Ex.3 \(\exists M \in [M_0]. M(p_1) > 1 \)

2. no, because \(t_3 \) is dead (\(G \) has no arc labelled by \(t_3 \))
3. yes, all states have outgoing arcs
4. yes, because \(G \) is finite
5. yes, in each reachable marking there is at most one token in each place
6. no, the initial marking \(p_1 \) has no incoming arc

Ex.5 1. the Parikh vector is \(\vec{\sigma} = [3 2 3 2] \), thus \(M = M_0 + N \cdot \vec{\sigma} = 2p_2 + 2p_4 + 2p_5 \)
2. the Parikh vector is \(\vec{\sigma}' = [3 3 2 1] \), but \(M' = M_0 + N \cdot \vec{\sigma}' = \begin{bmatrix} -1 & 1 & 1 & 0 & 2 & 2 \end{bmatrix} \) is not a marking

Ex.6 1. yes, every place has exactly one incoming arc and one outgoing arc
2. \(I = [3 1 2 1 1 2] \)
3. \(I \cdot M_0 = 6 \) and \(I(p_1) = 3 \) thus for any \(M \in [M_0] \) we have \(M(p_1) \leq 6/3 = 2 \); note that by firing \(t_2 t_4 \) we get two tokens in \(p_1 \)

Ex.4 1. no because \(p_2 \) has two outgoing arcs
2. the firing sequence \(t_5 t_1 t_1 t_3 t_4 t_5 t_1 t_3 \) leads to \(2p_3 \) which is a deadlock
3. no, because it is not deadlock free
4. places \(p_1, p_2, p_3, p_5 \) must be assigned the same weight \(x \) because of \(t_1, t_3, t_5 \); then because of \(t_2 \) we have \(x = x + y \), for \(y \) the weight of \(p_4 \), hence \(y = 0 \)
5. no

Ex.5 1. the Parikh vector is \(\vec{\sigma} = [3 1 2 2 2] \), thus \(M = M_0 + N \cdot \vec{\sigma} = p_3 + p_5 \)
2. the Parikh vector is $\vec{\sigma}' = [2 1 2 1 1]$, but $M' = M_0 + N \cdot \vec{\sigma} = [0 -1 2 1 1]$ is not a marking

Ex.6 1. $I = [2 1 1 1 1]$
2. $I \cdot M_0 = 2$ and $I(p_1) = 2$ thus for any $M \in [M_0]$ we have $M(p_1) \leq 2/2 = 1$
3. the only possible T-invariants are of the form $[x x x x 0 0]$
4. from (i) the system is bounded; from a theorem: “if a bounded system is live then it has a positive T-invariant”; since the system has no positive T-invariant then it is not live

November 3, 2016

Ex.4 1. no: t_2 and t_5 have different pre-sets with p_2 in common
2. a positive S-invariant is $I = [2 1 1 1 1 2 2]$
3. $I \cdot M = 4 \neq 3 = I \cdot M_0$
4. $t_1 t_2 t_3$ leads to the marking $2p_4 + p_5$ that is deadlock
5. no, because it is not deadlock free

Ex.5 1. the sequence $t_1 t_2$ leads to the marking $M_0 + p_1$
2. $I = [0 0 0 0 1 1 1]$ is semi-positive and $I \cdot M_0 = 0$
3. the Parikh vector is $\vec{\sigma} = [2 3 3 5 0 0 0]$, then $M = M_0 + N \cdot \vec{\sigma} = [1 3 0 -1 0 0 0]$ is not a marking

November 5, 2015

Ex.3 1. no, p_1 has two incoming arcs
2. yes, $I = [1 1 1 1 1]$ is a positive S-invariant
3. no, transitions t_1, t_3, t_4 must be assigned the same weight x; then we have $x = x + y$, for y the weight of t_2, hence $y = 0$
4. no positive T-invariant + boundedness implies the system is not live

Ex.4 1. the Parikh vector is $\vec{\sigma} = [4 2 3 4]$, then $M = M_0 + N \cdot \vec{\sigma} = [3 0 0 1] = 3p_1 + p_4$
2. $I = [1 1 1 1]$ is an S-invariant with $I \cdot M = 5 \neq 4 = I \cdot M_0$

Ex.5 1. yes
2. it has no initial place
3. not strongly connected: p_0 has no outgoing arc
4. $I = [2 1 1 2 1]$ is a positive S-invariant
5. from (iv) it is bounded; bounded + not strongly connected implies non live
November 7, 2014

Ex.3 1. the firing of t_2 leads to the marking p_3 that is deadlock
2. not live because not deadlock free
3. no, t_3 and t_4 have different pre-sets with p_2 in common
4. the firing sequence t_1 t_4 t_6 t_5 leads to $M_0 + p_3$

Ex.4 1. the Parikh vector is $\vec{\sigma} = [3 \ 1 \ 0 \ 3 \ 2 \ 3]$, then $M = M_0 + N \cdot \vec{\sigma} = [0 \ 0 \ 3 \ 1 \ 0] = 3p_3 + p_4$
2. the Parikh vector is $\vec{\sigma}' = [3 \ 0 \ 2 \ 3 \ 2 \ 2]$, then $M' = M_0 + N \cdot \vec{\sigma}' = [0 \ -2 \ 0 \ 3 \ 1]$ is not a marking

Ex.5 1. $I = [3 \ 1 \ 2 \ 1 \ 1 \ 2 \ 3]$ is a positive S-invariant
2. $I \cdot M = 6 \neq 5 = I \cdot M_0$

November 6, 2013

Ex.3 1. not live
2. not place-live
3. not deadlock free
4. bounded
5. safe
6. not cyclic

Ex.4 1. the Parikh vector is $\vec{\sigma} = [2 \ 0 \ 2 \ 1 \ 0 \ 1 \ 2]$, then $M = M_0 + N \cdot \vec{\sigma} = [0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0] = p_2 + p_5$

Ex.5 1. $I = [2 \ 2 \ 1 \ 1 \ 1]$ is a positive S-invariant from which we have $I \cdot M = 6 \neq 5 = I \cdot M_0$

November 7, 2012

Ex.3 The net is alike the producer-consumer example with bounded buffer (2 producers, 2 consumers, 2 slots):
1. live
2. deadlock free
3. bounded
4. not safe
5. cyclic

Ex.5 1. the Parikh vector is $\vec{\sigma} = [3 \ 2 \ 1 \ 1]$, then $M = M_0 + N \cdot \vec{\sigma} = [0 \ 2 \ 1 \ 0] = 2p_2 + p_3$
2. the Parikh vector is $\vec{\sigma}' = [4 \ 3 \ 2 \ 2]$, then $M = M_0 + N \cdot \vec{\sigma}' = [0 \ 2 \ 1 \ 0] = 2p_2 + p_3$
Ex.3 The analysis of the T-system relies on the identification of its circuits. Let:

\[\gamma_0 = (p_5, t_4)(t_4, p_6)(p_6, t_3)(t_3, p_4)(p_4, t_2) \]
\[\gamma_1 = (p_3, t_3)(t_3, p_4)(p_4, t_2) \]
\[\gamma_2 = (p_1, t_1)(t_1, p_2)(p_2, t_2) \]

Note that \(M_0(\gamma_0) = 3 \), \(M_0(\gamma_1) = 2 \), and \(M_0(\gamma_2) = 1 \).

1. It is immediate to check that the T-system is strongly connected. By a known Lemma, since it is strongly connected, then it is bounded. Place \(p_5 \) is not 1-bounded, hence the T-system is not safe (e.g., take the firing \(M_0 \xrightarrow{t_2} M' \)).

2. It is immediate to check that all places belong to \(\gamma_0 \) or \(\gamma_1 \) or \(\gamma_2 \). By a known Theorem, a T-system is live iff all of its circuits are marked at \(M_0 \). Since \(\gamma_0 \), \(\gamma_1 \) and \(\gamma_2 \) are all marked, we can conclude that the T-system is live. Note that, by a known Theorem, a live T-system is \(k \)-bounded iff every place \(p \) belongs to some circuit \(\gamma_p \) such that \(M_0(\gamma_p) \leq k \). We can exploit this property to confirm that the T-system is not safe by noting that no such circuit \(\gamma \) with \(M_0(\gamma) \leq 1 \) can be found for \(p_5 \).

3. The fundamental property of T-systems guarantees that the token count of a circuit is invariant under any firing. By noting that \(M(\gamma_0) = M(p_5) + M(p_6) + M(p_4) = 2 \neq 3 = M_0(\gamma_0) \) we can conclude that \(M \) is not reachable from \(M_0 \).

Ex.4 The set \(M \) is stable. In fact, the fundamental property of S-systems guarantees that the token count is invariant under any firing. Therefore, taken any \(M \in M \), and any firing \(M \xrightarrow{t} M' \), we know that \(M'(P) = M(P) = M_0(P) \) and thus \(M' \in M \).

By the Reachability Lemma for S-system, \(M = \{ M_0 \} \) iff the S-system is strongly connected.

Ex.5 For each vector \(I_i \) we need to check that

\[\forall t \in T. \sum_{p \in \bullet t} I_i(p) = \sum_{p \in \bullet t} I_i(p) \]

- \(I_1 = [1 1 0 0 0] \) is an S-invariant.
- \(I_2 = [0 0 1 1 1] \) is not an S-invariant, because the above equality does not hold, e.g., for \(t_1 \).
- \(I_3 = [2 2 1 2 1] \) is an S-invariant.
For each vector \mathbf{J}_i, we need to check that

$$\forall p \in P. \sum_{t \in \bullet p} \mathbf{J}_i(t) = \sum_{t \in p \bullet} \mathbf{J}_i(t)$$

- $\mathbf{J}_1 = [1 \ 2 \ 2 \ 1]$ is not a T-invariant, because the above equality does not hold, e.g., for p_4.
- $\mathbf{J}_2 = [1 \ 1 \ 1 \ 0]$ is a T-invariant.
- $\mathbf{J}_3 = [0 \ 1 \ 0 \ 1]$ is not a T-invariant, because the above equality does not hold, e.g., for p_3.

May 2, 2011

Ex.3 1. S-net
 2. not a T-net
 3. free-choice (because S-net)

Ex.4 1. there can exist nets with a semi-positive S-invariant but with some unbounded place (e.g., producer-consumer example with unbounded buffer)
 2. the existence of a positive S-invariant implies the boundedness but not the safeness (e.g., put two tokens in the same place in the initial marking)
 3. the existence of a positive S-invariant implies the boundedness (known theorem)

Ex.5 For each vector \mathbf{I}_i, we need to check that

$$\forall t \in T. \sum_{p \in \bullet t} \mathbf{I}_i(p) = \sum_{p \in t \bullet} \mathbf{I}_i(p)$$

1. $\mathbf{I}_1 = [1 \ 1 \ 0 \ 0 \ 0]$ is not an S-invariant, because the above equality does not hold, e.g., for t_3.
2. $\mathbf{I}_2 = [0 \ 0 \ 1 \ 1 \ 1]$ is an S-invariant.
3. $\mathbf{I}_3 = [1 \ 1 \ 2 \ 2 \ 1]$ is an S-invariant.
4. $\mathbf{I}_4 = [2 \ 2 \ 1 \ 1 \ 1]$ is not an S-invariant, because the above equality does not hold, e.g., for t_3.
5. $\mathbf{I}_5 = [1 \ 1 \ 1 \ 1 \ 0]$ is an S-invariant ($\mathbf{I}_5 = \mathbf{I}_3 - \mathbf{I}_2$).
6. $\mathbf{I}_6 = [0 \ 1 \ 0 \ 1 \ 1]$ is not an S-invariant, because the above equality does not hold, e.g., for t_1.