
Algorithms Lecture 8: Treaps and Skip Lists

subtree and the right subtree. Since both algorithms define the same two subproblems, by induction,

both algorithms perform the same comparisons.

We even saw the probability 1

|k−i|+1
before, when we were talking about sorting nuts and bolts

with a variant of randomized quicksort. In the more familiar setting of sorting an array of numbers,

the probability that randomized quicksort compares the ith largest and kth largest elements is exactly
2

|k−i|+1
. The binary tree version compares x i and xk if and only if x i is an ancestor of xk or vice versa, so

the probabilities are exactly the same.

8.5 Skip Lists

Skip lists, which were first discovered by Bill Pugh in the late 1980’s,7 have many of the usual desirable

properties of balanced binary search trees, but their structure is very different.

At a high level, a skip list is just a sorted linked list with some random shortcuts. To do a search in a

normal singly-linked list of length n, we obviously need to look at n items in the worst case. To speed

up this process, we can make a second-level list that contains roughly half the items from the original

list. Specifically, for each item in the original list, we duplicate it with probability 1/2. We then string

together all the duplicates into a second sorted linked list, and add a pointer from each duplicate back

to its original. Just to be safe, we also add sentinel nodes at the beginning and end of both lists.

−∞ +∞

−∞ +∞

1 2 3 4 5 6 7 8 90

1 6 7 90 3

A linked list with some randomly-chosen shortcuts.

Now we can find a value x in this augmented structure using a two-stage algorithm. First, we scan

for x in the shortcut list, starting at the −∞ sentinel node. If we find x , we’re done. Otherwise, we

reach some value bigger than x and we know that x is not in the shortcut list. Let w be the largest item

less than x in the shortcut list. In the second phase, we scan for x in the original list, starting from w.

Again, if we reach a value bigger than x , we know that x is not in the data structure.

−∞ +∞

−∞ +∞

1 2 3 4 5 6 7 8 90

1 6 7 90 3

Searching for 5 in a list with shortcuts.

Since each node appears in the shortcut list with probability 1/2, the expected number of nodes

examined in the first phase is at most n/2. Only one of the nodes examined in the second phase has

a duplicate. The probability that any node is followed by k nodes without duplicates is 2−k, so the

expected number of nodes examined in the second phase is at most 1+
∑

k≥0 2−k = 2. Thus, by adding

these random shortcuts, we’ve reduced the cost of a search from n to n/2+ 2, roughly a factor of two in

savings.

8.6 Recursive Random Shortcuts

Now there’s an obvious improvement—add shortcuts to the shortcuts, and repeat recursively. That’s

exactly how skip lists are constructed. For each node in the original list, we flip a coin over and over

until we get tails. For each heads, we make a duplicate of the node. The duplicates are stacked up in

levels, and the nodes on each level are strung together into sorted linked lists. Each node v stores a

7William Pugh. Skip lists: A probabilistic alternative to balanced trees. Commun. ACM 33(6):668–676, 1990.

6

Algorithms Lecture 8: Treaps and Skip Lists

search key (key(v)), a pointer to its next lower copy (down(v)), and a pointer to the next node in its

level (right(v)).

−∞ +∞

−∞ +∞

−∞ +∞

−∞ +∞

−∞ +∞

−∞ +∞

1 2 3 4 5 6 7 8 90

1 6 7 90

1 6 7

3

1 7

7

A skip list is a linked list with recursive random shortcuts.

The search algorithm for skip lists is very simple. Starting at the leftmost node L in the highest level,

we scan through each level as far as we can without passing the target value x , and then proceed down

to the next level. The search ends when we either reach a node with search key x or fail to find x on the

lowest level.

SKIPLISTFIND(x , L):

v ← L

while (v 6= NULL and key(v) 6= x)

if key(right(v))> x

v ← down(v)

else

v ← right(v)

return v

−∞ +∞1 2 3 4 5 6 7 8 90

−∞ +∞1 6 7 90

−∞ +∞1 6 7

3

−∞ +∞1 7

−∞ +∞7

−∞ +∞

Searching for 5 in a skip list.

Intuitively, since each level of the skip lists has about half the number of nodes as the previous level,

the total number of levels should be about O(log n). Similarly, each time we add another level of random

shortcuts to the skip list, we cut the search time roughly in half, except for a constant overhead, so after

O(log n) levels, we should have a search time of O(log n). Let’s formalize each of these two intuitive

observations.

8.7 Number of Levels

The actual values of the search keys don’t affect the skip list analysis, so let’s assume the keys are the

integers 1 through n. Let L(x) be the number of levels of the skip list that contain some search key x , not

7

Algorithms Lecture 8: Treaps and Skip Lists

counting the bottom level. Each new copy of x is created with probability 1/2 from the previous level,

essentially by flipping a coin. We can compute the expected value of L(x) recursively—with probability

1/2, we flip tails and L(x) = 0; and with probability 1/2, we flip heads, increase L(x) by one, and

recurse:

E[L(x)] =
1

2
· 0+

1

2

!

1+ E[L(x)]
�

Solving this equation gives us E[L(x)] = 1.

In order to analyze the expected worst-case cost of a search, however, we need a bound on the

number of levels L =maxx L(x). Unfortunately, we can’t compute the average of a maximum the way we

would compute the average of a sum. Instead, we will derive a stronger result, showing that the depth is

O(log n) with high probability. ‘High probability’ is a technical term that means the probability is at

least 1− 1/nc for some constant c ≥ 1; the hidden constant in the O(log n) bound could depend on c.

In order for a search key x to appear on level `, it must have flipped ` heads in a row when it was

inserted, so Pr[L(x) ≥ `] = 2−`. The skip list has at least ` levels if and only if L(x)≥ ` for at least one

of the n search keys.

Pr[L ≥ `] = Pr
�

(L(1)≥ `) ∨ (L(2)≥ `) ∨ · · · ∨ (L(n)≥ `)
�

Using the union bound — Pr[A∨ B]≤ Pr[A] + Pr[B] for any random events A and B — we can simplify

this as follows:

Pr[L ≥ `] ≤

n
∑

x=1

Pr[L(x)≥ `] = n · Pr[L(x)≥ `] =
n

2`
.

When `≤ lg n, this bound is trivial. However, for any constant c > 1, we have a strong upper bound

Pr[L ≥ c lg n]≤
1

nc−1
.

We conclude that with high probability, a skip list has O(log n) levels.

This high-probability bound indirectly implies a bound on the expected number of levels. Some

simple algebra gives us the following alternate definition for expectation:

E[L] =
∑

`≥0

` · Pr[L = `] =
∑

`≥1

Pr[L ≥ `]

Clearly, if ` < `′, then Pr[L(x)≥ `] > Pr[L(x)≥ `′]. So we can derive an upper bound on the expected

number of levels as follows:

E[L(x)] =
∑

`≥1

Pr[L ≥ `]

=

lg n
∑

`=1

Pr[L ≥ `] +
∑

`≥lg n+1

Pr[L ≥ `]

≤

lg n
∑

`=1

1 +
∑

`≥lg n+1

n

2`

= lg n+
∑

i≥1

1

2i
[i = `− lg n]

= lg n+ 2

So in expectation, a skip list has at most two more levels than an ideal version where each level contains

exactly half the nodes of the next level below.

8

Algorithms Lecture 8: Treaps and Skip Lists

8.8 Logarithmic Search Time

It’s a little easier to analyze the cost of a search if we imagine running the algorithm backwards.

SKIPLISTFIND takes the output from SKIPLISTFIND as input and traces back through the data structure to

the upper left corner. Skip lists don’t really have up and left pointers, but we’ll pretend that they do so

we don’t have to write ‘ v←down(v) ’ or ‘ v←right(v) ’.8

SKIPLISTFIND (v):

while (v 6= L)

if up(v) exists

v ← up(v)

else

v ← left(v)

Now for every node v in the skip list, up(v) exists with probability 1/2. So for purposes of analysis,

SKIPLISTFIND is equivalent to the following algorithm:

FLIPWALK(v):

while (v 6= L)

if COINFLIP = HEADS

v ← up(v)

else

v ← left(v)

Obviously, the expected number of heads is exactly the same as the expected number of TAILs. Thus,

the expected running time of this algorithm is twice the expected number of upward jumps. Since we

already know that the number of upward jumps is O(log n) with high probability, we can conclude that

the worst-case search time is O(log n) with high probability (and therefore in expectation).

8 LeonardodaVinciusedtowriteeverythingthisway,butnotbecausehewantedtokeephisdiscoveriessecret.

Hejusthadreallybadarthritisinhisrighthand!

9

