COMPETITIVE ONLINE ALGORITHMS

1 Online algorithms and competitive
analysis

1.1 Basic definitions

Formally, many online problems can be described as follows. An
online algorithm A is presented with a request sequence o = o(1),
0(2),...,0(m). The algorithm A has to serve each request online,
i.e., without knowledge of future requests. More precisely, when
serving request o(t), 1 <t < m, the algorithm does not know any
request o(t') with ¢/ > ¢. Serving requests incurs cost, and the goal is
to serve the entire request sequence so that the total cost is as small
as possible. This setting can also be regarded as a request-answer
game: An adversary generates requests, and an online algorithm has
to serve them one at a time.

In order to illustrate this formal model, we mention a concrete online
problem.

The paging problem: Consider a two-level memory system that
consists of a small fast memory and a large slow memory. Here, each
request specifies a page in the memory system. A request is served
if the corresponding page is in fast memory. If a requested page is
not in fast memory, a page fault occurs. Then a page must be moved
from fast memory to slow memory so that the requested page can
be loaded into the vacated location. A paging algorithms specifies
which page to evict on a fault. If the algorithm is online, then the
decision which page to evict must be made without knowledge of
any future requests. The cost to be minimized is the total number
of page faults incurred on the request sequence.

Sleator and Tarjan [48] suggested to evaluate the performance on
an online algorithm using competitive analysis. In a competitive
analysis, an online algorithm A is compared to an optimal offline
algorithm. An optimal offline algorithm knows the entire request

1

COMPETITIVE ONLINE ALGORITHMS

sequence in advance and can serve it with minimum cost. Given a
request sequence o, let C'4(o) denote the cost incurred by A and let
Copr(c) denote the cost paid by an optimal offline algorithm OPT.
The algorithm A is called c-competitive if there exists a constant a
such that

Calo) < c-Copr(c)+a

for all request sequences o. Here we assume that A is a deterministic
online algorithm. The factor ¢ is also called the competitive ratio of

A.

1.2 Results on deterministic paging algorithms
We list three well-known deterministic online paging algorithms.

o LRU (Least Recently Used): On a fault, evict the page in fast
memory that was requested least recently.

e FIFO (First-In First-Out): Evict the page that has been in

fast memory longest.

o LFU (Least Frequently Used): Evict the page that has been
requested least frequently.

Before analyzing these algorithms, we remark that Belady [12] ex-
hibited an optimal offline algorithm for the paging problem. The
algorithm is called MIN and works as follows.

e MIN: On a fault, evict the page whose next request occurs
furthest in the future.

Belady showed that on any sequence of requests, MIN achieves the
minimum number of page faults.

Throughout these notes, when analyzing paging algorithms, we de-
note by k£ the number of pages that can simultaneously reside in

2

1. ONLINE ALGORITHMS AND COMPETITIVE ANALYSIS

fast memory. It is not hard to see that the algorithm LFU is not
competitive. Sleator and Tarjan [48] analyzed the algorithms LRU
and FIFO and proved the following theorem.

Theorem 1 The algorithms LRU and FIFO are k-competitive.

Proof: We will show that LRU is k-competitive. The analysis for
FIFO is very similar. Consider an arbitrary request sequence o =
o(1),0(2),...,0(m). We will prove that Crru(c) < k- Copr(o).
Without loss of generality we assume that LRU and OPT initially
start with the same fast memory.

We partition o into phases P(0), P(1), P(2),... such that LRU has
at most k fault on P(0) and exactly k faults on P(2), for every ¢ > 1.
Such a partitioning can be obtained easily. We start at the end of
o and scan the request sequence. Whenever we have seen k faults
made by LRU, we cut off a new phase. In the remainder of this
proof we will show that OPT has at least one page fault during each
phase. This establishes the desired bound.

For phase P(0) there is nothing to show. Since LRU and OPT
start with the same fast memory, OPT has a page fault on the first
request on which LRU has a fault.

Consider an arbitrary phase P(¢),¢ > 1. Let o(¢;) be the first request
in P(7) and let o(¢;41 — 1) be the last request in P(¢). Furthermore,
let p be the page that is requested last in P(¢ — 1).

Lemma 1 P(i) contains requests to k distinct pages that are dif-
ferent from p.

If the lemma holds, then OPT must have a page fault in P(z). OPT
has page p in its fast memory at the end of P(i —1) and thus cannot
have all the other k& pages request in P(z) in its fast memory.

It remains to prove the lemma. The lemma clearly holds if the &
requests on which LRU has a fault are to k& distinct pages and if

3

COMPETITIVE ONLINE ALGORITHMS

these pages are also different from p. So suppose that LRU faults
twice on a page ¢ in P(z). Assume that LRU has a fault on o(s1) =
g and o(sy) = ¢, with t; < 87 < s3 < ;41 — 1. Page ¢ is in
LRU’s fast memory immediately after o(sy) is served and is evicted
at some time t with s < t < s;. When ¢ is evicted, it is the
least recently requested page in fast memory. Thus the subsequence
o(s1),...,0(t) contains requests to k& + 1 distinct pages, at least k
of which must be different from p.

Finally suppose that within P(¢), LRU does not fault twice on page
but on one of the faults, page p is request. Let ¢ > ¢; be the first
time when p is evicted. Using the same arguments as above, we
obtain that the subsequence o(t; — 1),0(t;),...,0(t) must contain
k + 1 distinct pages. a

The next theorem is also due to Sleator and Tarjan [48]. It implies
that LRU and FIFO achieve the best possible competitive ratio.

Theorem 2 Let A be a deterministic online paging algorithm. If A
is c-competitive, then ¢ > k.

Proof: Let S = {pi,p2,...,prs1} be a set of k+ 1 arbitrary pages.
We assume without loss of generality that A and OPT initially have
Pi,...,pr 10 their fast memories.

Consider the following request sequence. Each request is made to
the page that is not in A’s fast memory.

Online algorithm A has a page fault on every request. Suppose that
OPT has a fault on some request o(t). When serving o(t), OPT
can evict a page is not requested during the next & — 1 requests
o(t4+1),...,0(t+k—1). Thus, on any k consecutive requests, OPT

has at most one fault. O

The competitive ratios shown for deterministic paging algorithms
are not very meaningful from a practical point of view. Note that
the performance ratios of LRU and FIFO become worse as the size of

4

2. RANDOMIZATION IN ONLINE ALGORITHMS

the fast memory increases. However, in practice, these algorithms
perform better the bigger the fast memory is. Furthermore, the
competitive ratios of LRU and FIFO are the same, whereas in prac-
tice LRU performs much better. For these reasons, there has been a
study of competitive paging algorithms with access graphs [23, 36].
In an access graph, each node represents a page in the memory sys-
tem. Whenever a page p is requested, the next request can only be
to a page that is adjacent to p in the access graph. Access graphs
can model more realistic request sequences that exhibit locality of
reference. It was shown [23, 36] that using access graphs, one can
overcome some negative aspects of conventional competitive paging

results.

2 Randomization in online algorithms

2.1 General concepts

The competitive ratio of a randomized online algorithm A is defined
with respect to an adversary. The adversary generates a request
sequence o and it also has to serve 0. When constructing o, the
adversary always knows the description of A. The crucial question
is: When generating requests, is the adversary allowed to see the
outcome of the random choices made by A on previous requests?

Ben-David et al. [17] introduced three kinds of adversaries.

e Oblivious Adversary: The oblivious adversary has to gen-
erate a complete request sequence in advance, before any re-
quests are served by the online algorithm. The adversary is
charged the cost of the optimum offline algorithm for that se-
quence.

e Adaptive Online Adversary: This adversary may observe
the online algorithm and generate the next request based on

5

COMPETITIVE ONLINE ALGORITHMS

the algorithm’s (randomized) answers to all previous requests.
The adversary must serve each request online, i.e., without
knowing the random choices made by the online algorithm on
the present or any future request.

o Adaptive Offline Adversary: This adversary also gener-
ates a request sequence adaptively. However, it is charged the
optimum offline cost for that sequence.

A randomized online algorithm A is called ¢-competitive against
any oblivious adversary if there is a constant a such for all request
sequences o generated by an oblivious adversary, E[C4(c)] < ¢ -
Copr(c) + a. The expectation is taken over the random choices

made by A.

Given a randomized online algorithm A and an adaptive online
(adaptive offline) adversary ADV, let F[C4] and E[Capyv] denote
the expected costs incurred by A and ADV in serving a request
sequence generated by ADV. A randomized online algorithm A is
called ¢-competitive against any adaptive online (adaptive offline)
adversary if there is a constant « such that for all adaptive online
(adaptive offline) adversaries ADV, E[C4] < ¢- E[Capv]+ a, where

the expectation is taken over the random choices made by A.

Ben-David et al. [17] investigated the relative strength of the adver-
saries with respect to an arbitrary online problem and showed the
following statements.

Theorem 3 If there is a randomized online algorithm that is c-
competitive against any adaptive offline adversary, then there also
exists a c-compelitive deterministic online algorithm.

This theorem implies that randomization does not help against the
adaptive offline adversary.

2. RANDOMIZATION IN ONLINE ALGORITHMS

Theorem 4 If A is a c-competitive randomized algorithm against
any adaptive online adversary, and if there is a d-competitive algo-
rithm against any oblivious adversary, then A is (c- d)-competitive
against any adaptive offline adversary.

An immediate consequence of the above two theorems in the follow-
ing corollary.

Corollary 1 If there exists a c-compelitive randomized algorithm

2

against any adaptive online adversary, then there is a ¢*-competitive

deterministic algorithm.

2.2 Randomized paging algorithms against
oblivious adversaries

We will prove that, against oblivious adversaries, randomized online
paging algorithms can considerably beat the ratio of k& shown for
deterministic paging. The following algorithm was proposed by Fiat
et al. [27].

Algorithm MARKING: The algorithm processes a request se-
quence in phases. At the beginning of each phase, all pages in the
memory system are unmarked. Whenever a page is requested, it
is marked. On a fault, a page is chosen uniformly at random from
among the unmarked pages in fast memory, and this pages is evicted.
A phase ends when all pages in fast memory are marked and a page
fault occurs. Then, all marks are erased and a new phase is started.

Fiat et al. [27] analyzed the performance of the MARKING algo-

rithm.

Theorem 5 The MARKING algorithm is 2Hj-competitive against
any oblivious adversary, where Hy, = Y% 1/i is the k-th Harmonic
number.

COMPETITIVE ONLINE ALGORITHMS

Note that Hjy is roughly Ink. Later, in Section 3.2, we will see
that no randomized online paging algorithm against any oblivious
adversary can be better than Hy-competitive. Thus the MARKING
algorithm is optimal, up to a constant factor. More complicated
paging algorithms achieving an optimal competitive ratio of Hy were
given in [42, 1].

Proof: Given a request sequence o = o(1),...,0(m), we assume
without of generality that MARKING already has a fault on the
first request o(1).

MARKING divides the request sequence into phases. A phase start-
ing with o(¢) ends with o(7), where j, j > 1, is the smallest integer
such that the set

{o(1),o(i+1),....0(+1)}
contains k 4 1 distinct pages. Note that at the end of a phase all
pages in fast memory are marked.

Consider an arbitrary phase. Call a page stale if it is unmarked but
was marked in the previous phase. Call a page clean if it is neither
stale nor marked.

Let ¢ be the number of clean pages requested in the phase. We will
show that

1. the amortized number of faults made by OPT during the phase
it at least .

2. the expected number of faults made by MARKING is at most
CHk.

These two statements imply the theorem.

We first analyze OPT’s cost. Let Sopr be the set of pages con-
tained in OPT’s fast memory, and let Sy; be the set of pages stored
in MARKING’s fast memory. Furthermore, let d; be the value of

8

2. RANDOMIZATION IN ONLINE ALGORITHMS

|Sopr \ Sm| at the beginning of the phase and let dp be the value
of |Sopr \ Su| at the end of the phase. OPT has at least ¢ — d;
faults during the phase because at least ¢ — d; of the ¢ clean pages
are not in OPT’s fast memory. Also, OPT has at least dp faults
during the phase because dp pages requested during the phase are
not in OPT’s fast memory at the end of the phase. We conclude
that OPT incurs at least

dr dp

1 c
max{c—d;,dp} > §(c— dr +dp) = 55 g

faults during the phase. Summing over all phases, the terms dz—f and
dTF telescope, except for the first and last terms. Thus the amortized

number of page faults made by OPT during the phase is at least 5.

Next we analyze MARKING’s expected cost. Serving ¢ requests to
clean pages cost ¢. There are s = k — ¢ < k — 1 requests to stale
pages. For ¢ = 1,...,s, we compute the expected cost of the i-th
request to a stale page. Let ¢(z) be the number of clean pages that
were requested in the phase immediately before the i-th request to a
stale page and let s(7) denote the number of stale pages that remain
before the ¢-th request to a stale page.

When MARKING serves the ¢-th request to a stale page, exactly
s(1) — (1) of the s(7) stale pages are in fast memory, each of them
with equal probability. Thus the expected cost of the request is

s)—eli) gy e e
s(7) s(7) s(i) k—i+1
The last equation follows because s(z) = k — (¢ — 1). The total
expected cost for serving requests to stale pages is

s k

c c
— < - =c(H, —1).
2o S el

We conclude that MARKING's total expected cost in the phase is

bounded by ¢Hj. a

