thus

resulting convenient in a quasi-static environment in which T is changed very rarely.

The suffix array (shortly SA) is a fundamental data structure proposed in 1989 by Manber and

Myers [6] which solves the substring search problem fast and space succinctly. Typically this data

structure is looked as the space-efficient substitute of the suffix tree data structure. As it will appear

clear from our discussion, the applications of the suffix array go far beyond the context of full-text

search and extend to many other text-mining applications.

7.1 Notation and terminology

We assume that text T ends with a special character T [n − 1] = $, which is smaller than any other

alphabet character. This ensures that text suffixes are prefix-free and thus no one is a prefix of

another. We use suffi to denote the i-th suffix of T , namely the substring T [i, n]. The following

observation is crucial:

If P = T [i, i+ p− 1], then the pattern occurs at text position i and thus we can equivalently

state that P is a prefix of the i-th text suffix, namely it is a prefix of the string suffi.

As an example, if P =“siss” and T =“mississippi$”, then P occurs at text position 3 and indeed

it prefixes the suffix suff3 = T [3, 12] =“sissippi$”.

c© Paolo Ferragina 7-1

7-2 Paolo Ferragina

As a consequence, if all text suffixes form the dictionary SUF(T), then searching for P as a

substring of T boils down to searching for P as a prefix of some string in SUF(T). In addition,

since there is a bijective correspondence Among the text suffixes prefixed by P and the pattern

occurrences in T , then

1. the suffixes prefixed by P occur contiguously into the sorted SUF(T), and

2. P has a lexicographic position in SUF(T) that immediately precedes that block of match-

ing suffixes.

An attentive reader may have noticed that these are the properties deployed in Chapter ?? to

efficiently support prefix searches. And indeed the solutions known in the literature for efficiently

solving the substring-search problem hinge either on array-based data structures (i.e. the Suffix

Array) or on trie-based data structures (i.e. the Suffix Tree). So the use of these data structures

in pattern searching is pretty immediate, and thus we detail it below only for completeness and

for stating some cute improvements. What is challenging is the efficient construction of these data

structures which is definitely not obvious and indeed took almost 20 years to find an elegant and

optimal solution.

Text suffixes Indexes

mississippi$ 1

ississippi$ 2

ssissippi$ 3

sissippi$ 4

issippi$ 5

ssippi$ 6

sippi$ 7

ippi$ 8

ppi$ 9

pi$ 10

i$ 11

$ 12

Sorted Suffixes SA Lcp

$ 12 0

i$ 11 1

ippi$ 8 1

issippi$ 5 4

ississippi$ 2 0

mississippi$ 1 0

pi$ 10 1

ppi$ 9 0

sippi$ 7 2

sissippi$ 4 1

ssippi$ 6 3

ssissippi$ 3 -

FIGURE 7.1: SA and lcp array for the string T =“mississippi$”.

7.2 The suffix array

The suffix array is essentially the lexicographically-sorted permutation of all text suffixes. We use

the notation SA(T) to denote the suffix array built over the text T (or just SA if it is clear from the

context). Because of the lexicographic ordering, SA[i] is the i-th smallest suffix of the text T . So we

have that

suffSA[0] < suffSA[1] < · · · < suffSA[n−1]

where < is the lexicographical order. For space reasons, each suffix is represented by its starting

position in T (i.e. an integer). So SA consists of n integers in the range [0, n − 1] and hence it

occupies O(n log n) bits. With respect to the suffix tree data structure (which stores explicitly the

Suffix Array Construction 7-3

whole tree structure), the suffix array stores less information which, in practice, can be quantified in

a saving of a factor 10 − 30.

Another useful concept is the longest common prefix between two consecutive suffixes suffSA[i]

and suffSA[i+1], denoted as lcp[i]. lcp is an array of integers too, with n− 1 entries and values smaller

than n. There is an optimal linear time algorithm to build the lcp-array [5], which will be detailed

in Section 7.4.1. The interest in Lcp rests in its usefulness to design efficient/optimal algorithms to

solve various pattern matching problems.

7.3 The substring-search problem

We observed that this problem can be reduced to a prefix search over the string dictionary SUF(T).

In Chapter 6 we commented widely about algorithmic solutions to the prefix-search problem. Here

we observe that the suffix array SA(T) can be used to implement the approach based on binary

search, so that if no suffix is found to be prefixed by P, the pattern does not occur in T . Figure 7.1

shows the pseudo-code.

Algorithm 7.1 Search(P, SA(T))

1: L = 0, R = n − 1;

2: while (L , R) do

3: M = (L + R)/2;

4: if (strcmp(P, suffM) > 0) then

5: L = M;

6: else

7: R = M;

8: end if

9: end while

10: return (strcmp(P, suffL) == 0);

A binary search in SA(T) requires O(log n) string comparisons, each taking O(p) time in the worst

case. Thus, the time complexity is O(p log n).

Figure 7.2 shows a running example, which highlights an interesting property: the comparison

between P and suffM does not need to start from their initial character. In fact one could exploit

the lexicographic sorting of the suffixes and skip the characters comparisons that have already been

carried out in previous iterations. This can be done with the help of three arrays:

• the lcp[0, n − 1] array.

• the arrays Llcp[0, n − 1] and Rlcp[0, n − 1] which are defined for every triple (L,M,R)

that may arise in the inner loop of a binary search, as follows:

Llcp[M] = lcp(suffSA[LM], suffSA[M]) Rlcp[M] = lcp(suffSA[M], suffSA[RM])

We notice that each triple (L,M,R) is uniquely identified by its midpoint M because the execution

of a binary search over an array of size n (such as SA) can be described as traversing a downward

path in a binary tree of n leaves. Thus each triple corresponds to a node of this tree, and hence we

have O(n) triples. So these three arrays cost O(n) space.

As far as their building time is concerned, we observe that the lcp array can be built in O(n)

optimal time as described in section 7.5. The arrays Llcp and Rlcp can be also built in linear time

7-4 Paolo Ferragina

=⇒ $

| i$

| ippi$

| issippi$

| ississippi$

| mississippi$

| → pi$

| ppi$

| sippi$

| sissippi$

| ssippi$

=⇒ ssissippi$

Step (1)

$

i$

ippi$

issippi$

ississippi$

mississippi$

pi$

=⇒ ppi$

| sippi$

| → sissippi$

| ssippi$

=⇒ ssissippi$

Step (2)

$

i$

ippi$

issippi$

ississippi$

mississippi$

pi$

ppi$

sippi$

sissippi$

=⇒ ssippi$

=⇒ ssissippi$

Step (3)

$

i$

ippi$

issippi$

ississippi$

mississippi$

pi$

ppi$

sippi$

sissippi$

=⇒ ssippi$

ssissippi$

Step (3)

FIGURE 7.2: Binary search steps for the pattern P =“ssi” in “mississippi$”.

by exploiting the following observation: the lcp(i, j) between two suffixes in suffSA[i] and suffSA[j]

can be computed as the minimum of a range of lcp-values, namely lcp(i, j) = mink=i,..., j−1 lcp[k].

By associativity of the min we can split the computation as lcp(i, j) = min{lcp(i, k), lcp(k, j)} where

k is any index in the range [i, j]. This implies that the arrays Llcp and Rlcp can be computed by a

bottom-up traversal in binary-tree order of the lcp array, taking in each step the minimum lcp values

on the left and right children. This can be performed in O(n) time. Another solution could be to

compute Llcp[M] and Rlcp[M] on-the-fly via a Range-Minimum Data structure built over the array

lcp (see Chapter ??). This would occupy O(n) space and take constant time to report the minimum

value in a given range. Whichever is the approach chosen to compute these three arrays, the overall

construction time is the optimal O(n).

We are left with showing how the binary search can be speeded up by using these arrays. Consider

a binary search iteration on the subarray SA[L,R], and let M be the midpoint of the binary search.

A lexicographic comparison between P and suffSA[M] has to be made in order to choose the next

search-range between SA[L,M − 1] and SA[M + 1,R]. Assume that we know inductively the values

l = |lcp(P, suffSA[L])| and r = |lcp(P, suffSA[R])|. At the beginning they can be computed in O(p) time.

Since P lies between suffSA[L] and suffSA[R], it shares with these suffixes k = |lcp(L,R)| characters.

Since we inductively know the lcp-values between P and the suffixes at the extremes of the range,

namely l and r, we can conclude that l ≥ k and r ≥ k, so for sure m = |lcp(P, suffSA[M])| ≥ k. Starting

from the k-th character of P is not enough to avoid its rescanning, because r and l could be larger

and thus have involved subsequent characters in previous comparisons. Nevertheless, we can be

more precise. In fact, if l = r then all suffixes in the range [L,R] share l characters (hence suffSA[M]

too) and these are equal to the first l characters of P. So the comparison between P and suffSA[M]

can start from their (l + 1)-th character, which means that we are advancing in the scanning of P.

Otherwise (i.e. l , r), a more complicated test has to be done. Consider the case where l > r (the

other being symmetric):

• If l < Llcp[M], then P is greater that suffSA[M] and it is m = l. In fact P > suffSA[L]

and the mismatch lies at position l + 1. But this text suffix shares more than l characters

with suffSA[M]. So the mismatch between P and suffSA[M] is the same as it was with

suffSA[L], hence their comparison gives the same answer— i.e. P > suffSA[M]— and the

search continues in the subrange SA[M,R]. we remark that this case did not induce any

character comparison.

Suffix Array Construction 7-5

• If l > Llcp[M], this case is similar as the one commented above. We can conclude that P

is smaller than suffSA[M] and it is m = Llcp[M]. So the search continues in the subrange

SA[L,M], without additional character comparisons.

• If l = Llcp[M], then P shares l characters also with suffSA[M]. So the comparison between

P and suffSA[M] can start from their (l + 1)-th character. Eventually we have determined

m and found their lexicographic order.

It is clear that every binary-search step either advances the comparison of P’s characters, or it

does not compare any character but it halves the range [L,R]. The first case can occur at most p

times, the second O(log n) time.

LEMMA 7.1 Given the three arrays lcp, Llcp and Rlcp built over a text T [0, n−1], counting the

occurrences of a pattern P[0, p − 1] in T takes O(p + log n) time. Retrieving the positions of these

occ occurrences takes additional O(occ) time.

Proof We remind that searching for all strings having a pattern P as a prefix requires two lexi-

cographic searches: one for P and the other for P#, where # is a special character larger than any

other alphabet character. So O(p + log n) character comparisons are enough to delimit the range

SA[i, j] of suffixes having P as a prefix. It is then trivial to count the occurrences in constant time,

as occ = j − i + 1, or print all of them in O(occ) time.

7.4 Suffix Array Construction Algorithms

Given that the suffix array is a sorted sequence of items, the most intuitive way to construct SA

is to use an efficient comparison-based sorting algorithm. Algorithm ?? implements this idea in

C-style using the procedure qsort as sorter and the subroutine Suffix cmp for comparing suffixes.

Algorithm 7.2 Comparison Based Construction(char *T , int n, char **SA)

1: for (i = 0; i < n; i ++) do

2: SA[i] = T + i;

3: end for

4: qsort(SA, n, sizeof(char *), Suffix cmp);

For completeness, the latter procedure could be implemented as

Suffix cmp(char ∗ ∗p, char ∗ ∗q){ return strcmp(∗p, ∗q) };

A major drawback of this simple approach is that it is not I/O-efficient for two main reasons:

the optimal O(n log n) comparisons involve variable-length strings of length up to O(n); locality

in SA does not translate into locality in suffix comparisons because of the fact that string pointers

are permuted rather than their pointed strings. Both these issues elicit I/Os, and turn this simple

algorithm into a slow one.

THEOREM 7.1 In the worst case the use of a comparison-based sorter to construct the suffix

array of a given a string T [1, n] requires O((n
B

)n log n) I/Os, and O(n log n) bits of working space.

7-6 Paolo Ferragina

In Section 7.4.1 we describe a Divide-and-Conquer algorithm— the Skew algorithm by Kärkkäinen

and Sanders [4]— which is elegant, easy to code, and flexible enough to achieve the optimal I/O-

bounds in various models of computations. In Section ?? we describe also the algorithm proposed

by Gonnet-BaezaYates and Sniders in [3], which is also simple and offers the positive feature of

processing the input data in passes thus being suitable for slow disks.

7.4.1 The Skew Algorithm

In 2003, Kärkkäinen and Sanders [4] provided an optimal algorithm that constructs a suffix array for

a given string without passing through the construction of its suffix tree. This algorithm is named

Skew in the literature, and works with a time complexity of O(n), an I/O-complexity equal to the one

needed to sort n items, and with a space occupancy of O(n log n) bits. Since suffix-array construction

is reduced to sorting atomic items, this algorithm can be used over every model of computation in

which an efficient sorting primitive is available: disk, distributed, parallel.

Let T [0, n) = t0t1 . . . tn−1 be the input string1 of n characters over the alphabet Σ = {1, 2, . . . , σ}

and let t j =$ for j ≥ n be a special character smaller than any other alphabet character. The

algorithm hinges on a divide&conquer approach that executes a 2
3

: 1
3

split, crucial to make the final

merge-step easy and implementable via arrays only. Previous approaches used the more natural
1
2

: 1
2

split (such as [1]) but were forced to use a more sophisticated merge-step which needed the

use of the suffix-tree structure. The Skew algorithm consists of tree basic steps:

Step 1. Construct the suffix array of the suffixes starting at positions P1,2 = {i : i mod 3 , 0}:

• This is done by building the string T 1,2 of length (2/3)n which compactly encodes

all suffixes of T starting at positions P1,2.

• And then running the suffix-array construction algorithm recursively over it. The

result is the suffix array SA1,2, which actually corresponds to the lexicographically

sorted sequence of text suffixes starting at positions P1,2.

Step 2 Construct the suffix array of the remaining text suffixes starting at positions P0 = {i :

i mod 3 = 0}:

• This is done by representing every text suffix T [i, n] with a pair 〈T [i], pos(i + 1)〉,

where we have that i + 1 ∈ P1,2 and pos(i + 1) is the position of the (i + 1)-th text

suffix in SA1,2.

• And then running radix-sort over this set of O(n) pairs.

Step 3. Merge the two suffix arrays into one:

• This is done by deploying the 2
3

: 1
3

which ensures a constant-time lexicographic

comparison between any pair of suffixes.

The execution of the algorithm is illustrated using the string T [0, 10] =“mississippi”, where

the final suffix array will be SA = (10, 7, 4, 1, 0, 9, 8, 6, 3, 5, 2)2. In this example we have: P1,2 =

{1, 2, 4, 5, 7, 8, 10, 11} and P0 = {0, 3, 6, 9}.

Step 1. The first step is the most time consuming and consists of lexicographically sorting the

suffixes which start at the text positions P1,2. The resulting array is denoted by SA1,2 and represents

1For the sake of presentation we assume that the input string starts from the index 0.
2This suffix array is analogous to suffix array shown in figure 7.1. The difference is just in the indexes that start from 0.

Suffix Array Construction 7-7

a sampled version of the final suffix array SA because it corresponds to the suffixes starting at the

positions P1,2.

To efficiently obtain SA1,2, we reduce the problem to the construction of the suffix array for a

string T 1,2 of length 2
3
. This way the construction can occur recursively without impairing in the

final time complexity.

The key difficulty is how to define T 1,2 so that its suffix array corresponds to the sorted sequence

of text suffixes starting at the positions in P1,2. The elegant solution consists of constructing the

strings Rk = [tk, tk+1, tk+2][tk+3, tk+4, tk+5] . . .], for k = 1, 2. These strings are composed by triples of

symbols [ti, ti+1, ti+2] which therefore take O(log n) bits.

R1 =
{

[i s s]
1

[i s s]
4

[i p p]
7

[i $ $]
10

}

R2 =
{

[s s i]
2

[s s i]
5

[p p i]
8

}

We denote with R = R1 • R2 the string formed by concatenating the triples of R1 with the triples

of R2.

R =
{

[i s s]
1

[i s s]
4

[i p p]
7

[i $ $]
10

[s s i]
2

[s s i]
5

[p p i]
8

}

The key property is the following:

Property 1 Every text suffix T [i, n) starting at a position in P1,2, can be put in correspondence with

a suffix of R consisting of a sequence of triples. Specifically, if i mod 3 = 2 then the text suffix

coincides exactly with a suffix of R; if i mod 3 = 1, then the text suffix prefixes a suffix of R which

nevertheless terminates with special symbol $.

This property is crucial to state that the lexicographic comparison between text suffixes starting in

P1,2 can be derived by comparing lexicographically the suffixes of R, provided that they are aligned

to its triples.

In order to manage those triples efficiently, we encode them via integers in a way that their

lexicographic comparison can be obtained by comparing those integers. In the literature this is called

lexicographic naming and can be easily obtained by radix sorting the triples in R and associating to

each distinct triple its rank in the lexicographic order. Since we have O(n) triples, each consisting

of symbols in a range [0, n], their radix sort takes O(n) time.

In our example, the sorted triples are labeled with the following ranks:

[i $ $] [i p p] [i s s] [i s s] [p p i] [s s i] [s s i] sorted triples

1 2 3 3 4 5 5 sorted ranks

R = [i s s] [i s s] [i p p] [i $ $] [s s i] [s s i] [p p i] triples

3 3 2 1 5 5 4 T 1,2 (string of ranks)

In a general recursive step, T is a sequence of integers in a range [0, n). So we can assume that

this is true also at the beginning, it is enough to re-code the text symbols via a sorting step.

It is evident from the discussion above that, since the ranks are assigned in the same order as the

lexicographic order of their triples, the lexicographic comparison between suffixes of R (aligned to

the triples) equals the lexicographic comparison between suffixes of T 1,2. Moreover T 1,2 consists

of 2
3

symbols (integers smaller than n). So SA1,2 can be obtained by building recursively the suffix

array T 1,2.

There are two notes to be added at this point. The first one is that, if all symbols in T 1,2 are differ-

ent, then recursion is useless because suffixes can be sorted by looking just at their first characters.

7-8 Paolo Ferragina

The second observation is for the programmers that should be careful in turning the suffix-positions

in T 1,2 into the suffix positions in T , according to the layout of the triples of R.

Since T 1,2 = (3, 3, 2, 1, 5, 5, 4) and not all ranks are distinct, the algorithm is applied recursively

returning the array (3, 2, 1, 0, 6, 5, 4), whose positions refer to the positions in T 1,2. Mapping them

to positions in T we get SA1,2 = (10, 7, 4, 1, 8, 5, 2).

Step 2. Once the suffix array SA1,2 has been built, it is possible to sort lexicographically the remain-

ing suffixes of T , starting at the text position i mod 3 = 0, in a simple way. We decompose a suffix

as composed by its first character T [i] and its remaining suffix; and then encode this as a pair of

integers 〈T [i], pos(i + 1)〉, where pos(j) denotes the rank in SA1,2 of the suffix j. Clearly, if i ∈ P1

then i + 1 ∈ P1,2 so that pos(i + 1) is well defined.

Given this observation, two text suffixes starting at positions in P1 can then be compared in

constant time by comparing their corresponding pairs. Therefore, SA1 can be efficiently computed

by radix-sorting the O(n) pairs encoding its suffixes in O(n) time.

In our example, this boils down to the radix sort of the pairs:

Pairs: 〈m, 4〉 〈s, 3〉 〈s, 2〉 〈p, 1〉 suffixes mod 0

0 3 6 9 starting positions in T

Sorted pairs: 〈m, 4〉 < 〈p, 1〉 < 〈s, 2〉 < 〈s, 3〉 sorted suffixes

0 9 6 3 SA0

Step 3. The final step merges the two sorted arrays SA0 and SA1,2 in linear time by resorting an

interesting observation which motivates the split 2
3

: 1
3
. Let us given two suffixes T [i, n) ∈ SA0

and T [j, n) ∈ SA1,2, which we wish to lexicographically compare. They belong to two different

suffix arrays so we have no lexicographic relation known for them, and we cannot compare them

character-by-character because this would incur in a much higher cost. Nevertheless, we can deploy

a decomposition idea similar to the one exploited in Step 2, which consists of looking at a suffix

as composed by one or two characters plus the lexicographic rank of its remaining suffix. This

decomposition becomes effective if the remaining suffixes of the compared ones lie in the same

suffix array, so that their rank is enough to get their order in constant time. Elegantly enough this

is possible with the split 2
3

: 1
3
, but it could not be possible with the split 1

2
: 1

2
. This observation is

implemented as follows:

1. if j mod 3 = 1 then we compare T [j, n) = T [j]T [j+1, n) against T [i, n) = T [i]T [i+1, n).

Both the suffixes T [j+1, n) and T [i+1, n) occur in SA1,2 so that we can derive the above

lexicographic comparison by comparing the pairs 〈T [i], pos(i+1)〉 and 〈T [j], pos(j+1)〉.

This comparison takes O(1) time, provided that the array pos is available.3

2. if j mod 3 = 2 then we compare T [j, n) = T [j]T [j + 1]T [j + 2, n) against T [i, n) =

T [i]T [i+ 1]T [i+ 2, n). Both the suffixes T [j+ 2, n) and T [i+ 2, n) occur in SA1,2 so that

we can derive the above lexicographic comparison by comparing the triples 〈T [i],T [i +

1], pos(i+2)〉 and 〈T [j],T [j+1], pos(j+2)〉. This comparison takes O(1) time, provided

that the array pos is available.

In our running example we have that T [7, 12) < T [9, 12), and in fact 〈i, 5〉 < 〈p, 1〉. Also we have

that T [6, 12) < T [5, 12) and in fact 〈s, i, 5〉 < 〈s, s, 2〉. In the following figure we depict all possible

pairs of triples which may be involved in a comparison, where (??) and (???) denote the pairs for

rule 1 and 2 above. Conversely (?) denotes the starting position in T of the suffix.

3Of course, the array pos can be derived from SA1,2 in linear time, since it is its inverse.

Suffix Array Construction 7-9

SA0 SA1,2

0 9 6 3 10 7 4 1 8 5 2 (?)

〈m, 4〉 〈p, 1〉 〈s, 2〉 〈s, 3〉 〈i, 0〉 〈i, 5〉 〈i, 6〉 〈i, 7〉 (??)

〈m, i, 7〉 〈p, i, 0〉 〈s, i, 5〉 〈s, i, 6〉 〈p, p, 1〉 〈s, s, 2〉 〈s, s, 3〉 (???)

At the end of the merge step we obtain the final suffix array: SA = (10, 7, 4, 1, 0, 9, 8, 6, 3, 5, 2).

The execution time of the algorithm can be modeled by the recurrence T (n) = T (2n
3

)+O(n), because

Steps 2 and 3 cost O(n) and the recursive call is executed over a string T 1,2 whose length is (2/3)n.

It can be easily verified that the recurrence has solution T (n) = O(n), which is clearly optimal.

From the discussion above it is clear that every step can be implemented via a sorting or a scan-

ning of a set of n atomic items, which are possibly triples of integers. Therefore the algorithm can

be seen as a algorithmic reduction of the suffix-array construction problem to the n-items sorting

problem. This problem has been solved optimally in several models of computation. For what

concerns the disk model, the skew algorithm can be implemented in O(n
B

logM/B
n
M

) I/Os. we have

therefore proved the following.

THEOREM 7.2 The skew algorithm builds the suffix array of a string T [1, n] in O(S ort(n))

I/Os and O(n/B) disk pages. If the alphabet Σ has size polynomial in n, the CPU time is O(n).

7.4.2 The GBS Algorithm

Before the Skew algorithm, the best know disk-based algorithm was the one proposed by Gonnet and

Baeza-Yates and Sniders in 1992 [3] (shortly GBS). It is also a divide&conquer algorithm in which

the divide step is unbalanced, thus inducing a cubic time complexity because of a quadratic number

of suffix comparisons. Nevertheless the algorithm is very fast in practice because it processes the

data into passes thus deploying the high throughput of modern disks.

Let ` < 1 be a positive constant, properly fixed to build the suffix array of a text piece of m = `M

characters in internal memory. For the sake of presentation, we assume that the text T is logically

divided into pieces of m characters each, numbered rightward: namely T = T1T2 · · · Tn/m where

Th = T [hm + 1, (h + 1)m] for h = 0, 1, The BGS algorithm computes incrementally the suffix

array of the text string T [1, n] in Θ(n/M) stages, rather than the logarithmic number of stages of the

Skew algorithm. At the beginning of stage h, we assume to have on disk the array SAh that contains

the sorted sequence of the first hm suffixes of T . Initially h = 0 and thus SA0 is the empty array. In

the generic h-th stage, The BGS algorithm loads the next text piece T h+1 in internal memory, builds

SA′ as the sorted sequence of suffixes starting in T h+1, and then computes the new SAh+1 by merging

the two sorted sequences SAh and SA′.

There are two main issues when detailing this algorithmic idea is a running code: how to effi-

ciently construct SA′, since its suffixes start in T h+1 but may extend outside that string up to the end

of T ; and how to efficiently merge the two sorted sequences SAh and SA′, since they involve suffixes

whose length may be up to Θ(n) characters. For the first issue BGS does not implement any special

trick, it just compares pairs of suffixes character-by-character in O(n) time and O(n/B) I/Os. This

means that over the total execution of the O(n/M) stages, BGS takes O(n
B

n
m

m log m) = O(n2

B
log m)

I/Os to construct SA′.

The final merge between SA′ with SAh is executed by resorting the use of an auxiliary array

C[1,m+1] which counts in C[j] the number of suffixes of SAh that are lexicographically greater than

the SA′[j−1]-th text suffix and smaller than the SA′[j]-th text suffix. Since SAh is longer and longer,

we need to process it by scan only, and thus devise a method that scans rightward the text T (from

its beginning) and then searches each of its suffixes by binary-search in SA′. If the the lexicographic

position is j, then the entry C[j] is incremented. The binary search may involve a part of a suffix of

7-10 Paolo Ferragina

SA′ which lies outside the internal memory, thus taking again O(n/B) I/Os per binary-search step.

Over all the n/M stages, this binary search takes O(
∑n/m−1

h=0
n
B

(hm) log m) = O(n3

MB
log M) I/Os.

Array C is then exploited in the next substep to quickly merge the two arrays SA′ and SAh: C[j]

indicates how many consecutive suffixes of SAh lexicographically lie after SA′[j − 1] and before

SA′[j]. Hence a disk scan of SAh suffices to perform the merging process in O(n/B) I/Os.

THEOREM 7.3 The BGS algorithm builds the suffix array of a string T [1, n] in O(n3

MB
log M)

I/Os and O(n/B) disk pages.

Since the worst-case number of total I/Os is cubic, a purely theoretical analysis would classify

this algorithm as not much interesting. However, in practical situations it is very reasonable to

assume that each suffix comparison finds in internal memory all the characters used to compare the

two involved suffixes. The practical behavior could be described more precisely by the formula

O(n2

MB
) I/Os. Additionally, all I/Os in this analysis are sequential and the actual number of random

seeks is only O(n/M) (i.e., at most a constant number per stage). Consequently, the algorithm takes

fully advantage of the large bandwidth of current disks and of the high speed of current CPUs.

Before detailing a significant improvement for the previous approach, let us concentrate on a

running example, useful to fix the BGS’ ideas:

1 2 3 4 5 6 7 8 9 10 11 12

T [1, 12] = m i s s i s s i p p i $

Suppose that m = 3 and that, at the beginning of stage h = 1, the algorithm has stored on the disk

the array SA1 = (2, 1, 3) which corresponds to the lexicographic order of the text suffixes: “mis-

sissippi$”, “ississippi$” and “ssissippi$”. During the stage h = 1, the algorithm loads in internal

memory T 1 = T [4, 6] = sis and lexicographically sorts the text suffixes which start in that substring,

but may end up at the end of T , see figure 7.3.

Text suffixes sissippi$ issippi$ ssippi$

⇓

Lexicographic ordering

⇓

Sorted suffixes issippi$ sissippi$ ssippi$

SA′ 5 4 6

FIGURE 7.3: Stage 1 of the BGS algorithm.

The figure shows that the comparison between the text suffixes: T [4, 12] = “sissippi$” and

T [6, 12] = “ssippi$” involves characters that lie outside the text piece T [4, 6] loaded in internal

memory, so that their comparison induces some I/Os.

The final step merges SA1 = (2, 1, 3) with SA′ = (5, 4, 6), in order to compute SA2. This step uses

the information of the counter array C. For example C[1] = 2 because two suffixes T [1, 12] = “mis-

sissippi$” and T [2, 12] = “ississippi$” are between the SA′[0]-th suffix “issippi$” and the SA′[1]-th

suffix “sissippi$”.

The second stage and the third stage are summarized in figures 7.5 and 7.6.

Suffix Array Construction 7-11

Suffix Arrays SA′ = [5, 4, 6] SA3 = [2, 1, 3]
︸ ︷︷ ︸

Merge exploiting C ⇓ C=[0,2,0,1]

SA6 = [5, 2, 1, 4, 6, 3]

FIGURE 7.4: Example BGS. Stage 1 - Step 3

Stage 2:

(1) Load into internal memory the text substring T 2 = T [7, 9] = sip.

(2) Build SA′ by sorting lexicographically the text suffixes which start in T 2:

Text suffixes sippi$ ippi$ ppi$

⇓

Lexicographic ordering

⇓

Sorted suffixes ippi$ ppi$ sippi$

SA′ 8 9 7

(3) Merge SA′ with SA2 exploiting C:

Suffix Arrays SA′ = [8, 9, 7] SA2 = [5, 2, 1, 4, 6, 3]
︸ ︷︷ ︸

Merge exploiting C ⇓ C=[0,3,0,3]

SA3 = [8, 5, 2, 1, 9, 7, 4, 6, 3]

FIGURE 7.5: Stage 2 in the BGS algorithm for the string T [1, 12] = “mississippi$”.

The performance of BGS can be improved via a simple observation [2]. Assume that, at the

beginning of stage h, in addition to the SAh we have on disk a bit array, called gth, such that gth[i] = 1

if and only if the suffix T [(hm + 1) + i, n] is greater than the suffix T [(hm + 1), n]. During the h-

th stage the algorithm loads into internal memory the substring t = T hT h+1 and the binary array

gth+1[1,m − 1]. Then it builds SA′ by deploying the two arrays above and without performing any

other I/Os. The key observation here is that two suffixes starting at positions i and j of T h, with i < j,

can be compared lexicographically by looking at their characters in t, namely at the strings t[i,m]

and t[j, j + m − i]. These two strings have the same length and are completely in t[1, 2m], hence in

internal memory. If these strings differ we are done; otherwise, the order between these two suffixes

is determined by the order of the suffixes starting at the characters t′′[m + 1] and t′′[j + m − i + 1].

This order is given by the bit stored in gth+1[j − i], also available in internal memory.

This argument shows that t′′ and gth+1 contain all the information we need to build SAh+1 working

in internal memory.

THEOREM 7.4 The new BGS algorithm builds the suffix array of a string T [1, n] in O(n2

MB
)

I/Os and O(n/B) disk pages.

7-12 Paolo Ferragina

Stage 3:

(1) Load into internal memory the text substring T 3 = T [10, 12] = pi$.

(2) Build SA′ by sorting lexicographically the text suffixes which start in T 3:

Text suffixes pi$ i$ $

⇓

Lexicographic ordering

⇓

Sorted suffixes $ i$ pi$

SA′ 12 11 10

(3) Merge SA′ with SA3 exploiting C:

Suffix Arrays SA′ = [12, 11, 10] SA3 = [8, 5, 2, 1, 9, 7, 4, 6, 3]
︸ ︷︷ ︸

Merge exploiting C ⇓ C=[0,0,4,5]

SA4 = [12, 11, 8, 5, 2, 1, 10, 9, 7, 4, 6, 3]

FIGURE 7.6: Stage 2 in the BGS algorithm for the string T [1, 12] = “mississippi$”.

We detail the running of the BGS algorithm on the same example used for the Skew algorithm,

namely the string T = “mississippi$”. At the stage h = 1 we read SA0, which is empty, build SA′ and

then merge the two arrays to obtain SA2. The construction of SA′ deploys the availability in internal

memory of gt2 = (1, 0) and t = T hT h+1 = sissip. In fact, given i < j with 1 ≤ i ≤ 3 we compare

lexicographically the substrings t′′[i,m] and t′′[j, j + m − i] by looking just at those two arrays. As

an example, take i = 1 and j = 3 so we are comparing t[i,m] = “sis” with t[j, j + m − i + 1] =

“ssi”. The strings are different so we obtain the following lexicographic order: “iss” ¡ “sis”. Now

take i = 3 and j = 4 so we have to compare the two equal suffixes “s” and “s”. The strings are

not different so we use gt2[j − i] = gt2[1] = 1, hence the “s” is lexicographically greater than “s”

and this can be computed without any I/Os. It remains to show that the computation of gt can occur

efficiently, and this is a technicality shown in [2].

7.5 Lcp construction

Surprisingly enough the longest common prefix array, shortly lcp, can be derived from the input

string and its suffix array in linear time. This time bound can be obtained only by avoid the re-

scanning of the characters of the input string. In fact, if we compute lcp via the pairwise comparison

character-by-character of the n − 1 contiguous suffix pairs of SA, we would get a time complexity

of O(n2) in the worst case. The algorithm we describe below has been proposed in 2001 by Kasai

et al [5], it is elegant and optimal in time and space.

For the sake of presentation we will refer to Figure 7.7 which illustrates clearly the main algo-

rithmic idea. Let us concentrate on two consecutive text suffixes, say suffi−1 and suffi, which occur

at positions p and q in the suffix array. And assume that the value of lcp[p] storing the lcp between

SA[p] = suffi−1 and its previous suffix SA[p − 1] = suff j−1 is known. Our goal is to show that

lcp[q] storing the lcp between SA[q] = suffi and its previous suffix SA[q − 1] = suffk can be com-

Suffix Array Construction 7-13

SA
−1 Suffixes SA

p− 1 a b c d e f j − 1 = SA[p− 1]
p a b c h i i− 1 = SA[p]

...
b c d e f j = SA[p− 1] + 1
...

q − 1 b c h k = SA[q − 1]
q b c h i i = SA[q]

FIGURE 7.7: Relation between suffixes and Lcp values in the Kasai’s method.

puted without re-scanning these suffixes from scratch but can start where the comparison between

SA[p − 1] and SA[p] ended. This will ensure that re-scanning is avoided and will lead to a linear

time complexity.
We need the following property that we already mentioned when dealing with prefix search, and

that we restate here in the context of the suffix array.

FACT 7.1 lcp(suffSA[y−1], suffSA[y]) ≥ lcp(suffSA[x], suffSA[y]), ∀x < y

Proof This property derives from the observation that suffixes in SA are ordered lexicographi-

cally, so that as we go farther from SA[y] we reduce the length of the shared prefix.

Let us now refer to Figure 7.7, concentrate on the pair of suffixes suff j−1 and suffi−1, and take

their next suffixes suff j and suffi. There are two possible cases: Either they share some characters

in their prefix, i.e. lcp[p] > 0, or they do not. In the former case we can conclude that, since

suff j−1 < suffi−1, the next suffixes preserve that lexicographic order, so that suff j < suffi, and more-

over lcp(suff j, suffi) = lcp[p]− 1. In fact, the first shared character is dropped but the next lcp[p]− 1

shared characters (possibly none) remain, as well as their mismatch character that drives the lexico-

graphic order, which is therefore preserved. In the Figure above, we have lcp[p] = 3, so when we

consider the next suffixes their lcp is 2, their order is preserved (as indeed suff j occurs before suffi)

although now they lie not adjacent in SA.

FACT 7.2 If lcp(suffSA[y−1], suffSA[y]) > 0 then:

lcp(suffSA[y−1]+1, suffSA[y]+1) = lcp(suffSA[y−1], suffSA[y]) − 1

By Fact 7.1 and Fact 7.2, we can conclude the key property deployed by Kasai’s algorithm:

FACT 7.3 According to the notation above, it is

lcp(suffSA[q−1], suffSA[q]) ≥ lcp(suffSA[p−1], suffSA[p]) − 1

This fact can be rephrased shortly as lcp[q] = max{lcp[p] − 1, 0}. So this algorithmically shows

that the computation of lcp[q] can take full advantage of what we compared for the computation of

lcp[p]. By adding to this the fact that we are processing the text suffixes rightward, we can conclude

that the characters involved in the suffix comparisons move themselves rightward and, since re-

scanning is avoided, their total number is O(n). A sketch of the Kasai’s algorithm is shown in figure

7-14 Paolo Ferragina

7.3, where we make use of the inverse suffix array, denoted by SA−1, which returns for every suffix

its position in SA.

Algorithm 7.3 LCP-Build(char *T , int n, char **SA)

1: for (i = 0; i < n, i++) do

2: i = SA[SA−1[i]];

3: end for

4: h = 0;

5: for (i = 0; i < n, i++) do

6: p = SA−1[p];

7: if (p > 0) then

8: k = SA[p − 1];

9: if (h > 0) then

10: h–;

11: end if

12: while (T [k + h] == T [i + h]) do

13: h++;

14: end whilelcp[p] = h;

15: end if

16: end for

Step 5 checks whether suffp occupies the first position of the suffix array, in this case the lcp with

the previous suffix is undefined. The for-loop then scans the text suffixes suffi from left to right, and

for each of them first retrieves its position in SA, namely i = SA[p], and its preceding suffix in SA,

namely k = SA[p − 1]. Then extends possibly the longest common prefix starting from the offset

determined for suffi−1. This is the algorithmic application of Fact 7.3.

As far as the time complexity is concerned, we notice that h is decreased at most n times (once

per iteration of the for-loop), and it cannot move outside T (within each iteration of the for-loop),

so h ≤ n. This implies that h can be increased at most 2n times and this is the upper bound to the

number of character comparisons executed by the above algorithm. The total time complexity is

therefore O(n). Moreover, since the algorithm uses the arrays SA−1 its additional working space is

of n integers.

We conclude this section by noticing that an I/O-efficient algorithm to compute the lcp-array is

still missing.

References

[1] Martin Farach-Colton, Paolo Ferragina, S. Muthukrishnan. On the sorting-complexity

of suffix tree construction. Journal of the ACM, 47(6): 987-1011, 2000.

[2] Paolo Ferragina and Travis Gagie and Giovanni Manzini. Lightweight data indexing and

compression in external memory. In Procs of the Symposium on Theoretical Informatics

(LATIN), Lecture Notes in Computer Science vol. 6034, Springer, 697–710, 2010.

[3] Gaston H. Gonnet, Ricardo A. Baeza-Yates, and Tim Snider. New indices for text:

PAT trees and PAT arrays. In B. Frakes and R. A. Baeza-Yates, editors, Information

Retrieval: Data Structures and Algorithms, chapter 5, pages 66–82, Prentice-Hall, 1992.

[4] Juha Kärkkäinen and Peter Sanders. Simple linear work suffix array construction.

Suffix Array Construction 7-15

In Procs of the International Colloquium on Automata, Languages and Programming

(ICALP), Lecture Notes in Computer Science vol. 2791, Springer, 943–955, 2003.

[5] Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, and Kunsoo Park. Linear-

time longest-common-prefix computation in suffix arrays and its applications. In Procs

of the Symposium on Combinatorial Pattern Matching (CPM), Lecture Notes in Computer

Science vol. 2089, Springer, 181–192, 2001.

[6] Udi Manber and Gene Myers. Suffix arrays: a new method for on-line string searches.

SIAM Journal on Computing, 22(5):935–948, 1993.

