OPT | E2 [y [| OPT[1]4]2]3]
B
MTF [[y] [«] | MTF[4]3][1]2]

(a) A single inversion (b) Total inversion count

Figure 2: In the first figure, we illustrate an inversion of two elements
y and x. In the second figure, we show how the elements are permuted
between the two lists. If we count the number of intersections between
the lines, we count the number of inversions. Hence, there are three
inversions in the second figure. The non-inverted elements are (1,2),
(2,4), and (3,4).

Theorem 2.1. MTUF is 2-competitive.

Proof. With the definition of the MTF algorithm, and the previous lemma, we can
show that MTF is 2-competitive by analyzing a list with ¢ element, over a request
sequence o without accesses to elements not in the list. Interestingly, we do not need
to know the optimal offline algorithm, OPT. To prove this result we use a potential
function argument. A potential function @ is a function of some aspect of the problem
such that at the start of the algorithm, ® = 0, and at the end of the algorithm & > 0.
If we have operations 1,..., f, then we can get an upper bound on the cost of the
algorithm by examining the amortized cost

Gi=c+ 0 — P 1<i<f,

where ¢; is the true cost of operation i, and ®; is the potential after operation i. Notice
that the total amortized costis Y, & =Y. (¢;i+ @3 — Pi—1) = >, ity (P; — Pi—1) =
> ;i ¢i+® s, where the last equality is because we had a telescoping sum. Because ®; > 0
according to the definition of the potential function, we have that >, ¢ > > . ¢;, or
that the sum of all ¢; upper bounds the actual cost of the algorithm.

In the following analysis, we will use the potential function

® = the number of inversions between MTF and OPT.

Formally, an inversion is an ordered pair of items (y,z) such that y precedes z in
MTF’s list and x precedes y in OP1T"s list. In Figure 2 we graphically illustrate an
inversion and provide a helpful way to count the total number of inversions.

With the potential function ® and the definition of inversion, we can now show
that MTF is 2-competitive. Let 0 = 0102...0,. On 0;,1 < i < m, MTF finds o;
in the list and moves it to the front, whereas O PT makes a series of 0 or more paid
transpositions, finds o;, and may make a free transposition. We will show that on each
oi,¢; < 20PTCOST; where ¢; is the amortized cost of MTF, and OPTCOST; is the
cost for all of OPT’s work.

Recall ¢; = ¢; + AP = ¢; + ADyirr + APopr, where ¢; is the cost of MTF to find
element o;, A®yrrp is the change in potential due to MTF moving x to the front, and
A®opr is the change in potential due to moves by OPT'. Let o; = x. If x is in position
k, then ¢; = k. Let v be the number of elements in front of z in MT F’s list, but after x

4

in OPT’s list. Since x is at position k, then there are kK — 1 — v other elements in front
of z in MTF’s list. Hence, A®yrr = —v + (k — 1 — v), because we remove inversions
due to the v elements which are “realigned,” but introduce inversions in the k — 1 — v
other elements. However, notice that if x is in position j in OPT"s list, then k —v < j,
because v was everything in front of x in MTF’s list, but not in OPT’s. So, what is
left (kK — v) can be no larger than what is left in front of x in OPT’s list.

Now, if OPT makes any paid transposition, those, at worst, increase the potential
by 1 for each transposition. If O PT moves x to the front, then this just decreases the
potential because we remove all inversions due to z. If

OPTCOST; = OPT_FIND; + OPT_PAID;,

then because k — v < j, OPT_FIND; < j — thus we have k — v as a lower bound on

the cost for OPT_FIND;. Also, A®opt < OPT_PAID;.
At this point, we have all the pieces we need.

¢ = ¢; + APy + ADopr
<k+(-v)+ (k—1—v)+ OPT_PAID;
=2(k —v) — 1+ OPT_PAID,
< 20PT_FIND; + 20PT_PAID;
= 20PTCOST;.

Thus,

MTF(0) =) ¢ <Y é<» 20PTCOST; =23 OPTCOST; = 20PT(0),
or MTF is 2-competitive. L]

2.2 Online Deterministic List Access Algorithms are 2-
competitive

Although we don’t formally prove the lower bound for the deterministic List Access
problem, we do sketch the result.

Claim. For the list accessing problem with a list of £ items, any deterministic online

algorithm has a competitive ratio of at least 2 — ”Ll.

The proof proceeds using an adversary that requests the last element in ALG’s
list at every step, so ALG costs fm on a request sequence with m elements. Then,
it uses an averaging argument over offline algorithms that permute the list initially
and then never reorder. With this setup, the cost of accessing any item in the list
(over all ¢! algorithms) is @ - (£ —1)!. Taking the average over all algorithms for m
requests shows that an algorithm cannot be better than 2 — e%—competitive against
the average of a set of offline algorithms, and cannot be any more competitive against

a true optimal offline algorithm.

