
Methods for the specification and
verification of business processes

MPB (6 cfu, 295AA)
!

Roberto Bruni
http://www.di.unipi.it/~bruni

22 - Workflow patterns

1

http://www.di.unipi.it/~bruni

Object

2

We overview some language-independent
patterns that identify comprehensive workflow

functionalities
!
!
!
!
!

Ch.4.1 of Business Process Management: Concepts, Languages, Architectures

Workflow patterns

3

Along the years, the so-called workflow patterns have
provided a coarse-grain yardstick for expressing, evaluating

and comparing process orchestration
!

They are independent of concrete process languages
!

We illustrate them on the basis of a semantic model of
events and event orderings

Preliminaries: activities

4

A An activity model

a
An activity instance

enable begin terminate

Preliminaries:
control flow

5

A control flow construct

enabled
terminate

induced order

6

Basic Control Flow Patterns

• Pattern 1 (Sequence)

• Pattern 2 (Parallel Split)

• Pattern 3 (Synchronization)

• Pattern 4 (Exclusive Choice)

• Pattern 5 (Simple Merge)

Advanced Branching and

Synchronization Patterns

• Pattern 6 (Multi - choice)

• Pattern 7 (Synchronizing Merge)

• Pattern 8 (Multi - merge)

• Pattern 9 (Discriminator)

Structural Patterns

• Pattern 10 (Arbitrary Cycles)

• Pattern 11 (Implicit Termination)

State-based Patterns

• Pattern 16 (Deferred
Choice)

• Pattern 17 (Interleaved
Parallel Routing)

• Pattern 18 (Milestone)

Patterns involving Multiple Instances

• Pattern 12 (Multiple Instances Without
Synchronization)

• Pattern 13 (Multiple Instances With a Priori
Design Time Knowledge)

• Pattern 14 (Multiple Instances With a Priori
Runtime Knowledge)

• Pattern 15 (Multiple Instances Without a Priori
Runtime Knowledge)

Cancellation Patterns

• Pattern 19 (Cancel Activity)

• Pattern 20 (Cancel Case)

Fig. 1. Overview of the 20 most relevant patterns.

WWW site” [48]. The patterns range from very simple patterns such as sequential rout-

ing (Pattern 1) to complex patterns involving complex synchronizations such as the

discriminator pattern (Pattern 9). In this paper, we restrict ourselves to the 20 most

relevant patterns. These patterns can be classified into six categories:

1. Basic control flow patterns. These are the basic constructs present in most workflow

languages to model sequential, parallel and conditional routing.

2. Advanced branching and synchronization patterns. These patterns transcend the

basic patterns to allow for more advanced types of splitting and joining behavior.

An example is the Synchronizing merge (Pattern 7) which behaves like an AND-

join or XOR-join depending on the context.

3. Structural patterns. In programming languages a block structure which clearly

identifies entry and exit points is quite natural. In graphical languages allowing for

parallelism such a requirement is often considered to be too restrictive. Therefore,

we have identified patterns that allow for a less rigid structure.

4. Patterns involvingmultiple instances.Within the context of a single case (i.e., work-

flow instance) sometimes parts of the process need to be instantiated multiple times,

e.g., within the context of an insurance claim, multiple witness statements need to

be processed.

5. State-based patterns. Typical workflow systems focus only on activities and events

and not on states. This limits the expressiveness of the workflow language because

it is not possible to have state dependent patterns such as the Milestone pattern

(Pattern 18).

WFP #1-5

7

Most common patterns
!

Closely match the definitions of elementary aspects of
control flow concepts

!
They are present in all workflow engines

#1 Sequence

8

Description: An activity in a workflow process is enabled
after the completion of another activity in the same process

!
Synonyms: Sequential routing, serial routing

#1 Sequence

9

t

#2 Parallel split

10

Description: A point in the workflow process where
a single thread of control splits into

multiple threads of control which can be executed in parallel,
thus allowing activities to be executed

simultaneously or in any order
!

Synonyms: AND-split, parallel routing, fork

#2 Parallel split

11

t

#3 Synchronization

12

Description: A point in the workflow process where
multiple parallel activities converge into

one single thread of control,
thus synchronizing multiple threads.

It is an assumption of this pattern that
each incoming branch is executed only once
(if this is not the case, see patterns #13--15)

!
Synonyms: AND-join, rendezvous, synchronizer

#3 Synchronization

13

t

#4 Exclusive choice

14

Description: A point in the workflow process where,
based on a decision or workflow control data,

one of several branches is chosen
!

Synonyms: XOR-split, conditional routing, switch, decision

#4 Exclusive choice

15

#5 Simple merge

16

Description: A point in the workflow process where
two or more alternative branches come together

without synchronization.
It is an assumption of this pattern that

none of the alternative branches is ever executed in parallel
(if this is not the case, see patterns #8-9)

!
Synonyms: XOR-join, asynchronous join, merge

#5 Simple merge

17

18

Basic Control Flow Patterns

• Pattern 1 (Sequence)

• Pattern 2 (Parallel Split)

• Pattern 3 (Synchronization)

• Pattern 4 (Exclusive Choice)

• Pattern 5 (Simple Merge)

Advanced Branching and

Synchronization Patterns

• Pattern 6 (Multi - choice)

• Pattern 7 (Synchronizing Merge)

• Pattern 8 (Multi - merge)

• Pattern 9 (Discriminator)

Structural Patterns

• Pattern 10 (Arbitrary Cycles)

• Pattern 11 (Implicit Termination)

State-based Patterns

• Pattern 16 (Deferred
Choice)

• Pattern 17 (Interleaved
Parallel Routing)

• Pattern 18 (Milestone)

Patterns involving Multiple Instances

• Pattern 12 (Multiple Instances Without
Synchronization)

• Pattern 13 (Multiple Instances With a Priori
Design Time Knowledge)

• Pattern 14 (Multiple Instances With a Priori
Runtime Knowledge)

• Pattern 15 (Multiple Instances Without a Priori
Runtime Knowledge)

Cancellation Patterns

• Pattern 19 (Cancel Activity)

• Pattern 20 (Cancel Case)

Fig. 1. Overview of the 20 most relevant patterns.

WWW site” [48]. The patterns range from very simple patterns such as sequential rout-

ing (Pattern 1) to complex patterns involving complex synchronizations such as the

discriminator pattern (Pattern 9). In this paper, we restrict ourselves to the 20 most

relevant patterns. These patterns can be classified into six categories:

1. Basic control flow patterns. These are the basic constructs present in most workflow

languages to model sequential, parallel and conditional routing.

2. Advanced branching and synchronization patterns. These patterns transcend the

basic patterns to allow for more advanced types of splitting and joining behavior.

An example is the Synchronizing merge (Pattern 7) which behaves like an AND-

join or XOR-join depending on the context.

3. Structural patterns. In programming languages a block structure which clearly

identifies entry and exit points is quite natural. In graphical languages allowing for

parallelism such a requirement is often considered to be too restrictive. Therefore,

we have identified patterns that allow for a less rigid structure.

4. Patterns involvingmultiple instances.Within the context of a single case (i.e., work-

flow instance) sometimes parts of the process need to be instantiated multiple times,

e.g., within the context of an insurance claim, multiple witness statements need to

be processed.

5. State-based patterns. Typical workflow systems focus only on activities and events

and not on states. This limits the expressiveness of the workflow language because

it is not possible to have state dependent patterns such as the Milestone pattern

(Pattern 18).

WFP #6-9

19

More advanced patterns for branching and synchronization
!

Quite common in real-life business scenarios
!

Do not find straightforward support in workflow engines

#6 Multi-choice

20

Description: A point in the workflow process where,
based on a decision or workflow control data,

a number of branches are chosen
(sometime required that at least one is chosen)

!
Synonyms: Conditional routing, selection, OR-split

!
Different from Exclusive choice (#4), where exactly one of

the alternative is selected and executed
!

Can be implemented using AND-split and XOR-split

#6 Multi-choice

21

#6 Multi-choice: encoded

22

#4

#4 #5

#5

#2

#6 Question time

23

If there are N outgoing edges from the gateway,
how many options do we have to consider?

2N-1

#7 Synchronizing merge

24

Description: A point in the workflow process where
multiple paths converge into one single thread.

If more than one path is taken, synchronization of the active
threads needs to take place.

If only one path is taken, the alternative branches should
reconverge without synchronization.

!
Synonyms: Synchronizing join, OR-join wait-for-all

!
It is an assumption of this pattern that a branch that has

already been activated cannot be activated again while the
merge is still waiting for other branches to complete

#7 Synchronizing merge

25

c skipped

b skipped

#8 Multi-merge

26

Description: A point in the workflow process where
two or more branches reconverge without synchronization.

If more than one branch gets activated, possibly
concurrently, the activity following the merge is started for

every activation of every incoming branch

Synonyms: OR-join every-time

#8 Multi-merge

27

#9 Discriminator

28

Description: A point in a workflow process
that waits for one of the incoming branches to complete

before activating the subsequent activity.
Then, it waits for all remaining branches to complete

and ignores them.
Once all incoming branches have been triggered,

it resets so that it can be triggered again
(which makes it suitable for being used inside a loop)

Synonyms: OR-join first-come

#9 Discriminator

29

(#9bis)
N-out-of-M join

30

Description: It is a point in a workflow process where
M parallel paths converge into one.
The subsequent activity is initiated
after N≤M paths have completed.

Completion of all remaining paths is ignored.
Once all incoming branches have been triggered, it resets

so that it can be triggered again
(which is important when put inside a loop)

The N-out-of-M join is a generalization of the discriminator

pattern (that coincides with 1-out-of-M join)

31

Basic Control Flow Patterns

• Pattern 1 (Sequence)

• Pattern 2 (Parallel Split)

• Pattern 3 (Synchronization)

• Pattern 4 (Exclusive Choice)

• Pattern 5 (Simple Merge)

Advanced Branching and

Synchronization Patterns

• Pattern 6 (Multi - choice)

• Pattern 7 (Synchronizing Merge)

• Pattern 8 (Multi - merge)

• Pattern 9 (Discriminator)

Structural Patterns

• Pattern 10 (Arbitrary Cycles)

• Pattern 11 (Implicit Termination)

State-based Patterns

• Pattern 16 (Deferred
Choice)

• Pattern 17 (Interleaved
Parallel Routing)

• Pattern 18 (Milestone)

Patterns involving Multiple Instances

• Pattern 12 (Multiple Instances Without
Synchronization)

• Pattern 13 (Multiple Instances With a Priori
Design Time Knowledge)

• Pattern 14 (Multiple Instances With a Priori
Runtime Knowledge)

• Pattern 15 (Multiple Instances Without a Priori
Runtime Knowledge)

Cancellation Patterns

• Pattern 19 (Cancel Activity)

• Pattern 20 (Cancel Case)

Fig. 1. Overview of the 20 most relevant patterns.

WWW site” [48]. The patterns range from very simple patterns such as sequential rout-

ing (Pattern 1) to complex patterns involving complex synchronizations such as the

discriminator pattern (Pattern 9). In this paper, we restrict ourselves to the 20 most

relevant patterns. These patterns can be classified into six categories:

1. Basic control flow patterns. These are the basic constructs present in most workflow

languages to model sequential, parallel and conditional routing.

2. Advanced branching and synchronization patterns. These patterns transcend the

basic patterns to allow for more advanced types of splitting and joining behavior.

An example is the Synchronizing merge (Pattern 7) which behaves like an AND-

join or XOR-join depending on the context.

3. Structural patterns. In programming languages a block structure which clearly

identifies entry and exit points is quite natural. In graphical languages allowing for

parallelism such a requirement is often considered to be too restrictive. Therefore,

we have identified patterns that allow for a less rigid structure.

4. Patterns involvingmultiple instances.Within the context of a single case (i.e., work-

flow instance) sometimes parts of the process need to be instantiated multiple times,

e.g., within the context of an insurance claim, multiple witness statements need to

be processed.

5. State-based patterns. Typical workflow systems focus only on activities and events

and not on states. This limits the expressiveness of the workflow language because

it is not possible to have state dependent patterns such as the Milestone pattern

(Pattern 18).

WFP #10-11

32

Some restrictions are often imposed on the workflow
structure (loops are not allowed, single exit point,...)

!
Not always natural (if not annoying)

from the modelling point of view
!

For example, structured cycles can have only one entry
point and only one exit point and cannot be interleaved

(like the WHILE vs GOTO controversy)
!

But the removal of arbitrary cycles can lead to workflows
that are much harder to interpret

#10 Arbitrary cycles

33

Description: It is a point in a workflow process where one or
more activities can be done repeatedly

Synonyms: Loop, iteration, cycle

!
Often they are just expressed in terms of XOR-split and

XOR-join (no dedicated element for cycles)
!

Arbitrary cycles can often be converted to structured cycles
(single entry / exit) unless they contain advanced patterns

#10 Arbitrary cycles

34

A

C

D

Merge

F

B

EXOR

GXOR

Merge

XOR

α

∼α

β

∼β

χ∼χ

A

C

D

Θ:=True

C

F

GXOR

XOR

α

∼α

Θ∼Θ

B

Merge

Φ:=β

XOR

Θ:=χ

Φ ∼Φ

Merge

XOR

E

Φ

∼Φ

Structured cycle (only one

entry and one exit point)

#11 Implicit termination

35

Description: A given (sub)process should be terminated
when there is nothing else to be done.

!
Most workflow engines terminate the process when an

explicit final node is reached,
possibly aborting any ongoing activity.

!
If there are many states in which the process can terminate,

then termination is implicit.
!

Conversion to workflow with only one terminating node
is not always possible

36

Basic Control Flow Patterns

• Pattern 1 (Sequence)

• Pattern 2 (Parallel Split)

• Pattern 3 (Synchronization)

• Pattern 4 (Exclusive Choice)

• Pattern 5 (Simple Merge)

Advanced Branching and

Synchronization Patterns

• Pattern 6 (Multi - choice)

• Pattern 7 (Synchronizing Merge)

• Pattern 8 (Multi - merge)

• Pattern 9 (Discriminator)

Structural Patterns

• Pattern 10 (Arbitrary Cycles)

• Pattern 11 (Implicit Termination)

State-based Patterns

• Pattern 16 (Deferred
Choice)

• Pattern 17 (Interleaved
Parallel Routing)

• Pattern 18 (Milestone)

Patterns involving Multiple Instances

• Pattern 12 (Multiple Instances Without
Synchronization)

• Pattern 13 (Multiple Instances With a Priori
Design Time Knowledge)

• Pattern 14 (Multiple Instances With a Priori
Runtime Knowledge)

• Pattern 15 (Multiple Instances Without a Priori
Runtime Knowledge)

Cancellation Patterns

• Pattern 19 (Cancel Activity)

• Pattern 20 (Cancel Case)

Fig. 1. Overview of the 20 most relevant patterns.

WWW site” [48]. The patterns range from very simple patterns such as sequential rout-

ing (Pattern 1) to complex patterns involving complex synchronizations such as the

discriminator pattern (Pattern 9). In this paper, we restrict ourselves to the 20 most

relevant patterns. These patterns can be classified into six categories:

1. Basic control flow patterns. These are the basic constructs present in most workflow

languages to model sequential, parallel and conditional routing.

2. Advanced branching and synchronization patterns. These patterns transcend the

basic patterns to allow for more advanced types of splitting and joining behavior.

An example is the Synchronizing merge (Pattern 7) which behaves like an AND-

join or XOR-join depending on the context.

3. Structural patterns. In programming languages a block structure which clearly

identifies entry and exit points is quite natural. In graphical languages allowing for

parallelism such a requirement is often considered to be too restrictive. Therefore,

we have identified patterns that allow for a less rigid structure.

4. Patterns involvingmultiple instances.Within the context of a single case (i.e., work-

flow instance) sometimes parts of the process need to be instantiated multiple times,

e.g., within the context of an insurance claim, multiple witness statements need to

be processed.

5. State-based patterns. Typical workflow systems focus only on activities and events

and not on states. This limits the expressiveness of the workflow language because

it is not possible to have state dependent patterns such as the Milestone pattern

(Pattern 18).

WFP #12-15

37

The phenomenon of multiple instances corresponds to
multiple threads that refer to a shared activity definition

!
An activity in a workflow process can have more than one

running active instance at the same time

#12 Multiple instances
without synchronization

38

Description: Multiple, independent instances of an activity
can be created within the context of a single case.

Synonyms: Multi-threading without synchronization,

spawn off facility
!

Easy to support
(the problem is not to generate instances,

but to coordinate them)
!

Can cause many problems from the point of view of
sequencing, termination, soundness...

#12 Multiple instances
without synchronization

39

#13 Multiple instances with
a priori design knowledge

40

Description: An activity is enabled multiple times
for handling one case.

The number of instances for that case
is known at design time.

Once all instances have been completed,
some other activity needs to be started.

Synonyms: -

!
Easily implementable

by replicating the task in the process model

#13 Multiple instances with
a priori design knowledge

41

#14 Multiple instances with
a priori runtime knowledge

42

Description: An activity is enabled multiple times
for handling one case.

The number of instances for a given case may depend on
the availability of resources and will be known only at

runtime, before any instance is created.
Once all instances have been completed,
some other activity needs to be started.

Scarcely supported in workflow engines.
We cannot simply replicate the activity

#15 Mult. instances without
a priori runtime knowledge

43

Description: An activity is enabled multiple times
for handling one case.

The number of instances for a given case is known
neither at design time, nor at runtime

before any instance is created.
Once all instances have been completed,
some other activity needs to be started.

!
The difference with #14 is that even

while some of the instances are executed or completed,
new ones can be created

44

#15 Mult. instances without
a priori runtime knowledge

45

Basic Control Flow Patterns

• Pattern 1 (Sequence)

• Pattern 2 (Parallel Split)

• Pattern 3 (Synchronization)

• Pattern 4 (Exclusive Choice)

• Pattern 5 (Simple Merge)

Advanced Branching and

Synchronization Patterns

• Pattern 6 (Multi - choice)

• Pattern 7 (Synchronizing Merge)

• Pattern 8 (Multi - merge)

• Pattern 9 (Discriminator)

Structural Patterns

• Pattern 10 (Arbitrary Cycles)

• Pattern 11 (Implicit Termination)

State-based Patterns

• Pattern 16 (Deferred
Choice)

• Pattern 17 (Interleaved
Parallel Routing)

• Pattern 18 (Milestone)

Patterns involving Multiple Instances

• Pattern 12 (Multiple Instances Without
Synchronization)

• Pattern 13 (Multiple Instances With a Priori
Design Time Knowledge)

• Pattern 14 (Multiple Instances With a Priori
Runtime Knowledge)

• Pattern 15 (Multiple Instances Without a Priori
Runtime Knowledge)

Cancellation Patterns

• Pattern 19 (Cancel Activity)

• Pattern 20 (Cancel Case)

Fig. 1. Overview of the 20 most relevant patterns.

WWW site” [48]. The patterns range from very simple patterns such as sequential rout-

ing (Pattern 1) to complex patterns involving complex synchronizations such as the

discriminator pattern (Pattern 9). In this paper, we restrict ourselves to the 20 most

relevant patterns. These patterns can be classified into six categories:

1. Basic control flow patterns. These are the basic constructs present in most workflow

languages to model sequential, parallel and conditional routing.

2. Advanced branching and synchronization patterns. These patterns transcend the

basic patterns to allow for more advanced types of splitting and joining behavior.

An example is the Synchronizing merge (Pattern 7) which behaves like an AND-

join or XOR-join depending on the context.

3. Structural patterns. In programming languages a block structure which clearly

identifies entry and exit points is quite natural. In graphical languages allowing for

parallelism such a requirement is often considered to be too restrictive. Therefore,

we have identified patterns that allow for a less rigid structure.

4. Patterns involvingmultiple instances.Within the context of a single case (i.e., work-

flow instance) sometimes parts of the process need to be instantiated multiple times,

e.g., within the context of an insurance claim, multiple witness statements need to

be processed.

5. State-based patterns. Typical workflow systems focus only on activities and events

and not on states. This limits the expressiveness of the workflow language because

it is not possible to have state dependent patterns such as the Milestone pattern

(Pattern 18).

WFP #16-18

46

In real workflows, most process instances are in a state
awaiting processing rather than being processed

!
A different notion of “state” is considered with respect to

ordinary programming: moments of choice
can depend on data or decisions

!
The state between activites can be explicitly/implicitly

represented or not

#16 Deferred choice

47

Description: A point in the workflow process where
one of several branches is chosen.

Synonyms: External choice, deferred XOR-split

!
In contrast with XOR-split, the choice is not made explicit,

but several alternatives are offered to the environment
!

In contrast to the AND-split, only one of the alternatives is
selected (and the others are withdrawn)

#16 Deferred choice

48

A closer look at the
phases of an activity

#17 Interleaved parallel
routing

49

Description: A set of activities is executed in an arbitrary
order. Each activity in the set is executed, but the order is

decided at runtime and no two activities are executed at the
same moment.

Synonyms: Unordered sequence, ad hoc activity,

sequential execution without a priori design time knowledge

#17 Interleaved parallel
routing

50

#17 Interleaved parallel
routing

51

c1

c2

c3

A

B

c5

c7

c8

mutual

exclusion

place

c5

mutex

AND-split AND-join

Cc4

c6

c2

register

c3

c4 c5

send

questionnaire

time out

process

questionnaire

c6

processing

needed

evaluate

skip

c7

c9

c8

c10

c11

process

complaint

archive

OK

NOK check

processing

c1

milestone

#17 Interleaved parallel
routing

52

Simple
Choice

A

B

C

Interleaved
Sequence

End

Interleaved
Sequence
Begin

Simple
Merge

A B C

A C B

B A C

B C A

C A B

C B A

A

B

C

C

Deferred
Choice

B

A
Deferred
Choice

B

C

A

Deferred
Choice

Deferred
Choice

B

C

C

A

A

B

Simple
Merge

Workflow A

Workflow B

Workflow C

Simple
Choice

A

B

C

Interleaved
Sequence

End

Interleaved
Sequence
Begin

Simple
Merge

A B C

A C B

B A C

B C A

C A B

C B A

A

B

C

C

Deferred
Choice

B

A
Deferred
Choice

B

C

A

Deferred
Choice

Deferred
Choice

B

C

C

A

A

B

Simple
Merge

Workflow A

Workflow B

Workflow C

Simple
Choice

A

B

C

Interleaved
Sequence

End

Interleaved
Sequence
Begin

Simple
Merge

A B C

A C B

B A C

B C A

C A B

C B A

A

B

C

C

Deferred
Choice

B

A
Deferred
Choice

B

C

A

Deferred
Choice

Deferred
Choice

B

C

C

A

A

B

Simple
Merge

Workflow A

Workflow B

Workflow C

#18 Milestone

53

Description: The enabling of an activity depends on the
case being in a specified state

(i.e. a milestone has been reached)

Synonyms: Test arc, deadline, state condition,
withdraw message

#18 Milestone

54

B m C

A

... ...

......

milestone

55

Basic Control Flow Patterns

• Pattern 1 (Sequence)

• Pattern 2 (Parallel Split)

• Pattern 3 (Synchronization)

• Pattern 4 (Exclusive Choice)

• Pattern 5 (Simple Merge)

Advanced Branching and

Synchronization Patterns

• Pattern 6 (Multi - choice)

• Pattern 7 (Synchronizing Merge)

• Pattern 8 (Multi - merge)

• Pattern 9 (Discriminator)

Structural Patterns

• Pattern 10 (Arbitrary Cycles)

• Pattern 11 (Implicit Termination)

State-based Patterns

• Pattern 16 (Deferred
Choice)

• Pattern 17 (Interleaved
Parallel Routing)

• Pattern 18 (Milestone)

Patterns involving Multiple Instances

• Pattern 12 (Multiple Instances Without
Synchronization)

• Pattern 13 (Multiple Instances With a Priori
Design Time Knowledge)

• Pattern 14 (Multiple Instances With a Priori
Runtime Knowledge)

• Pattern 15 (Multiple Instances Without a Priori
Runtime Knowledge)

Cancellation Patterns

• Pattern 19 (Cancel Activity)

• Pattern 20 (Cancel Case)

Fig. 1. Overview of the 20 most relevant patterns.

WWW site” [48]. The patterns range from very simple patterns such as sequential rout-

ing (Pattern 1) to complex patterns involving complex synchronizations such as the

discriminator pattern (Pattern 9). In this paper, we restrict ourselves to the 20 most

relevant patterns. These patterns can be classified into six categories:

1. Basic control flow patterns. These are the basic constructs present in most workflow

languages to model sequential, parallel and conditional routing.

2. Advanced branching and synchronization patterns. These patterns transcend the

basic patterns to allow for more advanced types of splitting and joining behavior.

An example is the Synchronizing merge (Pattern 7) which behaves like an AND-

join or XOR-join depending on the context.

3. Structural patterns. In programming languages a block structure which clearly

identifies entry and exit points is quite natural. In graphical languages allowing for

parallelism such a requirement is often considered to be too restrictive. Therefore,

we have identified patterns that allow for a less rigid structure.

4. Patterns involvingmultiple instances.Within the context of a single case (i.e., work-

flow instance) sometimes parts of the process need to be instantiated multiple times,

e.g., within the context of an insurance claim, multiple witness statements need to

be processed.

5. State-based patterns. Typical workflow systems focus only on activities and events

and not on states. This limits the expressiveness of the workflow language because

it is not possible to have state dependent patterns such as the Milestone pattern

(Pattern 18).

WFP #19-20

56

Cancellation patterns are very powerful mechanisms to
clean up the pending activities

!
They offer ways to implement other patterns

we have seen
!

They are also known as runtime patterns

#19 Cancel activity

57

Description: An enabled activity is disabled

Synonyms: Withdraw activity
!

The semantics of this pattern can become ill-defined if it is
used in combination with multiple instances.

!
We assume that the cancellation of an activity refers to the

cancellation of an instance of that activity.

#20 Cancel case

58

Description: A workflow instance is removed completely

Synonyms: Withdraw case
!

The cancellation of a case requires
all its activities are cancelled

so that the process comes to halt

