
The magic of Algorithms!
Lectures on some algorithmic pearls

Paolo Ferragina, Università di Pisa

These notes should be an advise for programmers and software engineers: no matter how much

smart you are, the so called “5-minutes thinking” is not enough to get a reasonable solution for your

algorithmic problem! Problems have reached such a large size, machines got so complicated, and

algorithmic tools became so sophisticated that you cannot improvise to be an algorithm designer:

you should be trained to be one of them!

These lectures provide a witness for this issue by introducing challenging problems together with

elegant, powerful and efficient algorithmic techniques to solve them. In selecting their topics I was

driven by a twofold goal: from the one hand, provide the reader with an algorithm engineering

toolbox that will help him/her in attacking programming problems over massive datasets; and, from

the other hand, I wished to collect the stuff that I would have liked to see when I was a master/phd

student!

The style and content of these lectures is the result of many hours of highlighting and, sometime

hard and fatiguing, discussions with many fellow researchers and students. Actually some of these

lectures composed the courses in Information Retrieval and/or Advanced Algorithms that I taught at

the University of Pisa and in various International PhD Schools, since year 2004. In particular, a pre-

liminary draft of these notes were prepared by the students of the “Algorithm Engineering” course

in the Master Degree of Computer Science and Networking in Sept-Dec 2009, done in collabora-

tion between the University of Pisa and Scuola Superiore S. Anna in Pisa. Some other notes were

prepared by the Phd students attending the course on “Advanced Algorithms for Massive DataSets”

that I taught at the BISS International School on Computer Science and Engineering, held in March

2010 (Bertinoro, Italy). I used these drafts as a seed for some of the following chapters.

My ultimate hope is that reading these notes you’ll be pervaded by the same pleasure and excite-

ment that filled my mood when I met these algorithmic solutions for the first time. If this will be

the case, please read more about Algorithms to find inspiration for your work. It is still the time that

programming is an Art, but you need the good tools to make itself express at the highest beauty!

P.F.

Contents

1 Prologo . 1-1

2 A warm-up! . 2-1

3 Random Sampling . 3-1

1
Prologo

“This is a rocket science but you
don’t need to be a rocket
scientist to use it”
The Economist, September 2007

The main actor of this book is the Algorithm so, in order to dig into the beauty and challenges that

pertain with its ideation and design, we need to start from one of its many possible definitions. The

Oxford English Dictionary reports that an algorithm is, informally, “a process, or set of rules,

usually one expressed in algebraic notation, now used esp. in computing, machine translation and

linguistics”. The modern meaning for Algorithm is quite similar to that of recipe, method, pro-

cedure, routine except that the word Algorithm in Computer Science connotes something just a

little different. In fact many authoritative researchers have tried to pin down the term over the last

200 years [3] by proposing definitions which became more complicated and detailed nonetheless,

hopefully in the minds of their proponents, more precise and elegant. As algorithm designers and

engineers we will follow the definition provided by Donald Knuth at the end of the 60s [7, pag 4]:

an algorithm is a finite, definite, effective procedure, with some output. Although these five features

may be intuitively clear and are widely accepted as requirements for a sequence-of-steps to be an

algorithm, they are so dense of significance that we need to look into them with some more detail,

even because this investigation will surprisingly lead us to the scenario and challenges posed nowa-

days by algorithm design and engineering, and to the motivation underling this series of lectures.

Finite: “An algorithm must always terminate after a finite number of steps ... a very finite

number, a reasonable number.” Clearly, the term “reasonable” is related to the efficiency

of the algorithm: Knuth [7, p. 7] states that “In practice, we not only want algorithms,

we want good algorithms”. The “goodness” of an algorithm is related to the use that

the algorithm makes of some precious computational resources such as: time, space,

communication, I/Os, energy, or just simplicity and elegance which both impact onto

the coding, debugging and maintenance costs!

Definite: “Each step of an algorithm must be precisely defined; the actions to be carried out

must be rigorously and unambiguously specified for each case”. Knuth made an effort

in this direction by detailing what he called the “machine language” for his “mythical

MIX...the world’s first polyunsaturated computer”. Today we know of many other pro-

gramming languages such as C/C++, Java, Python, etc. etc. All of them specify a

set of instructions that the programmer may use to describe the procedure underlying

his/her algorithm in an unambiguous way: “unambiguity” here is granted by the formal

semantics that researchers have attached to each of these instructions. This eventually

means that anyone reading the algorithm’s description will interpret it in a definite and

precise way: nothing will be left to personal mood!

c© Paolo Ferragina 1-1

1-2 Paolo Ferragina

Effective: “... all of the operations to be performed in the algorithm must be sufficiently basic

that they can in principle be done exactly and in a finite length of time by a man using

paper and pencil”. Therefore the notion of “step” invoked in the previous item implies

that one has to dig into a complete and deep understanding of the problem to be solved,

and then into logical well-definite structuring of a “step-by-step solution”.

Procedure: “... the sequence of specific steps arranged in a logical order”.

Input: “... quantities which are given to it initially before the algorithm begins. These inputs

are taken from specified sets of objects”.

Output: “... quantities which have a specified relation to the inputs”.

In this booklet we will not use a formal approach to algorithm description, because we wish to

concentrate on the theoretically elegant and practically efficient ideas which underlie the algorithmic

solution of some interesting problems, without being lost in the maze of programming technicalities.

So in every lecture we will take an interesting problem coming out from a real/useful application

and then propose deeper and deeper solutions of increasing sophistication and improved efficiency,

taking care that this will not necessarily correspond to increasing the complexity of algorithm’s

description. Actually, problems were selected to admit surprisingly elegant solutions that can be

described in few lines of code! So we will opt for the current practice of algorithm design and

describe our algorithms either colloquially or by using pseudo-code that mimics the most famous

C and Java languages. In any case we will not renounce to be as much rigorous as it needs an

algorithm description to match the five features above.

Elegance will not be the only feature of our algorithm design, of course, we will also aim for

efficiency which commonly relates to the time/space complexity of the algorithm. Traditionally time

complexity has been evaluated as a function of the input size n by counting the (maximum) number

of steps, say T (n), an algorithm takes to complete its computation over an input of n items. Since

the maximum is taken over all inputs of that size, the time complexity is named worst case because

it concerns with the input that induces the worst behavior for the algorithm. Of course, the larger

is n the larger is T (n), which is therefore non decreasing and positive. In a similar way we can

define the (worst-case) space complexity of an algorithm, as the maximum number of memory cells

it uses for its computation over an input of size n. This approach to the design and analysis of

algorithms assumes a very simple model of computation, known as model of Von Neumann (aka

Random Access Machine, RAM model). This model consists of a CPU and a memory of infinite

size and constant-time access to each one of its cells. Here we argue that every step takes a fixed

amount of time on a PC, which is the same for any operation: being it arithmetic, logical, or just a

memory access (read/write). So it is enough to count the number of steps executed by the algorithm

in order to have an “accurate” estimate of its execution time on a real PC. Two algorithms can then

be compared according to the asymptotic behavior of their time-complexity functions as n −→ +∞,

the faster is growing the time complexity over inputs of larger and larger size, the worse is its

corresponding algorithm. The robustness of this approach has been debated for a long time but,

eventually, the RAM model dominated the algorithmic scene for decades (and is still dominating

it!) because of its simplicity, which impacts on algorithm design and evaluation, and its ability to

estimate the algorithm performance “quite accurately” on (old) PCs. Therefore it is not surprising

that most introductory books on Algorithms take the RAM model as a reference.

But in the last ten years things have changed significantly, thus highlighting the need for a shift in

algorithm design and analysis! Two main changes occurred: the architecture of modern PCs became

more and more sophisticated (not just one CPU and one monolithic memory!), and input data have

exploded in size (“n −→ +∞” does not live only in the theory world!) because they are abundantly

generated by many sources: such as DNA sequences, bank transactions, mobile connections and

communications, Web navigation and searches, auctions, etc. etc.. The first change turned the RAM

model into an unsatisfactory abstraction of modern PCs; whereas the second change made the design

Prologo 1-3

FIGURE 1.1: An example of memory hierarchy of a modern PC.

of asymptotically good algorithms ubiquitous and fruitful not only for dome-headed mathematicians

but also for a much larger audience because of their impact on business [2], society [1] and science

in general [4]. The net consequence was a revamped scientific interest in algorithmics and the

spreading of the word “Algorithm” to even colloquial speeches!

In order to make algorithms effective in this new scenario, researchers needed new models of

computation able to abstract in a better way the features of modern computers and applications and,

in turn, to derive more accurate estimates of algorithm performance from their complexity analysis.

Nowadays a modern PC consists of one or more CPUs (multi-core?) and a very complex hierarchy

of memory levels, all with their own technological specialties (Figure 1.1): L1 and L2 caches,

internal memory, one or more mechanical or SSDisks, other external storage devices (like flash

memories, DVDs, tapes), and possibly other (hierarchical-)memories of multiple hosts distributed

over a (possibly geographic) network, the so called “Cloud”. Each of these memory levels has its

own cost, capacity, latency, bandwidth and access method. The closer a memory level is to the

CPU, the smaller, the faster and the more expensive it is. Currently nanoseconds suffice to access

the caches, whereas milliseconds are yet needed to fetch data from disks (aka I/O). This is the so

called I/O-bottleneck which amounts to the astonishing factor of 105 − 106, nicely illustrated by

Tomas H. Cormen as follows:

“The difference in speed between modern CPU and (mechanical) disk technologies is analogous to

the difference in speed in sharpening a pencil using a sharpener on one’s desk or by taking an

airplane to the other side of the world and using a sharpener on someone else’s desk”.

Engineering research is trying nowadays to improve the input/output subsystem to reduce the

impact of the I/O-bottleneck onto the efficiency of applications managing large datasets; but, on the

other hand, we are perfectly aware that the improvements achievable by means of a good algorithm

design abundantly surpass the best expected technology advancements. Let us see the why with a

simple example!1

Assume to take three algorithms having increasing I/O-complexity: C1(n) = n, C2(n) = n2 and

C3(n) = 2n. Here Ci(n) denotes the number of disk accesses executed by the ith algorithm to process

n input data (stored e.g. in n/B disk pages). Notice that the first two algorithms execute a polynomial

number of I/Os, whereas the last one executes an exponential number of I/Os. Moreover we note that

the above complexities have a very simple (and thus unnatural) mathematical form because we want

1This is paraphrased from [8], now we talk about I/Os instead of steps.

1-4 Paolo Ferragina

to simplify the calculations without impairing our final conclusions. Let us now ask for how many

data each of these algorithms is able to process in a fixed time-interval of size t, given that each I/O

takes c time. The answer is obtained by solving the equation Ci(n)×c = t with respect to n: so we get

t/c data processed by the first algorithm,
√

t/c data processed by the second, and only log2(t/c) data

processed by the third algorithm. These values are already impressive by themselves, and provide a

robust understanding of why polynomial-time algorithms are called efficient, whereas exponential-

time algorithms are called inefficient: a large change in the length t of the time-interval induces

just a tiny change in the amount of data that exponential-time algorithms can process. Of course,

this distinction admits of many exceptions when the problem instances of interest have limited

size; furthermore, there are exponential-time algorithms that have been quite useful in practice

(think e.g. to the simplex algorithm). On the other hand, these examples are quite rare, and the

much more stringent bounds on execution time satisfied by polynomial-time algorithms make them

considered provably efficient and the preferred way to solve problems. Algorithmically speaking,

most exponential-time algorithms are merely variations of exhaustive search, whereas polynomial-

time algorithms are generally made possible only through the gain of some deeper insight into

the structure of a problem. So polynomial-time algorithms are the right choice from many points

of view. One key observation can be drawn by running the above algorithms with a better I/O-

subsystem, say one that is k times faster, and asking: How many data can be managed by this new

PC?

To address this question we solve the previous equations with the time-interval set to the length

k × t. We get that the first algorithm perfectly scales by a factor k, the second algorithm scales by

a factor
√

k, whereas the last algorithm scales only of an additional term log2 k. Noticeably the

improvement induced by a k-times more powerful PC for an exponential-time algorithm is totally

negligible even in the presence of impressive (and thus unnatural) technology advancements! Super-

linear algorithms, like the second one, are positively affected by technology advancements but their

performance improvement decreases as the degree of the polynomial-time complexity grows: more

precisely, if C(n) = nα then a k-times more powerful PC induces a speed-up of a factor
α
√

k. Over-

all, it is not hazardous to state that the impact of a good algorithm is far beyond any optimistic

forecasting for the performance of future (mechanical or SSD) disks2

Given this appetizer about the “Power of Algorithms”, let us now turn back to the problem of

analyzing the performance of algorithms in modern PCs by considering the following simple ex-

ample: Compute the sum of the integers stored in an array A[1, n]. The simplest idea is to scan A

and accumulate in a temporary variable the sum of the scanned integers. This algorithm executes n

sums, accesses each integer in A once, and thus takes n steps. Let us now generalize this approach

by considering a family of algorithms, denoted by As,b, which differentiate themselves according

to the pattern of accesses to A’s elements, as driven by the parameters s and b. In particular As,b

looks at array A as logically divided into blocks of b elements each, say A j = A[(j− 1) ∗ b+ 1, j ∗ b]

for j = 1, 2, . . . , n/b.3 Then it sums all items in one block before moving to the next block that is

s blocks apart on the right. Array A is considered as cyclic so that, when the next block lies out of

A, the algorithm wraps around it. Clearly not all values of s allow to take into account all of A’s

blocks (and thus sum all of A’s integers). Nevertheless we know that if s is co-prime with n/b then

s × i generates a permutation of the integers {1, 2, . . . , n/b}, and thus As,b sums all of the integers

in A. But the specialty of this parametrization is that by varying s and b we can sum according to

different patterns of memory accesses: from the sequential scan indicated above (setting s = b = 1),

to a block-wise access (set a large b) and/or a random-wise access (set a large s). Of course, all al-

2See [2] for an extended treatment of this subject.
3For the sake of presentation we assume that n and b are powers of two, so b divides n.

Prologo 1-5

gorithmsAs,b are equivalent from a computational point of view, since they read exactly n integers

and thus take n steps; but from a practical point of view, they have different time performance which

becomes more and more significant as the array size n grows. The reason is that, for a growing n,

data will be spread over more and more memory levels, each one with its own capacity, latency,

bandwidth and access method. So the “equivalence in efficiency” derived by adopting the RAM

model, and counting the number-of-steps executed by As,b, is not an accurate estimate of the time

complexity of the algorithm.

We need a new model that grasps the essence of real situations and is simple enough to not

jeopardize algorithm design and analysis. In a previous example we already argued that the number

of I/Os is a good estimator for the time complexity of an algorithm, given the large gap existing

between disk- and internal-memory accesses. This is indeed what is captured by the so called 2-

level memory model (aka. disk-model, or external-memory model [2]) which abstracts the computer

as composed by only two memory levels: the internal memory of size M, and the (unbounded) disk

memory which operates by reading/writing data via blocks of size B (called disk pages). Sometimes

the model consists of D disks, each of unbounded size, so that each I/O reads or writes a total of

D × B items coming from D pages, each one residing on a different disk. For the sake of clarity we

remark that the two-level view must not suggest to the reader that this model is restricted to abstracts

disk-based computations; in fact, we are actually free to choose any two levels of the memory

hierarchy, with their M and B parameters properly set. The algorithm performance is evaluated in

this model by counting: (a) the number of accesses to disk pages (hereafter I/Os), (b) the internal

running time (CPU time), and (c) the number of disk pages occupied by the data structure or used by

the algorithm as its working space. This suggests correctly that a good external-memory algorithm

must exploit both spatial locality and temporal locality. The former imposes a data organization

onto the disk(s) that makes each accessed disk-page as much useful as possible; the latter imposes

to execute as much useful work as possible onto data fetched in internal memory, before they are

written back to disk. These are the two golden rules underlying the design of “good” algorithms for

large datasets.

In the light of this new model, let us re-analyze the time complexity of algorithmsAs,b by taking

into account I/Os, given that the CPU time is still n and the space occupancy is n/B pages. We start

from the simplest settings for s and b in order to gain some intuitions about the general formulas.

The case s = 1 is obvious, algorithms A1,b scan A taking n/B I/Os independently of the value of

b which impacts on the logical partition of A, that is nevertheless scanned rightward without any

jumps, given that s = 1. The case b = n coincides with the previous one (independently of s),

because we are considering just one big block that coincides with A. As s and b change the situation

complicates, but by not much. Fix some b < B that, for simplicity, is assumed to divide the block-

size B and take s = 2. In this case, every block of size B consists of B/b smaller (logical) blocks

of size b, and the algorithm A2,b examines only half of them because of the jump s = 2. This

actually means that each disk-block is half utilized in the summing process, thus inducing a total

of 2n/B I/Os. It is then not difficult to generalize this formula to any s by writing a cost of sn/B

I/Os, which correctly gives n/B in the simplest cases dealt with above. This formula provides a

better approximation of the real time complexity of the algorithm, although it does not capture all

features of the disk. In fact, it considers all I/Os as equal, independently of their distribution. This is

clearly unprecise because on the disk sequential I/Os are faster than random I/Os.4 Referring to the

previous example, the algorithmsAs,B have the same I/O-complexity of n/B I/Os, independently of

s, although their behavior is rather different if executed on a (mechanical) disk because of the disk

4Conversely, this difference will be almost negligible in an (electronic) memory, such as the DRAM or the modern Solid-

State disks, where the distribution of the memory accesses does not significantly impact onto their final throughput.

1-6 Paolo Ferragina

seeks induced by larger and larger s. As a result, we can conclude that even the 2-level memory

model is an approximation of the behavior of real PCs, although it results sufficiently good that

it has been widely adopted in the literature to evaluate the performance of algorithms running on

massive datasets. So that, in order to be as much precise as possible, we will evaluate in these

notes our external-memory algorithms by specifying not only the number of executed I/Os but also

characterizing their distribution (random vs contiguous) over the disk.

At this point one could object that given the impressive technological advancements of the last

years, the internal-memory size M is so large that most of the working set of an algorithm (roughly

speaking, the set of pages it will reference in the near future) can be fit into it, thus reducing sig-

nificantly the case of an I/O-fault. We will argue that an even small portion of data resident to

disk makes the algorithm significantly slower than expected, and so, data organization cannot be

neglected even in these extremely favorable situations.

Let us see why, by means of a “back of the envelope” calculation! Assume that the input size

n = (1 + ε)M is larger than the internal-memory size of a factor ε > 0. The question is how

much ε impacts onto the average cost of an algorithm step, given that it may access a datum located

either in internal memory or on disk. To simplify our analysis, without renouncing to a meaningful

conclusion, we assume that p(ε) is the probability of an I/O-fault. An an example, if p(ε) = 1

then the algorithm always accesses its data on disk (i.e. one of the εM items); if p(ε) = ε then the

algorithm has a fully-random behavior in accessing its input data (since ε = (n − M)/M); finally,

if p(ε) = 0 then the algorithm has a working set smaller than the internal memory size, and thus it

does not execute any I/Os. Overall, p(ε) measures the un-locality of the memory references of the

analyzed algorithm.

To complete the notation, let us indicate with c the time needed for 1 I/O— we have c ≈ 105−106,

see above— and we set a to be the fraction of steps that induce a memory access in the running

algorithm (this is typically 30%−40%, according to [6]). Now we are ready to estimate the average

cost of the step for an algorithm working in this scenario:

1 × P(computation step) + tm × P(memory-access step),

where tm is the average cost of a memory access. To compute tm we have to distinguish two cases:

an in-memory access (occurring with probability 1 − p(ε)) or a disk access (occurring with proba-

bility p(ε)). So we have tm = 1 × (1 − p(ε)) + c × p(ε). Observing that P(memory-access step) +

P(computation step) = 1, and plugging the fraction of memory accesses P(memory access step) =

a, we derive the final formula:

(1 − a) × 1 + a × [1 × (1 − p(ε)) + c × p(ε)] = 1 + a × (1 + c) × p(ε) ≥ 3 × 104 × p(ε).

This formula clearly shows that, even for algorithms exploiting locality of references (i.e. a small

p(ε)), the slowdown may be significant and actually it turns out to be four order of magnitudes

larger than what might be expected (i.e. p(ε)). Just as an example, take an algorithm that exploits

locality of references in its memory accesses, say 1 out of 1000 memory accesses is on disk (i.e.

p(ε) = 0.001), then its performance on a massive dataset that is stored on disk would be slowed

down by a factor > 30 with respect to a computation executed completely in internal-memory.

It goes without saying that this is just the tip of the iceberg, because the larger is the amount

of data to be processed by an algorithm, the higher is the number of memory levels involved in

the storage of these data and, hence, the more variegate are the types of “memory faults” (say

cache-faults, memory-faults, etc.) to cope with for achieving efficiency. The overall message is that

neglecting questions pertaining to the cost of memory references in a hierarchical-memory system

may prevent the use of an algorithm on large input data.

Prologo 1-7

Motivated by these premises, these notes will provide few examples of challenging problems

which admit elegant algorithmic solutions whose efficiency is crucial to manage the large datasets

that occur in many real-world applications. Algorithm design will be accompanied by several com-

ments on the difficulties that underlie the engineering of those algorithms: how to turn a “theoreti-

cally efficient” algorithm into a “practically efficient” code. Too many times, as a theoretician, I got

the observation that “your algorithm is far from being amenable to an efficient implementation!”.

By following the recent surge of investigations in Algorithm Engineering [10] (to be not confused

with the “practice of Algorithms”), we will also dig into the deep computational features of some

algorithms by resorting few other successful models of computations— mainly the streaming model

[9] and the cache-oblivious model [5]. These models will allow us to capture and highlight some

interesting issues of the underlying computation: such as disk passes (streaming model), and uni-

versal scalability (cache-oblivious model). We will try our best to describe all these issues in their

simplest terms but, nonetheless to say, we will be unsuccessful in turning this “rocket science for

non-boffins” into a “science for dummies” [2]. In fact lots of many more things have to fall into

place for algorithms to work: top-IT companies (like Google, Yahoo, Microsoft, IBM, AT&T, Or-

acle, Facebook, etc.) are perfectly aware of the difficulty to find people with the right skills for

developing and refining “good” algorithms. This booklet will scratch just the surface of Algorithm

Design and Engineering, with the main goal of spurring inspiration into your daily job as software

designer or engineer.

References

[1] Person of the Year. Time Magazine, 168(27–28), December 2006.

[2] Business by numbers. The Economist, September 2007.

[3] Wikipedia’s entry: “Algorithm characterizations”, 2009. At

http://en.wikipedia.org/wiki/Algorithm characterizations

[4] Declan Butler. 2020 computing: Everything, everywhere, volume 440, chapter 3, pages

402–405. Nature Publishing Group, March 2006.

[5] Rolf Fagerberg. Cache-oblivious model. In Ming-Yang Kao, editor, Encyclopedia of

Algorithms. Springer, 2008.

[6] John L. Hennessy and David A. Patterson. Computer Architecture, Fourth Edition: A

Quantitative Approach. Morgan Kaufmann, September 2006.

[7] Donald Knuth. The Art of Computer Programming: Fundamental Algorithms, volume 1.

Addison-Wesley, 1973.

[8] Fabrizio Luccio. La struttura degli algoritmi. Boringhieri, 1982.

[9] S. Muthukrishnan. Data streams: Algorithms and applications. Foundations and

Trends in Theoretical Computer Science, 1(2), 2005.

[10] Peter Sanders. Algorithm engineering - an attempt at a definition. In Susanne Al-

bers, Helmut Alt, and Stefan Näher, editors, Efficient Algorithms, Essays Dedicated to

Kurt Mehlhorn on the Occasion of His 60th Birthday, volume 5760 of Lecture Notes in

Computer Science, pages 321–340. Springer, 2009.

[11] Jeffrey Scott Vitter. External memory algorithms and data structures. ACM Computing

Surveys, 33(2):209–271, 2001.

2
A warm-up!

“Everything should be made as
simple as possible, but not
simpler.”
Albert Einstein

2.1 A cubic-time algorithm . 2-2
2.2 A quadratic-time algorithm . 2-3
2.3 A linear-time algorithm . 2-4
2.4 Another linear-time algorithm . 2-6
2.5 Few interesting variants∞ . 2-8

Let us consider the following problem, surprisingly simple in its statement but not that much for

what concerns the design of its optimal solution.

Problem. We are given the performance of a stock at NYSE expressed as a sequence of

day-by-day differences of its quotations. We wish to determine the best buy-&-sell strategy

for that stock, namely the pair of days 〈b, s〉 that would have maximized our revenues if we

would have bought the stock at (the beginning of) day b and sold it at (the end of) day s.

The specialty of this problem is that it has a simple formulation, which finds many other useful

variations and applications. We will comment on them at the end of this lecture, now we content

ourselves by mentioning that we are interested in this problem because it admits a sequence of

algorithmic solutions of increasing sophistication and elegance, which imply a significant reduction

in their time complexity. The ultimate result will be a linear-time algorithm, i.e. linear in the

number n of stock quotations. This algorithm is optimal in terms of the number of executed steps,

because all day-by-day differences must be looked at in order to determine if they must be included

or not in the optimal solution, actually, one single difference could provide a one-day period worth

of investment! Surprisingly, the optimal algorithm will exhibit the simplest pattern of memory

accesses— it will execute a single scan of the available stock quotations— and thus it will offer

a streaming behavior, particularly useful in a scenario in which the granularity of the buy-&-sell

actions is not restricted to full-days and we must possibly compute the optimal time-window on-the-

fly as quotations oscillate. More than this, as we commented in the previous lecture, this algorithmic

scheme is optimal in terms of I/Os and uniformly over all levels of the memory hierarchy. In fact,

because of its streaming behavior, it will execute n/B I/Os independently of the disk-page size B,

which may be thus unknown to the underlying algorithm. This is the typical feature of the so called

cache-oblivious algorithms [5], which we will therefore introduce at the right point of this lecture.

This lecture will be the prototype of what you will find in the next pages: a simple problem

to state, with few elegant solutions and challenging techniques to teach and learn, together with

several intriguing extensions that can be posed as exercises to the students or as puzzles to tempt

your mathematical skills!

Let us now dig into the technicalities, and consider the following example. Take the case of 11

days of exchange for a given stock, and assume that D[1, 11] = [+4,−6,+3,+1,+3,−2,+3,−4,+1,

c© Paolo Ferragina 2-1

2-2 Paolo Ferragina

−9,+6] denotes the day-by-day differences of quotations of that stock. It is not difficult to convince

yourself that the gain of buying the stock at day x and selling it at day y is equal to the sum of the

values in D[x, y], namely the sum of all its fluctuations. As an example, take x = 1 and y = 2,

the gain is +4 − 6 = −2, and indeed we would loose 2 dollars in buying the morning of the first

day and selling the stock at the end of the second day. Notice that the starting value of the stock

is not crucial for determining the best time-interval of our investment, what it is important are its

variations. In other words, the problem stated above boils down to determine the sub-array of

D[1, n] which maximizes the sum of its elements. In the literature this problem is indeed known as

the maximum sub-array sum problem.

Problem Abstraction. Given an array D[1, n] of positive and negative numbers, we want

to find the sub-array D[b, s] which maximizes the sum of its elements.

It is clear that if all numbers are positive, then the optimal sub-array is the entire D: this is the case

of an always increasing stock price, why do we need to sell it before the last day? Conversely, if all

numbers are negative, then we can pick the one-element window containing the largest (negative)

value: if you are imposed to buy this poor stock, then do it in the day it looses the smallest value

and sell it soon! In all other cases, it is not at all clear where the optimum sub-array is located. In

the example, the optimum spans D[3, 7] = [+3,+1,+3,−2,+3] and has gain +8 dollars. This shows

that the optimum neither includes the best exploit of the stock (i.e. +6) nor it consists of positive

values only. The structure of the optimum sub-array is not simple but, surprisingly enough, not very

complicated as we will show in Section 2.3.

2.1 A cubic-time algorithm

We start by considering an inefficient solution which translates in pseudo-code the formulation of

the problem given above. This algorithm is detailed in Figure 1, where the pair of variables <bo, so>

identifies the current sub-array of maximum sum, whose value is stored in MaxSum. Initially MaxSum

is set to the dummy value −∞, so that it is immediately changed whenever the algorithm executes

Step 6 for the first time. The core of the algorithm examines all possible sub-arrays D[b, s] (Steps

2-3) computing for each of them the sum of their elements (Steps 4-6). If a sum larger than the

current maximal value is found (Steps 8-9), then TmpSum and its corresponding sub-array are stored

in MaxSum and <bo, so>, respectively.

Algorithm 1: The cubic-time algorithm

1: MaxS um = −∞
2: for (b = 1; b ≤ n; b++) do

3: for (s = b; s ≤ n; s++) do

4: TmpS um = 0

5: for (i = b; i ≤ s; i++) do

6: TmpS um+ = D[i];

7: end for

8: if (MaxS um < TmpS um) then

9: MaxS um = TmpS um; bo = b; so = s;

10: end if

11: end for

12: end for

13: return 〈MaxS um, bo, so〉;

A warm-up! 2-3

The correctness of the algorithm is immediate, since it checks all possible sub-arrays of D[1, n]

and selects the one whose sum of its elements is the largest (Step 6). The time complexity is cubic,

i.e. Θ(n3), and can be evaluated as follows. Clearly the time complexity is upper bounded by O(n3)

because we can form no more than n2

2
pairs <b,s> out of n elements,1 and n is an upper-bound to

the cost of computing the sum of each sub-array. Let us now show that the time cost is also Ω(n3),

so concluding that the time complexity is strictly cubic. To show this lower bound, we observe that

D[1, n] contains (n−L) sub-arrays of length L, and thus the cost of computing the sum for all of their

elements is (n− L)× L. Summing over all values of L, we would get the exact time complexity. But

here we are interested in a lower bound, so we can evaluate that cost just for the subset of sub-arrays

whose length L is in the range [n/4, n/2]. For each such L, we have that n − L ≥ n/2 and L ≥ n/4,

so the cost above is at least n2/8. Since we have n/4 of those Ls, the total cost for analyzing that

subset of sub-arrays is lower bounded by n3/32 = Ω(n3).

It is natural now to ask ourselves how much fast in practice is the designed algorithm. We im-

plemented it in Java and tested on a commodity PC. As n grows, its time performance reflects in

practice its cubic time complexity, evaluated in the RAM model. More precisely, it takes about 20

seconds to solve the problem for n = 103 elements, and about 30 hours for n = 105 elements. Too

much indeed if we wish to scale to very large sequences (of quotations), as we are aiming for in

these lectures.

2.2 A quadratic-time algorithm

The key inefficiency of the cubic-time algorithm resides in the execution of Steps 4-6 of the pseudo-

code in Figure 1. These steps re-compute from scratch the sum of the sub-array D[b, s] each time

its extremes change in Steps 2-3. But if we look carefully at the for-cycle of Step 3 we notice that

the variable s is incremented by one unit at a time from the value b (one element sub-array) to the

value n (the longest possible sub-array that starts at b). Therefore, from one execution to the next

one of Step 3, the sub-array to be summed changes from D[b, s] to D[b, s + 1]. It is thus immediate

to conclude that the new sum for D[b, s + 1] does not need to be recomputed from scratch, but can

be computed incrementally by just adding the value of the new element D[s+1] to the current value

of TmpSum (which inductively stores the sum of D[b, s]). This is exactly what the pseudo-code of

Figure 2 implements: its two main changes with respect to the cubic algorithm of Figure 1 are in

Step 3, that nulls TmpSum every time b is changed (because the sub-array starts again from length

1, namely D[b, b]), and in Step 5, that implements the incremental update of the current sum as

commented above. Such small changes are worth of a saving of Θ(n) additions per execution of

Step 2, thus turning the new algorithm to have quadratic-time complexity.

More precisely, let us concentrate on counting the number of additions executed by the algorithm

of Figure 2; this is the prominent operation of this algorithm so that its evaluation will give us an

estimate of its total number of steps. This number is2

n
∑

b=1

(1 +

n
∑

s=b

1) =

n
∑

b=1

(1 + (n − b)) = n × (n + 1) −
n
∑

b=1

b = n2 + n − n(n − 1)

2
= O(n2).

This improvement is effective also in practice. Take the same experimental scenario as above,

this new algorithm requires less than 1 second to solve the problem for n = 103 elements, and about

1For each pair < b, s >, with b ≤ s, D[b, s] is a possible sub-array, but D[s, b] is not.
2We use below the famous formula, discovered by the young Gauss, to compute the sum of the first n integers.

2-4 Paolo Ferragina

Algorithm 2: The quadratic-time algorithm

1: MaxS um = −∞;

2: for (b = 1; b ≤ n; b++) do

3: TmpS um = 0;

4: for (s = b; s ≤ n; s++) do

5: TmpS um += D[s];

6: if (MaxS um < TmpS um) then

7: MaxS um = TmpS um; bo = b; so = s;

8: end if

9: end for

10: end for

11: return 〈MaxS um, bo, so〉;

28 minutes to manage 106 elements. This means that the new algorithm is able to manage more

elements in “reasonable” time. Clearly, these timings and these numbers could change if we use a

different programming language (Java, in the present example), operating system (Windows, in our

example), and processor (the old Pentium IV, in our example). Nevertheless we believe that they

are interesting anyway because they provide a concrete picture of what it does mean a theoretical

improvement like the one we showed in the above paragraphs on a real situation. It goes without

saying that the life of a coder is typically not so easy because theoretically-good algorithms many

times hide so many details that their engineering is difficult and big-O notation often turn out to be

not much “realistic”. Do not worry, we will have time in these lectures to look at these issues in

more detail.

2.3 A linear-time algorithm

The final step of this lecture is to show that the maximum sub-array sum problem admits an elegant

algorithm that processes the elements of D[1, n] is a streaming fashion and takes the optimal O(n)

time. We could not aim for more!

To design this algorithm we need to dig into the structural properties of the optimal sub-array.

For the purpose of clarity, we refer the reader to Figure 2.1 below, where the optimal sub-array is

assumed to be located at two positions bo ≤ so in the range [1, n].

FIGURE 2.1: An illustrative example of Properties 1 and 2.

Let us now take a sub-array that starts before bo and ends at position bo − 1, say D[x, bo − 1]. The

sum of the elements in this sub-array cannot be positive because, otherwise, we could merge it with

A warm-up! 2-5

the (adjacent) optimal sub-array and thus get the longer sub-array D[x, so] having sum larger than

the one obtained with the (claimed) optimal D[bo, so]. So we can state the following:

Property 1. The sum of the elements in a sub-array D[x, bo − 1], with x < bo, cannot be (strictly)

positive.

Via a similar argument, we can consider a sub-array that is a prefix of the optimal D[bo, so], say

D[bo, y]. This sub-array cannot have negative sum of its elements because, otherwise, we could

drop it from the optimal solution and get a shorter array, namely D[y+ 1, so] having sum larger than

the one obtained by the (claimed) optimal D[bo, so]. So we can state the following other property:

Property 2. The sum of the elements in a sub-array D[bo, y], with y ≤ so, cannot be (strictly)

negative.

We remark that any one of the sub-arrays considered in the above two properties might have sum

equal to zero. This would not affect the optimality of D[bo, so], it could only introduce other optimal

solutions being either longer or shorter than D[bo, so].

Let us illustrate these two properties on the array D[1, 11] = [+4,−6,+3,+1,+3,−2,+3,−4,+1,

−9,+6]. Here the optimum sub-array is D[3, 7] = [+3,+1,+3,−2,+3]. We note that D[x, 2] is

always negative (Prop. 1), in fact for x = 1 the sum is +4 − 6 = −2 and for x = 2 the sum is −6. On

the other hand the sum of all elements in D[3, y] is positive for all prefixes of the optimum sub-array

(Prop. 2), namely y ≤ 7. We also point out that the sum of D[3, y] is positive even for some y > 7,

take for example D[3, 8] for which the sum is 4 and D[3, 9] for which the sum is 5. Of course, this

does not contradict Prop. 2.

Algorithm 3: The linear-time algorithm

1: MaxS um = −∞
2: b = 1; TmpS um = D[1];

3: for (s = 2; s ≤ n; s++) do

4: TmpS um += D[s];

5: if (MaxS um < TmpS um) then

6: MaxS um = TmpS um; bo = b; so = s;

7: end if

8: if (TmpS um < 0) then

9: TmpS um = 0; b = s + 1;

10: end if

11: end for

12: return 〈MaxS um, bo, so〉;

The two properties above lead to the simple Algorithm 3. It consists of one unique for-cycle (Step

3) which keeps in TmpSum the sum of a sub-array ending in the currently examined position s and

starting at some position b ≤ s. At any step of the for-cycle, the candidate sub-array is extended

one position to the right (i.e. s++), and its sum TmpSum is increased by the value of the added

element D[s] (Step 4). Since the current sub-array is a candidate to be the optimal one, its sum

is compared with the current optimal value (Step 5). Then, according to Prop. 1, if the sub-array

sum is negative, the current sub-array is discarded and the process “restarts” with a new sub-array

beginning at the next position s + 1 (Steps 8-9). Otherwise, the current sub-array is extended to the

right, by incrementing s. The tricky issue here is to show that the optimal sub-array is checked in

Step 5, and thus stored in < bo, so >. This is not intuitive at all because the algorithm is checking

2-6 Paolo Ferragina

n sub-arrays out of the Θ(n2) possible ones, and we want to show that this (minimal) subset of

candidates actually contains the optimal solution. This subset is minimal because these sub-arrays

form a partition of D[1, n] so that every element belongs to one, and only one, checked sub-array.

Moreover, since every element must be analyzed, we cannot discard any sub-array of this partition

without checking its sum!

Before digging into the formal proof of correctness, let us follow the execution of the algorithm

over the array D[1, 11] = [+4,−6,+3,+1,+3,−2,+3,−4,+1,−9,+6]. Remember that the optimum

sub-array is D[3, 7] = [+3,+1,+3,−2,+3]. We note that D[x, 2] is negative for x = 1, 2, so the

algorithm surely zeroes the variable TmpSum when s = 2 in Steps 8-9. At that time, b is set to 3 and

TmpSum is set to 0. The subsequent scanning of the elements s = 3, . . . , 7 will add their values to

TmpSum which is always positive (see above). When s = 7, the examined sub-array coincides with

the optimal one, we thus have TmpSum = 8, so Step 5 stores the optimum location in < bo, so >. It is

interesting to notice that, in this example, the algorithm does not re-start the value of TmpSum at the

next position s = 8 because it is still positive (namely, TmpSum = 4); this means that the algorithm

will examine sub-arrays longer than the optimal one, but all having a smaller sum, of course. The

next re-starting will occur at position s = 10 where TmpSum = −4.

It is easy to realize that the time complexity of the algorithm is O(n) because every element is

examined just once. More tricky is to show that the algorithm is correct, which actually means that

Steps 4 and 5 eventually compute and check the optimal sub-array sum. To show this, it suffices

to prove the following two facts: (i) when s = bo − 1, Step 8 resets b to bo; (ii) for all subsequent

s = bo, . . . , so, Step 8 never resets b so that it will eventually compute in TmpSum the sum of all

elements in D[bo, so], whenever s = so. It is not difficult to see that Fact (i) derives from Property

1, and Fact (ii) from Property 2.

This algorithm is very fast in the same experimental scenario mentioned before, it takes less than

1 second to process millions of quotations. A truly scalable algorithm, indeed, with many nice

features that make it appealing also in a hierarchical-memory setting. In fact, this algorithm scans

the array D from left to right and examines each of its elements just once. If D is stored on disk,

these elements are fetched in internal memory one page at a time. Hence the algorithm executes

n/B I/Os, which is optimal. It is interesting to note that the design of the algorithm does not depend

on B (which indeed does not appear in the pseudo-code), but we can evaluate its I/O-complexity in

terms of B. Hence the algorithm takes n/B optimal I/Os independently of the the page size B, and

thus subtly on the hierarchical-memory levels interested by the algorithm execution. Decoupling

the use of the parameter B between algorithm design and algorithm analysis is the key issue of the

so called cache-oblivious algorithms, which are a hot topic of algorithmic investigation nowadays.

This feature is achieved here in a basic (trivial) way by just adopting a scan-based approach. The

literature [5] offers more sophisticated results regarding the design of cache-oblivious algorithms

and data structures.

2.4 Another linear-time algorithm

There exists another optimal solution to the maximum sub-array sum problem which hinges on a

different algorithm design. For simplicity of exposition, let us denote by S umD[y′, y′′] the sum of

the elements in the sub-array D[y′, y′′]. Take now a selling time s and consider all sub-arrays that

end at s: namely we are interested in sub-arrays having the form D[x, s], with x ≤ s. The value

S umD[x, s] can be expressed as the difference between S umD[1, s] and S umD[1, x − 1]. Both of

these sums are indeed prefix-sums over the array D. As a result, we can rephrase our maximization

problem as follows:

max
b≤s

SumD[b, s] = max
b≤s

(SumD[1, s] − SumD[1, b − 1]).

A warm-up! 2-7

We notice that if b = 1 the second term refers to the empty sub-array D[1, 0]; so we can assume

that S umD[1, 0] = 0. This is the case in which D[1, s] is the sub-array of maximum sum among all

the sub-arrays ending at s (so no prefix sub-array D[1, b − 1] is dropped from it).

The next step is to pre-compute all prefix sums P[i] = S umD[1, i] in O(n) time and O(n) space

via a scan of the array D: Just notice that P[i] = P[i − 1] + D[i], where we set P[0] = 0 in order

to manage the special case above. Hence we can rewrite the maximization problem in terms of

the array P, rather than S umD: maxb≤s(P[s] − P[b − 1]). The cute observation now is that we can

decompose the max-computation into a max-min calculation over the two variables b and s

max
b≤s

(P[s] − P[b − 1]) = max
s

(P[s] −min
b≤s

P[b − 1]).

The key idea is that we can move P[s] outside the min-calculation because it does not depend on

the variable b. The final step is then to pre-compute the minimum minb≤s P[b − 1] for all positions

s, and store it in an array M[0, n − 1]. We notice that, also in this case, the computation of M[i] can

be performed via a single scan of P in O(n) time and space: set M[0] = 0 and then derive M[i] as

min{M[i−1], P[i]}. Given M, we can rewrite the formula above as maxs(P[s]−M[s−1]) which can

be clearly computed in O(n) time given the two arrays P and M. Overall this new approach takes

O(n) time and O(n) extra space.

As an illustrative example, consider again the array D[1, 11] = [+4,−6,+3,+1,+3,−2,+3,−4,+1,

−9,+6]. We have that P[0, 11] = [0,+4,−2,+1,+2,+5,+3,+6,+2,+3,−6, 0] and M[0, 10] =

[0, 0,−2,−2,−2,−2,−2,−2,−2,−2,−6]. If we compute the difference P[s] − M[s − 1] for all

s = 1, . . . , n, we obtain the sequence of values [+4,−2,+3,+4,+7,+5, +8,+4,+5,−4,+6], whose

maximum (sum) is +8 that occurs (correctly) at position s = 7. It is interesting to note that the left-

extreme bo of the optimal sub-array could be derived by finding the position bo − 1 where P[bo − 1]

is minimum: in the example, P[2] = −2 and thus bo = 3.

Algorithm 4: Another linear-time algorithm

1: MaxS um = −∞;

2: TmpS um = 0; MinTmpS um = 0;

3: for (s = 1; s ≤ n; s++) do

4: TmpS um += D[s];

5: if (MaxS um < TmpS um − MinTmpS um) then

6: MaxS um = TmpS um; so = s;

7: end if

8: if (TmpS um < MinTmpS um) then

9: TmpS um = MinTmpS um; bo = s + 1;

10: end if

11: end for

12: return 〈MaxS um, bo, so〉;

We conclude this section by noticing that the proposed algorithm executes three passes over the

array D, rather than the single pass of Algorithm 3. It is not difficult to turn this algorithm to

make one-pass too. It suffices to deploy the associativity of the min/max functions, and use two

variables that inductively keep the values of P[s] and M[s−1] as the array D is scanned from left to

right. Algorithm 4 implements this idea by using the variable TmpSum to store P[s] and the variable

MinTmpSum to store M[s−1]. This way the formula maxs(P[s]−M[s−1]) is evaluated incrementally

for s = 1, . . . , n, thus avoiding the two passes for pre-calculating the arrays P and M and the extra-

2-8 Paolo Ferragina

space needed to store them. One pass over D is then enough, and so we have re-established the nice

algorithmic properties of Algorithm 3 but with a completely different design!

2.5 Few interesting variants∞

As we promised at the beginning of this lecture, we discuss now few interesting variants of the

maximum sub-array sum problem. For further algorithmic details and formulations we refer the

interested reader to [2, 3]. Note that this is a challenging section, because it proposes an algorithm

whose design and analysis are sophisticated!

Sometimes in the bio-informatics literature the term “sub-array” is substituted by “segment”, and

the problem takes the name of “maximum-sum segment problem”. In the bio-context the goal is to

identify segments which occur inside DNA sequences (i.e. strings of four letters A, T, G, C) and

are rich of G or C nucleotides. Biologists believe that these segments are biologically significant

since they predominantly contain genes. The mapping from DNA sequences to arrays of numbers,

and thus to our problem abstraction, can be obtained in several ways depending on the objective

function that models the GC-richness of a segment. Two interesting mappings are the following:

• Assign a penalty −p to the nucleotides A and T of the sequence, and a reward 1 − p

to the nucleotides C and G. Given this assignment, the sum of a segment of length l

and containing x occurrences of C+G is equal to x − p × l. Biologists think that this

function is a good measure for the CG-richness of that segment. Interestingly enough,

all algorithms described in the previous sections can be used to identify the CG-rich

segments of a DNA sequence in linear time, according to this objective function. Often,

however, biologists prefer to define a cutoff range on the length of the segments for

which the maximum sum must be searched, in order to avoid reporting extremely short

or extremely long segments. In this new scenario the algorithms of the previous sections

cannot be applied, but yet linear-time optimal solutions are known for them (see e.g.

[3]).

• Assign a value 0 to the nucleotides A and T of the sequence, and a value 1 to the nu-

cleotides C and G. Biologists think that another good measure for the CG-richness of a

segment is its density of C+G nucleotides. That is, a segment of length l containing x

occurrences of C and G has density x/l. Clearly 0 ≤ x/l ≤ 1 and every single occur-

rence of a nucleotide C or G provides a segment with maximum density 1. Therefore,

even in this case and with the goal of turning the problem into an interesting one, biol-

ogists introduced a cutoff range on the length of the searched segments. This problem

is more difficult than the one stated in the previous item, nevertheless it posses optimal

(quasi-)linear time solutions which are much sophisticated and for which we refer the

interested reader to the pertinent bibliography (e.g. [2, 4, 5]).

These examples are useful to highlight a dangerous trap that often occurs when abstracting a real

problem: apparently small changes in the problem formulation lead to big jumps in the complexity

of designing efficient algorithms for them. Think for example to the density function above, we

needed to introduce a cutoff lower-bound to the segment length in order to avoid the trivial solu-

tion consisting of single nucleotides C or G! With this “small” change, the problem results more

challenging and its solutions sophisticated.

Other subtle traps are more difficult to be discovered. Assume that we decide to circumvent the

single-nucleotide outcome by searching for the the longest segment whose density is larger than

a fixed value d. This is, in some sense, a complementary formulation of the problem stated in the

second item above, because maximization is here on the segment length and a (lower) cut-off is

imposed on the density value. It is possible to reduce this density-based problem to a sum-based

A warm-up! 2-9

problem, in the spirit of the one stated in the first item above, and solved in the previous sections.

Algorithmic reductions are often employed by researchers to re-use known solutions and thus do

not re-discover again and again the “hot water”. To prove this reduction it is enough to notice that:

SumD[x, y]

y − x + 1
=

y
∑

k=x

D[k]

y − x + 1
≥ d ⇐⇒

y
∑

k=x

(D[k] − d) ≥ 0.

Therefore, subtracting to all elements in D the density-threshold d, we can turn the problem stated

in the second item above into the one that asks for the longest segment that has sum larger than the

value s = 0. Be careful that if you change the request from the longest segment to the shortest one

whose density is larger than a threshold s, then the problem becomes trivial again: Just take the

single occurrence of a nucleotide C or G. Similarly, if we fix an upper bound S to the segment’s

sum (instead of a lower bound), then we can change the sign to all D’s elements and thus turn the

problem again into a problem with a lower bound s = −S . So let us stick on the following general

formulation:

Problem. Given an array D[1, n] of positive and negative numbers, we want to find the

longest segment in D whose sum of its elements is larger than a fixed threshold s.

We notice that this formulation is in some sense a complement of the one given in the first item

above. Here we maximize the segment length and pose a lower-bound to the sum of its elements;

there, we maximized the sum of the segment provided that its length was within a given range. It

is nice to observe that the structure of the algorithmic solution for both problems is similar, so we

detail only the former one and refer the reader to the literature for the latter.

The algorithm proceeds inductively by assuming that, at step i = 1, 2, . . . , n, it has computed

the longest sub-array having sum larger than s and occurring within D[1, i − 1]. Let us denote the

solution available at the beginning of step i with D[li−1, ri−1]. Initially we have i = 1 and thus the

inductive solution is the empty one, hence having length equal to 0. To move from step i to step

i + 1, we need to compute D[li, ri] by possibly taking advantage of the currently known solution.

It is clear that the new segment is either inside D[1, i − 1] (namely ri < i) or it ends at position

D[i] (namely ri = i). The former case admits as solution the one of the previous iteration, namely

D[li−1, ri−1], and so nothing has to be done: just set ri = ri−1 and li = li−1. The latter case is more

involved and requires the use of some special data structures and a tricky analysis to show that the

total complexity of the solution proposed is O(n) in space and time, thus optimal!

We start by making a simple, yet effective, observation:

FACT 2.1

If ri = i then the segment D[li, ri] must be strictly longer than the segment D[li−1, ri−1]. This

means in particular that li occurs to the left of position Li = i − (ri−1 − li−1).

The proof of this fact follows immediately by the observation that, if ri = i, then the current step

i has found a segment that improves the previously known one. Here “improved” means “longer”

because the other constraint imposed by the problem formulation is boolean since it refers to a

lower-bound on the segment’s sum. This is the reason why we can discard all positions within the

range [Li, i], in fact they originate intervals of length shorter or equal than the previous solution

D[li−1, ri−1].

Reformulated Problem. Given an array D[1, n] of positive and negative numbers, we

want to find at every step the smallest index li ∈ [1, Li) such that SumD[li, i] ≥ s.

We point out that there could be many such indexes li, here we wish to find the smallest one

because we aim at determining the longest segment.

2-10 Paolo Ferragina

At this point it is useful to recall that SumD[li, i] can be re-written in terms of prefix-sums of

array D, namely SumD[1, i] − SumD[1, li − 1] = P[i] − P[li − 1] where the array P was introduced

in Section 2.4. So we need to find the smallest index li ∈ [1, Li) such that P[i] − P[li − 1] ≥ s. The

array P can be pre-computed in linear time and space.

It is worth to observe that the computation of li could be done by scanning P[1, Li − 1] and

searching for the leftmost index x such that P[i] − P[x] ≥ s. We could then set li = x + 1 and have

been done. Unfortunately, this is inefficient because it leads to scan over and over again the same

positions of P as i increases, thus leading to a quadratic-time algorithm! Since we aim for a linear-

time algorithm, we need to spend constant time “on average” per step i. We used the quotes because

there is no stochastic argument here to compute the average, we wish only to capture syntactically

the idea that, since we want to spend O(n) time in total, our algorithm has to take constant time

amortized per steps. In order to achieve this performance we first need to show that we can avoid

the scanning of the whole prefix P[1, Li − 1] by identifying a subset of candidate positions for x.

Call Ci, j the candidate positions for iteration i, where j = 0, 1, They are defined as follows:

Ci,0 = Li (it is a dummy value), and Ci, j is defined inductively as the leftmost minimum of the sub-

array P[1,Ci, j−1 − 1] (i.e. the sub-array to the left of the current minimum and/or to the left of Li).

We denote by c(i) the number of these candidate positions for the step i, where clearly c(i) ≤ Li

(equality holds when P[1, Li] is decreasing).

For an illustrative example look at Figure 2.2, where c(i) = 3 and the candidate positions are

connected via leftward arrows.

FIGURE 2.2: An illustrative example for the candidate positions Ci, j, given an array P of prefix

sums. The picture is generic and reports only Li for simplicity.

Looking at Figure 2.2 we derive three key properties whose proof is left to the reader because it

immediately comes from the definition of Ci, j:

Property a. The sequence of candidate positions Ci, j occurs within [1, Li) and moves leftward,

namely Ci, j < Ci, j−1 < . . . < Ci,1 < Ci,0 = Li.

Property b. At each iteration i, the sequence of candidate values P[Ci, j] is increasing with j =

1, 2, . . . , c(i). More precisely, we have P[Ci, j] > P[Ci, j−1] > . . . > P[Ci,1] where the indices move

leftward according to Property (a).

Property c. The value P[Ci, j] is smaller than any other value on its left in P, because it is the

leftmost minimum of the prefix P[1,Ci, j−1 − 1].

It is crucial now to show that the index we are searching for, namely li, can be derived by looking

only at these candidate positions. In particular we can prove the following:

FACT 2.2

A warm-up! 2-11

At each iteration i, the largest index j∗ such that SumD[Ci, j∗ + 1, i] ≥ s (if any) provides us with

the longest segment we are searching for.

By Fact 2.1 we are interested in segments having the form D[li, i] with li < Li, and by properties

of prefix-sums, we know that SumD[Ci, j + 1, i] can be re-written as P[i] − P[Ci, j]. Given this and

Property (c), we can conclude that all segments D[z, i], with z < Ci, j, have a sum smaller than

SumD[Ci, j+1, i]. Consequently, if we find that SumD[Ci, j+1, i] < s for some j, then we can discard

all positions z to the left of Ci, j + 1 in the search for li. Therefore the index j∗ characterized in

Fact 2.2 is the one giving correctly li = Ci, j∗ + 1.

There are two main problems in deploying the candidate positions for the efficient computation

of li: (1) How do we compute the Ci, js as i increases, (2) How do we search for that candidate index

j∗. To address issue (1) we notice that the computation of Ci, j depends only on the position of the

previous Ci, j−1 and not on the indices i or j. So we can define an auxiliary array LMin[1, n] such that

LMin[i] is the leftmost position of the minimum within P[1, i−1]. It is not difficult to see that Ci,1 =

LMin[Li], and that according to the definition of the Cs it is Ci,2 = LMin[LMin[Li]] = LMin2[Li].

In general, it is Ci,k = LMink[Li]. This way of writing the Cs allows an incremental computation of

them:

LMin[x] =

0 if x = 0

x − 1 if P[x − 1] < P[LMin[x − 1]]

LMin[x − 1] otherwise

The formula above has an easy explanation. We know inductively LMin[x − 1] as the leftmost

minimum in the array P[1, x − 2]: initially we set LMin[0] to the dummy value 0. To compute

LMin[x] we need to determine the leftmost minimum in P[1, x − 1]: this is located either in x − 1

(with value P[x − 1]) or it is the one determined for P[1, x − 2] of position LMin[x − 1] (with value

P[LMin[x − 1]]). Therefore, by comparing these two values we can compute LMin[x] in constant

time. Hence the computation of all candidate positions LMin[1, n] takes O(n) time.

We are left with the problem of determining j∗ efficiently. We will not be able to compute j∗ in

constant time at each iteration i but we will show that, if at step i we execute si > 1 steps, then we

are advancing in the construction of the longest solution. Specifically, we are extending the length

of that solution by Θ(si) units. Given that the longest segment cannot be longer than n, the sum

of these extra-costs cannot be larger than O(n), and thus we are done! This is called amortized

argument because we are in some sense charging the cost of the expensive iterations to the cheapest

ones.

The computation of j∗ at iteration i requires the check of the positions LMink[Li] for k = 1, 2, . . .

until the condition in Fact 2.2 is satisfied. This takes j∗ steps and finds a new segment whose length

is increased by at least j∗ units, given Property (a) above. This means that either an iteration i takes

constant time, because the check fails immediately at LMin[Li] (so the current solution is not better

than the one computed at the previous iteration i − 1), or the iteration takes O(j∗) time but the new

segment D[Li, ri] has been extended by j∗ units. Since a segment cannot be longer than the entire

sequence D[1, n], we can conclude that the total extra-time cannot be larger than O(n).

We leave to the diligent reader to work out the details of the pseudo-code of this algorithm, the

techniques underlying its elegant design and analysis should be clear enough to approach it without

any difficulties.

References

[1] Jon Bentley. Programming Pearls. Column 8: ”Algorithm design techniques”, Addison

Wesley, 2000.

2-12 Paolo Ferragina

[2] Kun-Mao Chao. Maximum-density segment. In Ming-Yang Kao, editor, Encyclopedia

of Algorithms. Springer, 2008.

[3] Kun-Mao Chao. Maximum-scoring segment with length restrictions. In Ming-Yang

Kao, editor, Encyclopedia of Algorithms. Springer, 2008.

[4] Chih-Huai Cheng, Hsiao-Fei Liu, and Kun-Mao Chao. Optimal algorithms for the

average-constrained maximum-sum segment problem. Information Processing Letters,

109(3):171–174, 2009.

[5] Takeshi Fukuda, Yasuhiko Morimoto, Shinichi Morishita, and Takeshi Tokuyama. Min-

ing optimized association rules for numeric attributes. Journal of Computer System

Sciences, 58(1):1–12, 1999.

