
Methods for the specification and 
verification of business processes

MPB (6 cfu, 295AA)

Roberto Bruni
http://www.di.unipi.it/~bruni 

22 - Business process execution 
language

1

martedì 10 dicembre 13

http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni


Object

2

We overview the key features of BPEL

martedì 10 dicembre 13



3

martedì 10 dicembre 13



BPEL

4

martedì 10 dicembre 13



Business process 
execution language

5

Also known as:
Web Services Business Process Execution Language 

(WS-BPEL) 
Business Process Execution Language for Web Services

(BPEL4WS)

it is a standard executable language for orchestrating the 
use of Web Service within business processes

it deals with import / export information, remote invocation, 
correlation, fault handling, compensation

martedì 10 dicembre 13

http://en.wikipedia.org/wiki/Business_process
http://en.wikipedia.org/wiki/Business_process


Web services

6

Web services fix a standard for interoperability 
between heterogeneous, loosely coupled, remote 

software applications
(separately developed, running on different platforms)

over (not only) the HTTP protocol

Informally:
web services are for software
what web sites are for human

martedì 10 dicembre 13



WS basics

7

Services must be made available on the web
(need a server)

Services must be advertised over the web
(need some repositories)

Service repositories must be queried
(need service description)

Services must be invoked
(need standard communication format)

martedì 10 dicembre 13



XMLification

8

Network

XML based messaging

Service description

Service publication

Service discovery

Service composition

HTTP, HTTPS, SMTP

SOAP

WSDL

UDDI

WSFL, BPEL, ...

{

martedì 10 dicembre 13



WS-*

9

martedì 10 dicembre 13



10

Web Services Standards Overview

innoQ Deutschland GmbH innoQ Schweiz GmbH
Halskestraße 17 Gewerbestrasse 11
D-40880 Ratingen CH-6330 Cham
Phone +49 21 02 77 162-100 Phone +41 41 743 0111
info@innoq.com · www.innoq.com

Th
is 

po
st

er
 is

 n
ot

 to
 b

e 
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r f

or
 a

ny
 p

ur
po

se
 w

ith
ou

t t
he

 e
xp

re
ss

 p
er

m
iss

io
n 

of
 in

no
Q 

De
ut

sc
hl

an
d 

Gm
bH

.·
Co

py
rig

ht
 ©

in
no

Q 
De

ut
sc

hl
an

d 
Gm

bH
. A

ll 
Ri

gh
ts

 R
es

er
ve

d.
 T

he
 p

os
te

r m
ay

 a
lso

 c
on

ta
in

 re
fe

re
nc

es
 to

 o
th

er
 c

om
pa

ny
, o

rg
an

isa
tio

n,
 b

ra
nd

 a
nd

 p
ro

du
ct

 n
am

es
. T

he
se

 c
om

pa
ny

, o
rg

an
isa

tio
n,

 b
ra

nd
 a

nd
 p

ro
du

ct
 n

am
es

 a
re

 u
se

d 
he

re
in

 fo
r i

de
nt

ifi
ca

tio
n 

pu
rp

os
es

 o
nl

y 
an

d 
m

ay
 b

e 
th

e 
tr

ad
em

ar
ks

 o
f t

he
ir 

re
sp

ec
tiv

e 
ow

ne
rs

.

Interoperability
Issues

Metadata Specifications Reliability 
Specifications

Security Specifications Transaction
Specifications

Messaging Specifications SOAP

Management Specifications Presentation
Specifications

Messaging Specifications

WS-Notification

SOAP Message Transmission Optimization Mechanism

SOAP 1.2

SOAP 1.1

WS-Addressing – Core

WS-Addressing – WSDL Binding

WS-Addressing – SOAP Binding

WS-Topics

WS-BrokeredNotification

WS-Eventing

WS-Enumeration

WS-BaseNotification

M
et

ad
at

a

Se
cu

ri
ty

Re
so

ur
ce

Metadata Specifications
WS-Policy

WS-Discovery

WS-PolicyAttachment

WS-MetadataExchange

Universal Description, Discovery and Integration

Web Service Description Language 1.1

Web Service Description Language 2.0 Core

Web Service Description Language 2.0 SOAP Binding

M
es

sa
gi

ngSe
cu

ri
ty

WS-Security

WS-Security: SOAP Message Security

WS-Security: Kerberos Binding

WS-Security: SAML Token Profile

WS-Security: X.509 Certificate Token Profile

WS-Security: Username Token Profile

WS-SecurityPolicy

WS-Trust

WS-Federation

WS-SecureConversation

Security Specifications

M
et

ad
at

a

M
es

sa
gi

ng

Re
lia

bi
lit

y

Dependencies

Basic Profile
1.1

WS-I
Final Specification

! Basic Profile – The Basic Profile 1.1 provides
implementation guidelines for how related set of non-
proprietary Web Service specifications should be used
together for best interoperability.

Basic Profile
1.2

WS-I
Working Group Draft

! Basic Profile – The Basic Profile 1.2 builds on Basic Profile
1.1 by incorporating Basic Profile 1.1 errata, requirements
from Simple SOAP Binding Profile 1.0, and adding support
for WS-Addressing and MTOM.

Basic Profile
2.0

WS-I
Working Group Draft

! Basic Profile – The Basic Profile 2.0 is an update of WS-I
BP that includes a profile of SOAP 1.2.

Basic Security Profile
1.0

WS-I
Board Approval Draft

! Basic Security Profile defines the WS-I Basic Security
Profile 1.0, based on a set of non-proprietary Web services
specifications, along with clarifications and amendments
to those specifications which promote interoperability.

REL Token Profile
1.0

WS-I
Working Group Draft

! REL Token Profile is based on a non-proprietary 
Web services specification, along with clarifications and
amendments to that specification which promote
interoperability.

SAML Token Profile
1.0

WS-I
Working Group Draft

! SAML Token Profile is based on a non-proprietary 
Web services specification, along with clarifications and
amendments to that specification which promote
interoperability.

Conformance Claim
Attachment Mechanism (CCAM)

1.0
WS-I

Final Specification

! Conformance Claim Attachment Mechanism (CCAM)
catalogues mechanisms that can be used to attach WS-I
Profile Conformance Claims to Web services artefacts
(e.g., WSDL descriptions, UDDI registries).

Reliable Asynchronous
Messaging Profile (RAMP)

1.0
WS-I

Working Draft

! Reliable Asynchronous Messaging Profile (RAMP) is a
profile, in the fashion of the WS-I profiles, that enables,
among other things, basic B2B integration scenarios using
Web services technologies.

" XML – Extensible Markup
Language is a pared-down
version of SGML, designed
especially for Web
documents. It allows one to
create own customized tags,
enabling the definition,
transmission, validation, and
interpretation of data
between applications and
between organizations.

" XML – Extensible Markup 
Language is a pared-down
version of SGML, designed
especially for Web
documents. It allows one to
create own customized tags,
enabling the definition,
transmission, validation, and
interpretation of data
between applications and
between organizations.

" Namespaces in XML
provides a simple method
for qualifying element and
attribute names used in XML
documents by associating
them with namespaces
identified by IRI references.

" XML Information Set is 
an abstract data set to
provide a consistent set of
definitions for use in other
specifications that need to
refer to the information 
in a well-formed XML
document.

" XML Schema – XML
Schema Definition Language
is an XML language for
describing and constraining
the content of XML
documents.

" XML binary Optimized
Packaging (XOP) is an XML
language for describing and
constraining the content of
XML documents.

WS-Security
1.1

OASIS
OASIS-Standard

WS-Security: 
Username Token Profile

1.1
OASIS

Public Review Draft

! WS-Security is a communications protocol providing a
means for applying security to Web Services.

WS-Security: 
SOAP Message Security

1.1
OASIS

Public Review Draft

! WS-Security: SOAP Message Security describes
enhancements to SOAP messaging to provide message
integrity and confidentiality. Specifically, this specification
provides support for multiple security token formats, trust
domains, signature formats and encryption technologies.
The token formats and semantics for using these are
defined in the associated profile documents.

WS-Security:
Kerberos Binding

1.0
Microsoft, IBM, OASIS

Working Draft

WS-Security: X.509
Certificate Token Profile

1.1
OASIS

Public Review Draft

! WS-Security: X.509 Certificate Token Profile describes
the use of the X.509 authentication framework with the
WS-Security: SOAP Message Security specification.

! WS-Security: Username Token Profile describes how 
a Web Service consumer can supply a Username Token as a
means of identifying the requestor by username, and
optionally using a password (or shared secret, etc.) to
authenticate that identity to the Web Service producer.

WS-SecurityPolicy
1.1

IBM, Microsoft, 
RSA Security, VeriSign

Public Draft

! WS-SecurityPolicy defines how to describe policies related 
to various features defined in the WS-Security specification.

WS-Trust
BEA Systems, Computer Associates, IBM, Layer 7

Technologies, Microsoft, Netegrity, Oblix,
OpenNetwork, Ping Identity Corporation,

Reactivity, RSA Security, VeriSign and Westbridge
Technology · Initial Draft

WS-Security: 
SAML Token Profile

1.1
OASIS

Public Review Draft

! WS-Security: SAML Token Profile defines the use of
Security Assertion Markup Language (SAML) v1.1 assertions
in the context of WSS: SOAP Message Security including
for the purpose of securing SOAP messages and SOAP
message exchanges.

WS-Federation
1.0

IBM, Microsoft, BEA Systems, 
RSA Security, and VeriSign

Initial Draft

! WS-Federation describes how to manage and broker the
trust relationships in a heterogeneous federated
environment including support for federated identities.

WS-SecureConversation
BEA Systems, Computer Associates, IBM,

Layer 7 Technologies, Microsoft, Netegrity,
Oblix, OpenNetwork, 

Ping Identity Corporation, Reactivity, 
RSA Security, VeriSign and Westbridge

Technology ·Public Draft

! WS-SecureConversation specifies how to manage and
authenticate message exchanges between parties including
security context exchange and establishing and deriving 
session keys.

WS-PolicyAssertions
1.1

BEA Systems, 
IBM, Microsoft, SAP

Public Draft

WS-Policy
1.5

W3C
Working Draft

WS-PolicyAttachment
1.2

W3C
W3C Member Submission

WS-Discovery
Microsoft, BEA Systems, Canon, 

Intel and webMethods
Draft

WS-MetadataExchange
1.1

BEA Systems, Computer Associates, 
IBM, Microsoft, SAP, Sun Microsystems and

webMethods
Public Draft

! WS-Policy describes the capabilities and constraints of 
the policies on intermediaries and endpoints (e.g. business
rules, required security tokens, supported encryption
algorithms, privacy rules).

! WS-PolicyAssertions provides an initial set of assertions
to address some common needs of Web Services
applications.

! WS-PolicyAttachment defines two general-purpose
mechanisms for associating policies with the subjects to
which they apply; the policies may be defined as part 
of existing metadata about the subject or the policies may 
be defined independently and associated through an 
external binding to the subject.

! WS-Discovery defines a multicast discovery protocol for
dynamic discovery of services on ad-hoc and managed
networks.

! WS-MetadataExchange enables a service to provide
metadata to others through a Web services interface. Given
only a reference to a Web service, a user can access a set 
of WSDL /SOAP operations to retrieve the metadata that
describes the service.

Universal Description,
Discovery and Integration (UDDI)

3.0.2
OASIS

OASIS-Standard

! Universal Description, Discovery and Integration (UDDI)
defines a set of services supporting the description 
and discovery of businesses, organizations, and other Web
services providers, the Web services they make available,
and the technical interfaces which may be used to access
those services.

Management Of 
Web Services (WSDM-MOWS)

1.0
OASIS

OASIS-Standard

WS-Management
AMD, Dell, Intel, Microsoft and Sun

Microsystems
Published Specification

Management Using Web
Services (WSDM-MUWS)

1.0
OASIS

OASIS-Standard
Web Services for Remote

Portlets (WSRP)
2.0

OASIS
Committee Draft

! Web Service Distributed Management: Management Of
Web Services (WSDM-MOWS) addresses management of
the components that form the network, the Web services
endpoints, using Web services protocols.

! WS-Management describes a general SOAP-based
protocol for managing systems such as PCs, servers,
devices, Web services and other applications, and other
manageable entities.

Service Modeling Language
IBM, BEA, BMC, Cisco, Dell, HP, Intel,

Microsoft, Sun
Draft Specification

! Servcie Modeling Language (SML) is used to model
complex IT services and systems, including their structure,
constraints, policies, and best practices. 

! Web Service Distributed Management: Management Using
Web Services (WSDM-MUWS) defines how an IT resource
connected to a network provides manageability interfaces
such that the IT resource can be managed locally and from
remote locations using Web services technologies.

" Web Services for Remote Portlets (WSRP) defines a 
set of interfaces and related semantics which standardize
interactions with components providing user-facing
markup, including the processing of user interactions with
that markup.

Web Service Description
Language 2.0 Core

2.0
W3C

Candidate Recommendation

Web Service Description
Language 1.1

1.1
W3C
Note

Web Service Description
Language 2.0 
SOAP Binding

2.0
W3C · Working Draft

! WS-Business Activity provides the definition of the business activity
coordination type that is to be used with the extensible coordination
framework described in the WS-Coordination specification.

WS-Coordination
1.1

OASIS
Working Draft

! WS-Atomic Transaction defines protocols that enable existing
transaction processing systems to wrap their proprietary protocols
and interoperate across different hardware and software vendors.

! WS-Coordination describes an extensible framework for providing
protocols that coordinate the actions of distributed applications. 

WS-Composite Application
Framework (WS-CAF)

1.0 · Arjuna Technologies, Fujitsu, IONA,
Oracle and Sun Microsystems

Committee Specification
! WS-Composite Application Framework (WS-CAF) is a

collection of three specifications aimed at solving problems
that arise when multiple Web Services are used in combina-
tion. It proposes standard, interoperable mechanisms for
managing shared context and ensuring business processes
achieve predictable results and recovery from failure.

WS-Context (WS-CTX)
1.0

Arjuna Technologies, Fujitsu, IONA, Oracle
and Sun Microsystems

Committee Draft

! WS-Context (WS-CTX) is intended as a lightweight mechanism
for allowing multiple Web Services to share a common context.

WS-Coordination 
Framework (WS-CF)

1.0 · Arjuna Technologies, Fujitsu, IONA,
Oracle and Sun Microsystems

Committee Draft
! WS-Coordination Framework (WS-CF) allows the 

management and coordination in a Web Services interaction
of a number of activities related to an overall application.

WS-Transaction 
Management (WS-TXM)

1.0 · Arjuna Technologies, Fujitsu, IONA,
Oracle and Sun Microsystems

Committee Draft
! WS-Transaction Management (WS-TXM) defines a core infrastructure

service consisting of a Transaction Service for Web Services.

WS-Business Activity
1.1

OASIS
Working Draft

WS-Atomic Transaction
1.1

OASIS
Committee Draft

Resource
Specifications

SOAP Message 
Transmission Optimization

Mechanism (MTOM)
1.0 · W3C

Recommendation

SOAP
1.2

W3C
Recommendation

SOAP
1.1

W3C
Note

XML 1.1
1.1

W3C
Recommendation

XML 1.0
1.0

W3C
Recommendation

Namespaces in XML
1.1

W3C
Recommendation

XML Information Set
1.0

W3C
Recommendation

XML Schema
1.1

W3C
Working Draft

XML binary Optimized
Packaging (XOP)

1.0
W3C

Recommendation

" Describing Media Content
of Binary Data in XML
(DMCBDX) specifies how to
indicate the content-type
associated with binary
element content in an XML
document and to specify, in
XML Schema, the expected
content-type(s) associated
with binary element
content. 

Describing Media Content
of Binary Data in XML

(DMCBDX)
W3C
Note

XML Specifications

! WS-Trust describes a framework for trust models that enables
Web Services to securely interoperate. It uses WS-Security base
mechanisms and defines additional primitives and extensions
for security token exchange to enable the issuance and
dissemination of credentials within different trust domains.

! WS-Security: Kerberos Binding defines how to encode
Kerberos tickets and attach them to SOAP messages. As
well, it specifies how to add signatures and encryption to the
SOAP message, in accordance with WS-Security, which 
uses and references the Kerberos tokens.

WS-Addressing – Core
1.0

W3C
Recommendation

WS-Eventing
W3C

Public Draft

" WS-Addressing – Core
provides transport-neutral
mechanisms to address
Web services and messages.
This specification defines
XML elements to identify
Web service endpoints and
to secure end-to-end
endpoint identification in
messages.

WS-Addressing – WSDL
Binding

1.0
W3C

Candidate Recommendation

" WS-Addressing – WSDL
Binding defines how the
abstract properties defined
in Web Services Addressing
– Core are described using
WSDL.

WS-Addressing – 
SOAP Binding

1.0
W3C

Recommendation

" WS-Addressing – SOAP
Binding provides transport-
neutral mechanisms to
address Web services and
messages.

" WS-BaseNotification
standardizes the terminology,
concepts, operations, WSDL
and XML needed to express
the basic roles involved in
Web services publish and
subscribe for notification
message exchange.

WS-Enumeration
Systinet, Microsoft, Sonic Software, BEA

Systems and 
Computer Associates

Public Draft

" WS-Enumeration describes 
a general SOAP-based
protocol for enumerating 
a sequence of XML
elements that is suitable
for traversing logs, message
queues, or other linear
information models.

WS-Notification
1.3

OASIS
OASIS-Standard

" WS-Notification is a
family of related white
papers and specifications
that define a standard 
Web services approach to
notification using a topic-
based publish/subscribe
pattern.

WS-BaseNotification
1.3

OASIS
OASIS-Standard

" WS-Eventing defines a
baseline set of operations
that allow Web services to
provide asynchronous
notifications to interested
parties.

WS-Topics
1.3

OASIS
OASIS-Standard

" WS-Topics defines three
topic expression dialects
that can be used as sub-
scription expressions in
subscribe request messages
and other parts of the 
WS-Notification system.

WS-BrokeredNotification
1.3

OASIS
OASIS-Standard

" WS-BrokeredNotification
defines the interface for
the NotificationBroker. 
A NotificationBroker is an
intermediary, which, among
other things, allows
publication of messages
from entities that are not
themselves service 
providers.

" SOAP Message
Transmission
Optimization
Mechanism
describes an
abstract feature for
optimizing the
transmission and/or
wire format of a
SOAP message.

" SOAP is a lightweight,
XML-based protocol for
exchange of information
in a decentralized,
distributed environment.

WS-PolicyAssertions

Ve
rs

io
n 

3.
0 

· F
eb

ru
ar

y 
20

07

Reliability Specifications
WS-ReliableMessaging

WS-Reliability

WS-Reliable Messaging Policy Assertion

Tr
an

sa
ct

io
n

Resource Specifications
Web Service Resource Framework

WS-BaseFaults

WS-ResourceLifetime

WS-Transfer

Resource Representation SOAP Header Block (RRSHB)

WS-ServiceGroup

M
es

sa
gi

ng

Se
cu

ri
ty

Tr
an

sa
ct

io
n

WS-ResourceProperties

M
et

ad
at

a

Se
cu

ri
ty

Ba
sic

Pr
of

ile

Presentation Specifications
Web Services for Remote Portlets

M
es

s.

Se
cu

r.

Re
lia

b.

M
es

sa
gi

ng

Se
cu

ri
ty

Management Specifications

Re
so

ur
ce

M
et

a

WS-Management

Management Of Web Services

Management Using Web Services

Service Modeling Language

Business Process Specifications

WS-Choreography Model Overview

Web Service Choreography Description Language

Web Service Choreography Interface

Business Process Management Language

Business Process Execution Language for Web Serv. 2.0

XML Process Definition Language

Business Process Execution Language for Web Services

M
es

sa
gi

ng

Tr
an

sa
ct

io
n

Se
cu

ri
ty

Re
lia

bi
lit

y

Transaction Specifications

M
es

sa
gi

ng

Se
cu

ri
ty

Re
lia

bi
lit

y

M
et

ad
at

a

WS-Composite Application Framework

WS-Transaction Management

WS-Context

WS-Coordination Framework

WS-Business Activity

WS-Atomic Transaction

WS-Coordination

Standards Bodies
The Organization for the Advancement of Structured Information 
Standards (OASIS) is a not-for-profit, international consortium

that drives the development, convergence, and adoption of e-business standards. The
consortium produces more Web services standards than any other organization along with stan-
dards for security, e-business, and standardization efforts in the public sector and for applica-
tion-specific markets. Founded in 1993, OASIS has more than 4,000 participants representing
over 600 organizations and individual members in 100 countries.

The World Wide Web Consortium (W3C) was created in October 1994 to lead the 
World Wide Web to its full potential by developing common protocols that promote
its evolution and ensure its interoperability. W3C has over 350 Member organiza-

tions from all over the world and has earned international recognition for its contributions to the
growth of the Web. W3C is designing the infrastructure, and defining the architecture and the core
technologies for Web services. In September 2000, W3C started the XML Protocol Activity to address
the need for an XML-based protocol for application-to-application messaging. In January 2002, the
Web Services Activity was launched, subsuming the XML Protocol Activity and extending its scope.

The Web Services Interoperability Organization (WS-I) is an open industry 
organization chartered to promote Web services interoperability across platforms,

operating systems and programming languages. The organization’s diverse community of Web
services leaders helps customers to develop interoperable Web services by providing guidance,
recommended practices and supporting resources. Specifically, WS-I creates, promotes and
supports generic protocols for the interoperable exchange of messages between Web services.

The Internet Engineering Task Force (IETF) is a large open international 
community of network designers, operators, vendors, and researchers 
concerned with the evolution of the Internet architecture and the smooth 
operation of the Internet.

Attachments Profile
1.0

WS-I
Final Specification

! Attachments Profile – The Attachment Profile 1.0
complements the Basic Profile 1.1 to add support 
for interoperable SOAP Messages with attachments-based
Web Services.

Simple SOAP 
Binding Profile

1.0
WS-I

Final Specification

! Simple SOAP Binding Profile – The Simple SOAP Binding
Profile consists of those Basic Profile 1.0 requirements
related to the serialization of the envelope and its
representation in the message.

Business Process Execution
Language for Web Services 1.1

(BPEL4WS) · 1.1 · BEA Systems, IBM,
Microsoft, SAP, 

Siebel Systems · OASIS-Standard

! WS-Choreography Model Overview defines the format
and structure of the (SOAP) messages that are exchanged,
and the sequence and conditions in which the messages
are exchanged.

! Business Process Execution Language for Web Services
1.1(BPEL4WS) provides a language for the formal
specification of business processes and business interaction
protocols using Web Services.

! Web Service Choreography Interface (WSCI) describes
how Web Service operations can be choreographed in the
context of a message exchange in which the Web Service
participates.

WS-Choreography Model
Overview

1.0 · W3C
Working Draft

Web Service Choreography
Interface

(WSCI) · 1.0 · W3C
Sun Microsystems, SAP, BEA Systems 

and Intalio · Note

Business Process Specifications

Business Process Execution
Language for Web Services 2.0

(BPEL4WS) · 2.0
OASIS, BEA Systems, IBM, Microsoft, SAP, 

Siebel Systems · Committee Draft

! Business Process Execution Language for Web Services
2.0 (BPEL4WS) provides a language for the formal
specification of business processes and business interaction
protocols using Web Services.

! Business Process Management Language (BPML)
provides a meta-language for expressing business
processes and supporting entities.

Business Process Management
Language (BPML)

1.1
BPMI.org

Final Draft

! Web Service Choreography Description Language
(CDL4WS) is to specify a declarative, XML based language
that defines from a global viewpoint the common and
complementary observable behaviour, where message
exchanges occur, and when the jointly agreed ordering
rules are satisfied.

Web Service Choreography
Description Language

(CDL4WS) · 1.0 · W3C
Candidate Recommendation

! XML Process Definition Language (XPDL) provides an
XML file format that can be used to interchange process
models between tools.

XML Process Definition
Language (XPDL)

2.0
Final

WS-ReliableMessaging
1.1

OASIS
Committee Draft

! WS-ReliableMessaging describes a protocol that allows
Web services to communicate reliable in the presence of
software component, system, or network failures. It defines
a SOAP binding that is required for interoperability.

WS-Reliability
1.1

OASIS
OASIS-Standard

! WS-Reliability is a SOAP-based protocol for exchanging
SOAP messages with guaranteed delivery, no duplicates,
and guaranteed message ordering. WS-Reliability is
defined as SOAP header extensions and is independent of
the underlying protocol. This specification contains a
binding to HTTP.

WS-Reliable Messaging 
Policy Assertion (WS-RM Policy)

1.1
OASIS

Committee Draft

! Web Services ReliableMessaging Policy Assertion
(WS-RM Policy) describes a domain-specific policy assertion
for WS-ReliableMessaging that that can be specified within
a policy alternative as defined in WS-Policy Framework.

! Web Service Description Language 2.0 Core is an XML-
based language for describing Web services and how to
access them. It specifies the location of the service and the
operations (or methods) the service exposes.

! Web Service Description Language 1.1 is an XML-based
language for describing Web services and how to access
them. It specifies the location of the service and the
operations (or methods) the service exposes.

! Web Service Description Language SOAP Binding
describes the concrete details for using WSDL 2.0 in
conjunction with SOAP 1.1 protocol.

WS-BaseFaults (WSRF)
1.2

OASIS
Working Draft

Web Services 
Resource Framework (WSRF)

1.2
OASIS

OASIS-Standard

WS-ServiceGroup (WSRF)
1.2

OASIS
Working Draft

! WS-BaseFaults (WSRF) defines a base set of information
that may appear in fault messages. WS-BaseFaults defines an
XML schema type for base faults, along with rules for how
this base fault type is used and extended by Web Services.

! Web Services Resource Framework (WSRF) defines a family of
specifications for accessing stateful resources using Web Services.

! WS-ServiceGroup (WSRF) defines a means by which Web
Services and WS-Resources can be aggregated or grouped
together for a domain specific purpose.

WS-ResourceProperties
1.2

OASIS
Working Draft

! WS-ResourceProperties specifies the means by which the
definition of the properties of a WS-Resource may be declared
as part of the Web Service interface. The declaration of the
WS-Resource properties represents a projection of or a view
on the WS-Resource state.

! WS-ResourceLifetime is to standardize the terminology,
concepts, message exchanges, WSDL and XML needed to
monitor the lifetime of, and destroy WS-Resources.
Additionally, it defines resource properties that may be used
to inspect and monitor the lifetime of a WS-Resource.

! WS-Transfer describes a general SOAP-based protocol for
accessing XML representations of Web service-based resources.

WS-ResourceLifetime
1.2

OASIS
Working Draft

WS-Transfer
W3C

W3C Member Submission

Resource Representation
SOAP Header Block (RRSHB)

W3C
Recommendation

! Resource Representation SOAP Header Block (RRSHB)
complements MTOM by defining mechanisms for
describing and conveying non-XML resource representations
in a SOAP 1.2 message. 

martedì 10 dicembre 13



Birth of BPEL

11

IBM was pushing for a standard called WSFL

Microsoft was pushing for a technology called XLANG

Intalio was pushing for BPML

IBM and Microsoft merged their efforts and pushed together
for BPEL (a hybrid WSFL+XLANG)
and BPEL was soon widely adopted

martedì 10 dicembre 13



Life of BPEL

12

BPEL4WS 1.0 (2002) by BEA, IBM, Microsoft

SAP + Siebel joined the effort
BPEL 1.1 (2003)

submitted to OASIS

Adobe + HP + NEC + Oracle + Sun + many more joined
WS-BPEL 2.0 (2005)

martedì 10 dicembre 13



The problem with BPEL

13

BPEL is not a graphical language

BPEL is an XML dialect

Machines like XML
Humans being should not like XML

martedì 10 dicembre 13



A typical BPEL tutorial

14

Turn to page 4 of any BPEL tutorial 
(the first couple of pages are just a verbal introduction)

and you find the first small example...

... of about two pages of formatted XML code
(with all actual namespaces

to avoid any misunderstanding) 

martedì 10 dicembre 13



15

BPELexample.xml Page 1 of 2

1

!

!

2

3

4

5

6

7

8

!

9

!

10

!

11

!

12

13

14

15

16

17

!

18

19

20

21

22

23

!

24

!

!

25

26

27

28

29

!

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

!

!

<process name="purchaseOrderProcess" targetNamespace="http://example.com/ws-bp/
purchase" xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/executable" 
xmlns:lns="http://manufacturing.org/wsdl/purchase">
 
   <documentation xml:lang="EN">
      A simple example of a WS-BPEL process for handling a purchase order.
   </documentation>
 
   <partnerLinks>
      <partnerLink name="purchasing" partnerLinkType="lns:purchasingLT" 
myRole="purchaseService" />
      <partnerLink name="invoicing" partnerLinkType="lns:invoicingLT" 
myRole="invoiceRequester" partnerRole="invoiceService" />
      <partnerLink name="shipping" partnerLinkType="lns:shippingLT" 
myRole="shippingRequester" partnerRole="shippingService" />
      <partnerLink name="scheduling" partnerLinkType="lns:schedulingLT" 
partnerRole="schedulingService" />
   </partnerLinks>
 
   <variables>
      <variable name="PO" messageType="lns:POMessage" />
      <variable name="Invoice" messageType="lns:InvMessage" />
      <variable name="shippingRequest" 
messageType="lns:shippingRequestMessage" />
      <variable name="shippingInfo" messageType="lns:shippingInfoMessage" />
      <variable name="shippingSchedule" messageType="lns:scheduleMessage" />
   </variables>
 
   <faultHandlers>
      <catch faultName="lns:cannotCompleteOrder" faultVariable="POFault" 
faultMessageType="lns:orderFaultType">
         <reply partnerLink="purchasing" portType="lns:purchaseOrderPT" 
operation="sendPurchaseOrder" variable="POFault" 
faultName="cannotCompleteOrder" />
      </catch>
   </faultHandlers>
 
   <sequence>
      <receive partnerLink="purchasing" portType="lns:purchaseOrderPT" 
operation="sendPurchaseOrder" variable="PO" createInstance="yes">
         <documentation>Receive Purchase Order</documentation>
      </receive>
 
      <flow>
         <documentation>
            A parallel flow to handle shipping, invoicing and scheduling
         </documentation>
         <links>
            <link name="ship-to-invoice" />
            <link name="ship-to-scheduling" />
         </links>
         <sequence>
            <assign>
               <copy>
                  <from>$PO.customerInfo</from>
                  <to>$shippingRequest.customerInfo</to>
               </copy>
            </assign>
            <invoke partnerLink="shipping" portType="lns:shippingPT" 

BPELexample.xml Page 2 of 2

48

!

!

49

50

51

52

53

54

!

55

56

57

58

59

60

61

62

!

63

64

65

66

67

!

68

69

70

71

72

73

74

75

!

76

77

78

!

79

80

81

82

83

!

84

85

86

87

88

89

90

91

92

93

!

94

95

96

operation="requestShipping" inputVariable="shippingRequest" 
outputVariable="shippingInfo">
               <documentation>Decide On Shipper</documentation>
               <sources>
                  <source linkName="ship-to-invoice" />
               </sources>
            </invoke>
            <receive partnerLink="shipping" portType="lns:shippingCallbackPT" 
operation="sendSchedule" variable="shippingSchedule">
               <documentation>Arrange Logistics</documentation>
               <sources>
                  <source linkName="ship-to-scheduling" />
               </sources>
            </receive>
         </sequence>
         <sequence>
            <invoke partnerLink="invoicing" portType="lns:computePricePT" 
operation="initiatePriceCalculation" inputVariable="PO">
               <documentation>
                  Initial Price Calculation
               </documentation>
            </invoke>
            <invoke partnerLink="invoicing" portType="lns:computePricePT" 
operation="sendShippingPrice" inputVariable="shippingInfo">
               <documentation>
                  Complete Price Calculation
               </documentation>
               <targets>
                  <target linkName="ship-to-invoice" />
               </targets>
            </invoke>
            <receive partnerLink="invoicing" portType="lns:invoiceCallbackPT" 
operation="sendInvoice" variable="Invoice" />
         </sequence>
         <sequence>
            <invoke partnerLink="scheduling" portType="lns:schedulingPT" 
operation="requestProductionScheduling" inputVariable="PO">
               <documentation>
                  Initiate Production Scheduling
               </documentation>
            </invoke>
            <invoke partnerLink="scheduling" portType="lns:schedulingPT" 
operation="sendShippingSchedule" inputVariable="shippingSchedule">
               <documentation>
                  Complete Production Scheduling
               </documentation>
               <targets>
                  <target linkName="ship-to-scheduling" />
               </targets>
            </invoke>
         </sequence>
      </flow>
      <reply partnerLink="purchasing" portType="lns:purchaseOrderPT" 
operation="sendPurchaseOrder" variable="Invoice">
         <documentation>Invoice Processing</documentation>
      </reply>
   </sequence>
</process>

martedì 10 dicembre 13



A syntax called 
semantics

16

Learning BPEL by looking at XML documents

is like

learning Petri nets by looking at PNML documents

or similar to

learning Java by looking at the bytecode

martedì 10 dicembre 13



17

PNMLnet.xml Page 1 of 4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

<?xml version="1.0" encoding="UTF-8"?><pnml>
  <net type="http://www.informatik.hu-berlin.de/top/pntd/ptNetb" id="noID">
    <place id="p6">
      <name>
        <text>p6</text>
        <graphics>
          <offset x="430" y="270"/>
        </graphics>
      </name>
      <graphics>
        <position x="430" y="230"/>
        <dimension x="40" y="40"/>
      </graphics>
    </place>
    <place id="p5">
      <name>
        <text>p5</text>
        <graphics>
          <offset x="300" y="320"/>
        </graphics>
      </name>
      <graphics>
        <position x="300" y="280"/>
        <dimension x="40" y="40"/>
      </graphics>
    </place>
    <place id="p4">
      <name>
        <text>p4</text>
        <graphics>
          <offset x="180" y="320"/>
        </graphics>
      </name>
      <graphics>
        <position x="180" y="280"/>
        <dimension x="40" y="40"/>
      </graphics>
    </place>
    <place id="p3">
      <name>
        <text>p3</text>
        <graphics>
          <offset x="300" y="220"/>
        </graphics>
      </name>
      <graphics>
        <position x="300" y="180"/>
        <dimension x="40" y="40"/>
      </graphics>
    </place>
    <place id="p2">
      <name>
        <text>p2</text>
        <graphics>
          <offset x="180" y="220"/>
        </graphics>
      </name>
      <graphics>
        <position x="180" y="180"/>
        <dimension x="40" y="40"/>
      </graphics>
    </place>
    <place id="p1">
      <name>
        <text>p1</text>
        <graphics>
          <offset x="40" y="270"/>
        </graphics>
      </name>
      <graphics>
        <position x="40" y="230"/>
        <dimension x="40" y="40"/>
      </graphics>
      <initialMarking>
        <text>1</text>
      </initialMarking>
    </place>

PNMLnet.xml Page 2 of 4

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

    <transition id="t3">
      <name>
        <text>t3</text>
        <graphics>
          <offset x="240" y="320"/>
        </graphics>
      </name>
      <graphics>
        <position x="240" y="280"/>
        <dimension x="40" y="40"/>
      </graphics>
      <toolspecific tool="WoPeD" version="1.0">
        <time>0</time>
        <timeUnit>1</timeUnit>
        <orientation>1</orientation>
      </toolspecific>
    </transition>
    <transition id="t2">
      <name>
        <text>t2</text>
        <graphics>
          <offset x="240" y="220"/>
        </graphics>
      </name>
      <graphics>
        <position x="240" y="180"/>
        <dimension x="40" y="40"/>
      </graphics>
      <toolspecific tool="WoPeD" version="1.0">
        <time>0</time>
        <timeUnit>1</timeUnit>
        <orientation>1</orientation>
      </toolspecific>
    </transition>
    <transition id="t1">
      <name>
        <text>t1</text>
        <graphics>
          <offset x="120" y="270"/>
        </graphics>
      </name>
      <graphics>
        <position x="120" y="230"/>
        <dimension x="40" y="40"/>
      </graphics>
      <toolspecific tool="WoPeD" version="1.0">
        <time>0</time>
        <timeUnit>1</timeUnit>
        <orientation>1</orientation>
      </toolspecific>
    </transition>
    <transition id="t4">
      <name>
        <text>t4</text>
        <graphics>
          <offset x="360" y="270"/>
        </graphics>
      </name>
      <graphics>
        <position x="360" y="230"/>
        <dimension x="40" y="40"/>
      </graphics>
      <toolspecific tool="WoPeD" version="1.0">
        <time>0</time>
        <timeUnit>1</timeUnit>
        <orientation>1</orientation>
      </toolspecific>
    </transition>
    <transition id="t5">
      <name>
        <text>t5</text>
        <graphics>
          <offset x="240" y="150"/>
        </graphics>
      </name>
      <graphics>
        <position x="240" y="110"/>

PNMLnet.xml Page 3 of 4

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

        <dimension x="40" y="40"/>
      </graphics>
      <toolspecific tool="WoPeD" version="1.0">
        <time>0</time>
        <timeUnit>1</timeUnit>
        <orientation>1</orientation>
      </toolspecific>
    </transition>
    <arc id="a9" source="t1" target="p4">
      <inscription>
        <text>1</text>
      </inscription>
      <graphics/>
      <toolspecific tool="WoPeD" version="1.0">
        <probability>1.0</probability>
        <displayProbabilityOn>false</displayProbabilityOn>
        <displayProbabilityPosition x="500.0" y="0.0"/>
      </toolspecific>
    </arc>
    <arc id="a17" source="p3" target="t4">
      <inscription>
        <text>1</text>
      </inscription>
      <graphics/>
      <toolspecific tool="WoPeD" version="1.0">
        <probability>1.0</probability>
        <displayProbabilityOn>false</displayProbabilityOn>
        <displayProbabilityPosition x="500.0" y="0.0"/>
      </toolspecific>
    </arc>
    <arc id="a14" source="p5" target="t4">
      <inscription>
        <text>1</text>
      </inscription>
      <graphics/>
      <toolspecific tool="WoPeD" version="1.0">
        <probability>1.0</probability>
        <displayProbabilityOn>false</displayProbabilityOn>
        <displayProbabilityPosition x="500.0" y="0.0"/>
      </toolspecific>
    </arc>
    <arc id="a21" source="p3" target="t5">
      <inscription>
        <text>1</text>
      </inscription>
      <graphics/>
      <toolspecific tool="WoPeD" version="1.0">
        <probability>1.0</probability>
        <displayProbabilityOn>false</displayProbabilityOn>
        <displayProbabilityPosition x="500.0" y="0.0"/>
      </toolspecific>
    </arc>
    <arc id="a13" source="t3" target="p5">
      <inscription>
        <text>1</text>
      </inscription>
      <graphics/>
      <toolspecific tool="WoPeD" version="1.0">
        <probability>1.0</probability>
        <displayProbabilityOn>false</displayProbabilityOn>
        <displayProbabilityPosition x="500.0" y="0.0"/>
      </toolspecific>
    </arc>
    <arc id="a10" source="p4" target="t3">
      <inscription>
        <text>1</text>
      </inscription>
      <graphics/>
      <toolspecific tool="WoPeD" version="1.0">
        <probability>1.0</probability>
        <displayProbabilityOn>false</displayProbabilityOn>
        <displayProbabilityPosition x="500.0" y="0.0"/>
      </toolspecific>
    </arc>
    <arc id="a24" source="t5" target="p2">
      <inscription>
        <text>1</text>

PNMLnet.xml Page 4 of 4

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

      </inscription>
      <graphics/>
      <toolspecific tool="WoPeD" version="1.0">
        <probability>1.0</probability>
        <displayProbabilityOn>false</displayProbabilityOn>
        <displayProbabilityPosition x="500.0" y="0.0"/>
      </toolspecific>
    </arc>
    <arc id="a1" source="p1" target="t1">
      <inscription>
        <text>1</text>
      </inscription>
      <graphics/>
      <toolspecific tool="WoPeD" version="1.0">
        <probability>1.0</probability>
        <displayProbabilityOn>false</displayProbabilityOn>
        <displayProbabilityPosition x="500.0" y="0.0"/>
      </toolspecific>
    </arc>
    <arc id="a2" source="t1" target="p2">
      <inscription>
        <text>1</text>
      </inscription>
      <graphics/>
      <toolspecific tool="WoPeD" version="1.0">
        <probability>1.0</probability>
        <displayProbabilityOn>false</displayProbabilityOn>
        <displayProbabilityPosition x="500.0" y="0.0"/>
      </toolspecific>
    </arc>
    <arc id="a5" source="p2" target="t2">
      <inscription>
        <text>1</text>
      </inscription>
      <graphics/>
      <toolspecific tool="WoPeD" version="1.0">
        <probability>1.0</probability>
        <displayProbabilityOn>false</displayProbabilityOn>
        <displayProbabilityPosition x="500.0" y="0.0"/>
      </toolspecific>
    </arc>
    <arc id="a6" source="t2" target="p3">
      <inscription>
        <text>1</text>
      </inscription>
      <graphics/>
      <toolspecific tool="WoPeD" version="1.0">
        <probability>1.0</probability>
        <displayProbabilityOn>false</displayProbabilityOn>
        <displayProbabilityPosition x="500.0" y="0.0"/>
      </toolspecific>
    </arc>
    <arc id="a18" source="t4" target="p6">
      <inscription>
        <text>1</text>
      </inscription>
      <graphics/>
      <toolspecific tool="WoPeD" version="1.0">
        <probability>1.0</probability>
        <displayProbabilityOn>false</displayProbabilityOn>
        <displayProbabilityPosition x="500.0" y="0.0"/>
      </toolspecific>
    </arc>
    <toolspecific tool="WoPeD" version="1.0">
      <bounds>
        <position x="11" y="33"/>
        <dimension x="755" y="490"/>
      </bounds>
      <treeWidth>2</treeWidth>
      <verticalLayout>false</verticalLayout>
      <resources/>
      <simulations/>
      <partnerLinks/>
      <variables/>
    </toolspecific>
  </net>
</pnml>

martedì 10 dicembre 13



A matter of abstraction

18

A technology should not become “THE model”
(though it can serve as a source of inspiration)

this way of thinking can have a bad impact 
in the near future (in training technical personnel)

≠≠≠≠ 




<operation name = "CheckAvailability">

10




<operation name = "CheckAvailability">
< input message = "CheckInDate"/>
< input message = "CheckOutDate"/>
< input message = "NRooms"/>
<output message = "Result"/>

</operation>

≠≠≠≠ 




<operation name = "CheckAvailability">

10




<operation name = "CheckAvailability">
< input message = "CheckInDate"/>
< input message = "CheckOutDate"/>
< input message = "NRooms"/>
<output message = "Result"/>

</operation>








 
 

 

 

XML http://www.w3.org/XML/
SOAP http://www.w3.org/TR/soap/
WSDL http://www.w3.org/TR/wsdl20/
UDDI http://www.uddi.org/

 

service
provider

service
requester

UDDI
registry

publish discover

interact

martedì 10 dicembre 13



The source of the 
problem

19

BPEL is designed to work with WSDL documents
of the services required by the process

A process can itself be exposed as a service
which needs its own WSDL document

For us:
we can forget that WSDL documents are written in XML

we regard them as abstract interface descriptions

martedì 10 dicembre 13



BPEL guidelines

20

martedì 10 dicembre 13



Structured control vs 
free flow

21

BPEL4WS should provide 
both hierarchical and graph-like control regimes, 

and allow their usage to be blended 
as seamlessly as possible. 

martedì 10 dicembre 13



About data handling

22

BPEL4WS provides limited data manipulation functions 
that are sufficient for the simple manipulation of data 

that is needed to define 
process relevant data and control flow.

martedì 10 dicembre 13



Correlation

23

BPEL4WS should support an 
identification mechanism for process instances 
that allows the definition of instance identifiers 

at the application message level.

Instance identifiers should be partner defined 
and may change over time.

martedì 10 dicembre 13



Abstract vs executable

24

BPEL4WS should define a set of Web service orchestration 
concepts that are meant to be used in common by both 

the external (abstract) and 
internal (executable) views of a business process. 

Such a business process defines the behavior of a single 
autonomous entity, typically operating in interaction with 

other similar peer entities. 

It is recognized that each usage view will require a few 
specialized extensions, but these extensions are to be kept 

to a minimum and tested against requirements 

martedì 10 dicembre 13



Transactions

25

BPEL4WS should define a long-running transaction model 
that is based on practically proven techniques 

like compensation actions and scoping 
to support failure recovery for parts of 

long-running business processes.

martedì 10 dicembre 13



WSDL preliminaries

26

martedì 10 dicembre 13



Service

27

A service can be thought of as a container 
for a set of (logically related) operations

that are made available via web-based protocols

Roughly: a remote object

martedì 10 dicembre 13



PortType / Interface

28

The <portType> element, 
renamed to <interface> in WSDL 2.0, 

defines a web service, 
the operations that can be performed, 

and the messages that are used to perform the operation.

Roughly: the type of a remote object

i.e., a remote (abstract) class

martedì 10 dicembre 13



Operation

29

Each operation can be thought of as 
a method or function call in some programming language. 

Four kinds of operations
(one-way, request-response, notification, solicit-response)

Three kinds of parameters/arguments
(input, output, fault)

(not all combinations allowed)

Roughly: a remote (abstract) method

martedì 10 dicembre 13



Port / Endpoint

30

The <port> element, 
renamed to <endpoint> in WSDL 2.0, 
declares the address of a web service. 

It typicaIly involves a name, a binding and a URL

martedì 10 dicembre 13



Binding

31

The binding specifies the interface as well as 
the SOAP binding style (message format) 

and SOAP transport protocol.

martedì 10 dicembre 13



WSDL (from wikipedia)

32

martedì 10 dicembre 13



33

PurchaseExample.wsdl Page 1 of 2

1

2

3

!

4

!

5

!

6

7

8

9

10

!

11

!

12

13

14

!

15

!

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

!

33

34

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="PurchaseExample" 
    targetNamespace="http://www.fluidimagination.com/
sams/PurchaseExample.wsdl"
    xmlns:tns="http://www.fluidimagination.com/sams/
PurchaseExample.wsdl"
    xmlns:soap="http://www.schemas.xmlsoap.org/wsdl/
soap/"
    xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
                
    <wsdl:types>
        <xsd:schema 
                  targetNamespace="http://
www.fluidimagination.com/sams/productType.wsdl" 
                  xmlns:xsd="http://www.w3.org/2001/
XMLSchema">
            <xsd:complexType name="scannerType">
                <xsd:all>
                    <xsd:element name="upc" 
type="upcType"/>
                    <xsd:element name="isbn" 
type="isbnType"/>
                </xsd:all>
            </xsd:complexType>
            <xsd:simpleType name="upcType">
                <xsd:restriction base="xsd:string">
                    <xsd:pattern value="[0-9]{12}"/>
                </xsd:restriction>
            </xsd:simpleType>
            <xsd:simpleType name="isbnType">
                <xsd:restriction base="xsd:string">
                    <xsd:pattern value="([0-9]- ){10}"/>
                </xsd:restriction>
            </xsd:simpleType>
        </xsd:schema>
    </wsdl:types>
    <!-- Adding a message that has two addresses -->
    <wsdl:message name="purchaseMessage">
        <wsdl:part name="productCode" 
element="tns:scannerType"/>
    </wsdl:message>
    <!--create a port type with one operation -->

PurchaseExample.wsdl Page 2 of 2

35

36

37

38

39

40

41

!

42

43

!

44

45

46

47

48

49

50

51

!

52

53

!

54

55

56

57

58

59

60

    <wsdl:portType name="purchaseType">
        <wsdl:operation name="purchaseOperation">
            <wsdl:input name="tns:purchaseMessage"/>
        </wsdl:operation>
    </wsdl:portType>
    <!--Bind the message to SOAP using HTTP -->
    <wsdl:binding name="purchaseBinding" 
type="tns:purchaseType">
        <soap:binding style="document" 
              transport="http://schemas.xmlsoap.org/soap/
http"/>
        <wsdl:operation name="tns:purchaseOperation">
            <wsdl:input>
                 <soap:body use="literal"/>
            </wsdl:input>
        </wsdl:operation>
    </wsdl:binding>
    <!--Bind the message to SOAP over  SMTP -->
    <wsdl:binding name="purchaseBindingSMTP" 
type="tns:purchaseType">
        <soap:binding style="document" 
              transport="http://schemas.xmlsoap.org/soap/
smtp"/>
        <wsdl:operation name="tns:purchaseOperation">
            <wsdl:input>
                 <soap:body use="literal"/>
            </wsdl:input>
        </wsdl:operation>
    </wsdl:binding>
</wsdl:definitions>

martedì 10 dicembre 13



BPEL ingredients
(material partly “stolen” from Antonio Brogi’s slides 

on Software Services, thanks!)

34

martedì 10 dicembre 13



BPEL ingredients

35

Data flow
(scoped variables)

Partner links and Message correlation

Message flow
(one-way, request-response, notify, solicit-response)

Control flow
(structured activities and synchronization links)

Handling events, faults, compensations

martedì 10 dicembre 13



Variable

36

Variables can be defined (within a local scope)

The activity <assign> can be used to copy data 
(messages, part of messages, service references) 

between variables

<assign>
     <copy>
          <from variable="PO" part="customerInfo"/>
          <to variable="shippingRequest" part="customerInfo"/>
     </copy>
</assign>

martedì 10 dicembre 13



Partner Link

37

A partner is a service that the process invokes, 
or a client that invokes the process

A BPEL process interacts with a partner using a 
<partnerLink> a (typed) connector 

that the process offers to/requires from its partner
(to be declared in the BPEL document)

<partnerLinks>
    <partnerLink name="shipping"
                 partnerLinkType="lns:shippingLT"
                 myRole="shippingRequester"
                 partnerRole="shippingService"/>
    ...
</partnerLinks>

martedì 10 dicembre 13



Stateless services, 
stateful processes

38

When a message for (WS-BPEL) service arrives, 
it must be delivered either to a new 

or to an existing instance of the process

Stateful business processes are instantiated to act 
according to interaction history

Messages should not only be delivered to the correct port, 
but also to the correct instance of the business process 

that provides that port

martedì 10 dicembre 13



Message correlation

39

Message correlation is the way to tie together 
messages coming from different communications

A correlation set is a set of properties such that 
all messages having the same values of all properties 

are part of the same interaction

The partner that first fixes the values of the properties 
in the correlation set is the initiator of the exchange,

 the other partners are called the followers

martedì 10 dicembre 13



Message flow

40

Basic activities are available 
to send and receive messages to partners

Activity <invoke>: asynchronous (one-way) or
synchronous (request-response) 

Activity <receive>: a request from a partner to execute 
one of the (WSDL) operations implemented by the process

Activity <reply>: to return the result of a <receive>d
synchronous request-response operation 

martedì 10 dicembre 13



Invoke

41

Needed information: the <partnerLink>,
the WSDL <portType> of the service to be invoked, and 

the name and parameters of the <operation>

<invoke partnerLink="shipping" 
        portType="lns:shippingPT" 
        operation="requestShipping"
        inputVariable="shippingRequest"  
        outputVariable="shippingInfo">
        <source linkName="ship-to-invoice"/>
</invoke>

martedì 10 dicembre 13



Receive

42

Needed information: the <partnerLink>,
the WSDL <portType> of the exposed service, and 
a <variable> where to copy the parameters of the 

<operation>

<receive partnerLink="purchasing"
         portType="lns:purchaseOrderPT"
         operation="sendPurchaseOrder"
         variable="PO">
</receive>

martedì 10 dicembre 13



Reply

43

A process can <reply> to a message it <receive>d

Asynchronous operations do not use <reply>
If a reply must sent, 

<invoke> is used to call back a client operation 

<reply partnerLink="purchasing"
       portType="lns:purchaseOrderPT"
       operation="sendPurchaseOrder"
       variable="Invoice" />

martedì 10 dicembre 13



44

martedì 10 dicembre 13



Structured activities

45

<sequence> for specifying sequential compositions

<switch> for (local) internal choices
(ordered list of conditional <case> branches, 
possibly ended by an <otherwise> branch)

<pick> for (global) external choices
(set of event handlers of the form  event → activity,

<onMessage> arrival of a message or <onAlarm> timer)

<flow> for parallel composition

<while> for iterations (guards are XPath expressions)

on
ly

 o
ne

 b
ra

nc
h

is
 s

el
ec

te
d

martedì 10 dicembre 13



Link

46

A <link> expresses synchronisation dependencies 
among activities in a process

Each <link> has a name, 
one source activity, one target activity, and

 it may be associated with a transition condition 
(a predicate to be evaluated when the source activity ends)

martedì 10 dicembre 13



Join condition

47

Any activity that is the target of one or more links
may have an explicit <joinCondition>,

(a predicate on the status values of the incoming links, 
to be evaluated once all such values have been determined)

otherwise the implicit join condition is the OR

If the <joinCondition> evaluates to: 

TRUE the activity can be executed, 

FALSE a <joinFailure> fault may be thrown
(depending on the <suppressJoinFailure> flag

martedì 10 dicembre 13



Scope

48

A scope provides fault and compensation handling 
capabilities to the activities nested within it

A <scope> activity consists of: 
a primary activity, 

a set of (optional) fault handlers,

a single (optional) compensation handlers,

a set of (optional) event handlers 
(executed concurrently with the process,

they enable a scope to react to messages and alarm events)

martedì 10 dicembre 13



Formal semantics of 
control flow in BPEL

49

Formal Semantics and Analysis of Control Flow in WS-BPEL!

(Revised Version)

Chun Ouyang1, Eric Verbeek2, Wil M.P. van der Aalst2,1, Stephen Breutel1,
Marlon Dumas1, and Arthur H.M. ter Hofstede1

1 Faculty of Information Technology, Queensland University of Technology,
GPO Box 2434, Brisbane QLD 4001, Australia

{c.ouyang,sw.breutel,m.dumas,a.terhofstede}@qut.edu.au
2 Department of Technology Management, Eindhoven University of Technology,

GPO Box 513, NL-5600 MB, The Netherlands
{h.m.w.verbeek,w.m.p.v.d.aalst}@tm.tue.nl

Abstract. Web service composition refers to the creation of new (Web) services by combination of
functionality provided by existing ones. This paradigm has gained significant attention in the Web
services community and is seen as a pillar for building service-oriented applications. A number of
domain-specific languages for service composition have been proposed with consensus being formed
around a process-oriented language known as WS-BPEL (or BPEL). The kernel of BPEL consists
of simple communication primitives that may be combined using control-flow constructs expressing
sequence, branching, parallelism, synchronisation, etc. As a result, BPEL process definitions lend
themselves to static flow-based analysis techniques. This report aims at validating the feasibility of
using Petri nets for static analysis of BPEL processes. We present a comprehensive and rigorously
defined mapping of BPEL constructs into Petri net structures. This leads to the implementation
of a tool which operates by translating BPEL processes into Petri nets and exploiting existing
Petri net analysis techniques. The tool performs two useful types of static checks and extracts
meta-data to optimise dynamic resource management.

Keywords: Business process modelling, Web services, BPEL, tool-based verification, Petri nets.

1 Introduction

There is an increasing acceptance of Service-Oriented Architectures (SOA) as a paradigm for integrating
software applications within and across organisational boundaries. In this paradigm, independently
developed and operated applications are exposed as (Web) services that communicate with each other
using XML-based standards, most notably SOAP and associated specifications [3]. While the technology
for developing basic services and interconnecting them on a point-to-point basis has attained a certain
level of maturity, there remain open challenges when it comes to engineering services that engage in
complex interactions with multiple other services.

A number of approaches have been proposed to address these challenges. One such approach, known
as (process-oriented) service composition [6] has its roots in workflow and business process management.
The idea of service composition is to capture the business logic and behavioural interface of services in
terms of process models. These models may be expressed at different levels of abstraction, down to the
executable level. A number of domain-specific languages for service composition have been proposed,
with consensus gathering around the Business Process Execution Language for Web Services, which is
known as BPEL4WS [4] and recently WS-BPEL [5] (or BPEL for short).

In BPEL, the logic of the interactions between a given service and its environment is described
as a composition of communication actions (send, receive, send/receive, etc). These communication
actions are interrelated by control-flow dependencies expressed through constructs corresponding to
parallel, sequential, and conditional execution, event and exception handling, and compensation. Data
manipulation is captured through lexically scoped variables as in imperative programming languages.

The constructs found in BPEL, especially those related to control flow, are close to those found in
workflow definition languages [1]. In the area of workflow, it has been shown that Petri nets provide
an appropriate foundation for performing static verification: Tools such as Woflan [22] are able to
perform state space-based and transition invariant-based analysis on workflow models in order to verify
properties such as soundness [22]. It is thus natural to conjecture that static analysis can be performed
! This work was supported by the Australian Research Council under the Discovery Grant “Expressiveness

Comparison and Interchange Faciliation between Business Process Execution Languages”.

martedì 10 dicembre 13



Motivation

50

BPEL specification:
rigourous XML syntax

English prose semantics (of apparent clarity)

Consequences:
inconsistencies, ambiguities, incompleteness

try to google for “WS BPEL issues list”, e.g.
Issue 32 Link Semantics in Event Handlers (resolved)

Issue 39 Inconsistent syntax for query attribute values in spec examples (resolved)

...

Issue 42 Need for Formalism (resolved)   YES

martedì 10 dicembre 13

http://www.oasis-open.org/apps/group_public/download.php/11285/wsbpel_issues34.html#Issue32
http://www.oasis-open.org/apps/group_public/download.php/11285/wsbpel_issues34.html#Issue32
http://www.oasis-open.org/apps/group_public/download.php/11285/wsbpel_issues34.html#Issue39
http://www.oasis-open.org/apps/group_public/download.php/11285/wsbpel_issues34.html#Issue39
http://www.oasis-open.org/apps/group_public/download.php/11285/wsbpel_issues34.html#Issue42
http://www.oasis-open.org/apps/group_public/download.php/11285/wsbpel_issues34.html#Issue42


Approaches

51

Promela (SPIN)

Process algebras

Abstract State Machines

Automata

Weakest preconditions / strongest postconditions

Axiomatic semantics

Petri nets

martedì 10 dicembre 13



Goal

52

Unveil ambiguities in BPEL specification
(reported to BPEL standardization committee)

Complete formalization of all control-flow constructs

Checking for unreachable activities

Checking for potential conflicting message receipt actions

Determining which messages can be eventually consumed

martedì 10 dicembre 13



Example: BPEL with 
unreachable activity

53

which, together with the associated notions of join condition and transition condition, support the
definition of precedence, synchronization and conditional dependencies on top of those captured by the
structured activity constructs. A control link between activities A and B indicates that B cannot start
before A has either completed or has been “skipped”. Moreover, B can only be executed if its associated
join condition evaluates to true, otherwise B is skipped. This join condition is expressed in terms of
the tokens carried by control links leading to B. These tokens may take either a positive (true) or a
negative (false) value. An activity X propagates a token with a positive value along an outgoing link L
if and only if X was executed (as opposed to being skipped) and the transition condition associated to
L evaluates to true. Transition conditions are boolean expressions over the process variables (just like
the conditions in a switch activity). The process by which positive and negative tokens are propagated
along control links, causing activities to be executed or skipped, is called dead path elimination.

Control links may cross the boundaries of most structured activities. However, they must not create
cyclic control dependencies and must not cross the boundary of a while activity or a serializable scope.4
Prior to our work, the interaction between structured activities and control links was not fully under-
stood, resulting in ambiguities and contradictions in the wording of the BPEL specification [5]. Following
our formalisation effort, some of these issues were reported and discussed in the BPEL standardisation
committee, and changes to the specification’s wording have been proposed, albeit not yet adopted (see
footnote 3).

Also, whilst the control flow constructs of BPEL have been designed in a way to ensure that no
BPEL process execution can deadlock5, some combinations of structured activities (in particular switch
and pick) with control links can lead to situations where some activities are “unreachable”. Consider the
BPEL process definition in Fig. 1 where both the XML code and a graphical representation are provided.
During the execution of this process, either A1 or A2 will be skipped because these two activities are
placed in different branches of a switch and in any execution of a switch only one branch is taken. Thus,
one of the two control links x1 or x2 will carry a negative token. On the other hand, we assume that
the join condition attached to activity A3 (denoted by keyword “AND”) evaluates to true if and only if
both links x1 and x2 carry positive values. Hence, this join condition will always evaluate to false and
activity A3 is always skipped (i.e. it is unreachable).

<invoke name = "A3"> 

AND

A1 A2

x2

x1

A3

SW

FL

c1 c2

Flow

Switch

Control Link

Legend:

Basic Activity

<process name="unreachableTask"

<flow name="FL" suppressJoinFailure="yes">
<links>
   <link name="x1"/>
   <link name="x2"/>
</links>
<switch name="SW">
   <case>
     <invoke name="A1">
       <sources>
     </invoke>
   </case>
   <otherwise>     
     <invoke name="A2">
       <sources>
     </invoke>
   </otherwise>
</switch>

  <targets> 
   <joinCondition> 

   </joinCondition>
   <target linkName="x1"/>
   <target linkName="x2"/>
  </targets>
</invoke>  
</flow>

</process>

        <source linkName="x1"/>       </sources>

       </sources>

     targetNamespace="http://samples.otn.com"
     suppressJoinFailure="yes"
     xmlns:tns="http://samples.otn.com"
     xmlns:services="http://services.otn.com"
     xmlns="http://schemas.xmlsoap.org/ws/2003/03/business−process/">

     bpws:getLinkStatus(‘x1’) and bpws:getLinkStatus(‘x2’)

         <source linkName="x2"/>

Fig. 1. Example of a BPEL process with an unreachable activity.

4 Serializable scopes are not covered in this paper since they are not a control-flow construct and thus fall
outside the scope of this work. Instead, serializable scopes are fundamentally related to data manipulation.

5 Although it has not been formally proved that BPEL processes are deadlock-free, to the best of our knowledge
no example of a deadlocking BPEL process has been put forward. Also, Kiepuszewski et al. [14] proves
that synchronizing workflows (a subset of BPEL processes made up of elementary actions, control links,
and restricted forms of join conditions) are non-deadlocking. Note that here we refer to “individual BPEL
processes” as opposed to “sets of communicating BPEL processes” which are outside the scope of our work.

3

which, together with the associated notions of join condition and transition condition, support the
definition of precedence, synchronization and conditional dependencies on top of those captured by the
structured activity constructs. A control link between activities A and B indicates that B cannot start
before A has either completed or has been “skipped”. Moreover, B can only be executed if its associated
join condition evaluates to true, otherwise B is skipped. This join condition is expressed in terms of
the tokens carried by control links leading to B. These tokens may take either a positive (true) or a
negative (false) value. An activity X propagates a token with a positive value along an outgoing link L
if and only if X was executed (as opposed to being skipped) and the transition condition associated to
L evaluates to true. Transition conditions are boolean expressions over the process variables (just like
the conditions in a switch activity). The process by which positive and negative tokens are propagated
along control links, causing activities to be executed or skipped, is called dead path elimination.

Control links may cross the boundaries of most structured activities. However, they must not create
cyclic control dependencies and must not cross the boundary of a while activity or a serializable scope.4
Prior to our work, the interaction between structured activities and control links was not fully under-
stood, resulting in ambiguities and contradictions in the wording of the BPEL specification [5]. Following
our formalisation effort, some of these issues were reported and discussed in the BPEL standardisation
committee, and changes to the specification’s wording have been proposed, albeit not yet adopted (see
footnote 3).

Also, whilst the control flow constructs of BPEL have been designed in a way to ensure that no
BPEL process execution can deadlock5, some combinations of structured activities (in particular switch
and pick) with control links can lead to situations where some activities are “unreachable”. Consider the
BPEL process definition in Fig. 1 where both the XML code and a graphical representation are provided.
During the execution of this process, either A1 or A2 will be skipped because these two activities are
placed in different branches of a switch and in any execution of a switch only one branch is taken. Thus,
one of the two control links x1 or x2 will carry a negative token. On the other hand, we assume that
the join condition attached to activity A3 (denoted by keyword “AND”) evaluates to true if and only if
both links x1 and x2 carry positive values. Hence, this join condition will always evaluate to false and
activity A3 is always skipped (i.e. it is unreachable).

<invoke name = "A3"> 

AND

A1 A2

x2

x1

A3

SW

FL

c1 c2

Flow

Switch

Control Link

Legend:

Basic Activity

<process name="unreachableTask"

<flow name="FL" suppressJoinFailure="yes">
<links>
   <link name="x1"/>
   <link name="x2"/>
</links>
<switch name="SW">
   <case>
     <invoke name="A1">
       <sources>
     </invoke>
   </case>
   <otherwise>     
     <invoke name="A2">
       <sources>
     </invoke>
   </otherwise>
</switch>

  <targets> 
   <joinCondition> 

   </joinCondition>
   <target linkName="x1"/>
   <target linkName="x2"/>
  </targets>
</invoke>  
</flow>

</process>

        <source linkName="x1"/>       </sources>

       </sources>

     targetNamespace="http://samples.otn.com"
     suppressJoinFailure="yes"
     xmlns:tns="http://samples.otn.com"
     xmlns:services="http://services.otn.com"
     xmlns="http://schemas.xmlsoap.org/ws/2003/03/business−process/">

     bpws:getLinkStatus(‘x1’) and bpws:getLinkStatus(‘x2’)

         <source linkName="x2"/>

Fig. 1. Example of a BPEL process with an unreachable activity.

4 Serializable scopes are not covered in this paper since they are not a control-flow construct and thus fall
outside the scope of this work. Instead, serializable scopes are fundamentally related to data manipulation.

5 Although it has not been formally proved that BPEL processes are deadlock-free, to the best of our knowledge
no example of a deadlocking BPEL process has been put forward. Also, Kiepuszewski et al. [14] proves
that synchronizing workflows (a subset of BPEL processes made up of elementary actions, control links,
and restricted forms of join conditions) are non-deadlocking. Note that here we refer to “individual BPEL
processes” as opposed to “sets of communicating BPEL processes” which are outside the scope of our work.

3

which, together with the associated notions of join condition and transition condition, support the
definition of precedence, synchronization and conditional dependencies on top of those captured by the
structured activity constructs. A control link between activities A and B indicates that B cannot start
before A has either completed or has been “skipped”. Moreover, B can only be executed if its associated
join condition evaluates to true, otherwise B is skipped. This join condition is expressed in terms of
the tokens carried by control links leading to B. These tokens may take either a positive (true) or a
negative (false) value. An activity X propagates a token with a positive value along an outgoing link L
if and only if X was executed (as opposed to being skipped) and the transition condition associated to
L evaluates to true. Transition conditions are boolean expressions over the process variables (just like
the conditions in a switch activity). The process by which positive and negative tokens are propagated
along control links, causing activities to be executed or skipped, is called dead path elimination.

Control links may cross the boundaries of most structured activities. However, they must not create
cyclic control dependencies and must not cross the boundary of a while activity or a serializable scope.4
Prior to our work, the interaction between structured activities and control links was not fully under-
stood, resulting in ambiguities and contradictions in the wording of the BPEL specification [5]. Following
our formalisation effort, some of these issues were reported and discussed in the BPEL standardisation
committee, and changes to the specification’s wording have been proposed, albeit not yet adopted (see
footnote 3).

Also, whilst the control flow constructs of BPEL have been designed in a way to ensure that no
BPEL process execution can deadlock5, some combinations of structured activities (in particular switch
and pick) with control links can lead to situations where some activities are “unreachable”. Consider the
BPEL process definition in Fig. 1 where both the XML code and a graphical representation are provided.
During the execution of this process, either A1 or A2 will be skipped because these two activities are
placed in different branches of a switch and in any execution of a switch only one branch is taken. Thus,
one of the two control links x1 or x2 will carry a negative token. On the other hand, we assume that
the join condition attached to activity A3 (denoted by keyword “AND”) evaluates to true if and only if
both links x1 and x2 carry positive values. Hence, this join condition will always evaluate to false and
activity A3 is always skipped (i.e. it is unreachable).

<invoke name = "A3"> 

AND

A1 A2

x2

x1

A3

SW

FL

c1 c2

Flow

Switch

Control Link

Legend:

Basic Activity

<process name="unreachableTask"

<flow name="FL" suppressJoinFailure="yes">
<links>
   <link name="x1"/>
   <link name="x2"/>
</links>
<switch name="SW">
   <case>
     <invoke name="A1">
       <sources>
     </invoke>
   </case>
   <otherwise>     
     <invoke name="A2">
       <sources>
     </invoke>
   </otherwise>
</switch>

  <targets> 
   <joinCondition> 

   </joinCondition>
   <target linkName="x1"/>
   <target linkName="x2"/>
  </targets>
</invoke>  
</flow>

</process>

        <source linkName="x1"/>       </sources>

       </sources>

     targetNamespace="http://samples.otn.com"
     suppressJoinFailure="yes"
     xmlns:tns="http://samples.otn.com"
     xmlns:services="http://services.otn.com"
     xmlns="http://schemas.xmlsoap.org/ws/2003/03/business−process/">

     bpws:getLinkStatus(‘x1’) and bpws:getLinkStatus(‘x2’)

         <source linkName="x2"/>

Fig. 1. Example of a BPEL process with an unreachable activity.

4 Serializable scopes are not covered in this paper since they are not a control-flow construct and thus fall
outside the scope of this work. Instead, serializable scopes are fundamentally related to data manipulation.

5 Although it has not been formally proved that BPEL processes are deadlock-free, to the best of our knowledge
no example of a deadlocking BPEL process has been put forward. Also, Kiepuszewski et al. [14] proves
that synchronizing workflows (a subset of BPEL processes made up of elementary actions, control links,
and restricted forms of join conditions) are non-deadlocking. Note that here we refer to “individual BPEL
processes” as opposed to “sets of communicating BPEL processes” which are outside the scope of our work.

3

martedì 10 dicembre 13



Basic activity X

54

Table 1. A comparative summary of related work on BPEL formalisation and analysis.

Tech SA CL EH TAV FDM Comm

Fu et al. [12] FSM + - - +/- - +
Foster et al. [11] FSM + - - +/- - +
Fisteus et al. [10] FSM + - +/- +/- - -
Ferrara [9] PA + - + - - -
Koshkina & van Breugel [15] PA + + - +/- + -
Farahbod et al. [8] ASM + +/- + - + -
Martens [16], Hinz et al. [13] PN + +/- + +/- - +
Stahl [20] HPN + + + +/- - +
our work PN + + + + + -

This paper follows on our previous work on formalising BPEL. A less complete and earlier version
of the formalisation presented here (without the tool support) can be found in [21], while an informal
analysis of BPEL in terms of a set of workflow patterns is given in [23].

3 Mapping WS-BPEL to Petri Nets

In this section we informally establish a mapping of the WS-BPEL control flow constructs to Petri nets.
When using Petri nets for capturing formal semantics of WS-BPEL, we allow the usage of both labeled
and unlabeled transitions. The labeled transitions are used to model events and basic activities. The
transitions without a label, which we hereafter refer to as λ-transitions, represent internal actions that
cannot be observed by external users.

3.1 Activities

We start with the mapping of a basic activity (X) shown in Fig. 2, which also illustrates our mapping
approach for structured activities. The net is divided into two parts: one (drawn in solid lines) models
the normal processing of X, the other (drawn in dashed lines) models the skipping of X. In the normal
processing part, place rx (“ready”) models an initial state when it is ready to start activity X before
checking the status of all control links coming into X, and place fx (“finished”) indicates a final state
when both X completes and the status of all control links leaving from X have been determined. The
transition labeled x models the action to be performed. This is an abstract way of modelling basic
activities, where the core of each activity is considered as an atomic action. Transition x has an input
place sx (“started”) for the state when activity X has started, and an output place cx (“completed”)
for the state when X is completed. Two λ-transitions (drawn as solid bars) model internal actions for
checking pre-conditions or evaluating post-conditions for activities. The skip path is used to facilitate
the mapping of control links, which will be described in Sect. 3.2. Note that the to skip and skipped
places are respectively decorated by two patterns (a letter Y and its upside-down image) so that they
can be graphically identified. In Fig. 2, hiding the subnet enclosed in the box labeled x yields an abstract
graphic representation of the mapping for activities. This will be used in the rest of the paper.

X

Y

skippedX

"skip"

YXto_skip Xr

Xs

X

Xc

Xf

Fig. 2. A basic activity.

Fig. 3 depicts the mapping of structured activities (except scopes) with a focus on their normal
behaviour. Since scopes are mainly concerned with exception handling, their mapping will be given
in Sect. 3.3. In Fig. 3, next to the mapping of each activity is a BPEL snippet of the activity. More

5

started

completed

ready

finished

martedì 10 dicembre 13



Sequence A;B

55

λ-transitions (drawn as hollow bars) are introduced for the mapping of routing constructs. Note that in
Figure 3 and subsequent figures, the skip path of the mapping is not shown when it is not used.

A sequence activity consists of one or more activities that are executed sequentially. A flow activity
provides parallel execution and synchronization of activities. The corresponding mappings in Fig. 3(a)
and (b) are straightforward.

A switch activity supports conditional routing between activities. In Fig. 3(c), as soon as one of the
branches is taken in activity X the other needs to be skipped, and X will not complete until both the
activity in the selected branch is finished and the activity in the other branch is skipped. Also, among
the set of branches in a switch activity, the first branch whose condition holds will be taken. In Fig. 3(c),
this is captured by the two λ-transitions annotated by z1 or ∼ z1 ∧ z2, where z1 and z2 are conditions
for the branches with activity A or B, respectively.

A pick activity exhibits the conditional behaviour where decision making is triggered by external
events or system timeout. It has a set of branches in the form of an event followed by an activity, and
exactly one of the branches is selected upon the occurrence of the event associated with it. There are two
types of events: message events (onMessage) which occur upon the arrival of an external message, and
alarm events (onAlarm) which occur upon timeout. In Fig. 3(d), a pick activity is modelled in a similar
way as a switch activity, except for the two transitions, labeled e1 or e2, which model the corresponding
events. As compared to the two local λ-transitions annotated (by conditions associated with branches)
in the mapping of a switch activity (in Fig. 3(c)), the event transitions e1 and e2 (in Fig. 3(d)) are
global transitions enabled upon external or system triggers.

A while activity supports structured loops. In Fig. 3(e), activity X has a sub-activity A that is
performed multiple times as long as the while condition (z) holds and the loop will exit if the condition
does not hold any more (∼z).

( d )  pick

</case>
<case>

<condition>

</condition>

</condition>
activity B

</case>
</switch>

z

z

( c )  switch( b )  flow

( e )  while

name="X">
activity A
activity B

</flow>

( a )  sequence

<flow

<switch name="X">
<case>

<condition>

activity A    

fA

Xr
X

Xr

Xs

B

Br

fB

Xc

fX

A

fA

rA

X

"z "1 2z "

Xr

Xs

fA

rA Br

fB

A B

Y Y

YY

Xc

fX

1"~z V

X

1

2

"z""~z"

A

rA

fA

Xs

Xr

fX

Xc

X

</while>
activity A
</condition>

z
<condition>

<while name="X">

Xs

Xr

Xc

fX

e1

fA

rA Br

fB

<sequence

e2

A B

Y Y

YY

X

e1

e2

</pick>

<onMessage >

><onAlarm
</onMessage>

activity A

<pick name="X">

</onAlarm>
activity B

name="X">
activity A
activity B

</sequence>
B

Br

fB

Xc

Xs

fX

A

rA

Fig. 3. Structured activities (normal behaviour).

From the above, except for a while activity (which always contains one sub-activity), we have con-
sidered two sub-activities when mapping the normal behaviour of structured activities. This yields a
binary version of the mapping, which can be easily extended to an n-ary version.

6

We show the binary version, 
but it can be generalized to

an arbitrary number of 
activities

martedì 10 dicembre 13



Flow A|B

56

We show the binary version, 
but it can be generalized to

an arbitrary number of 
activities

λ-transitions (drawn as hollow bars) are introduced for the mapping of routing constructs. Note that in
Figure 3 and subsequent figures, the skip path of the mapping is not shown when it is not used.

A sequence activity consists of one or more activities that are executed sequentially. A flow activity
provides parallel execution and synchronization of activities. The corresponding mappings in Fig. 3(a)
and (b) are straightforward.

A switch activity supports conditional routing between activities. In Fig. 3(c), as soon as one of the
branches is taken in activity X the other needs to be skipped, and X will not complete until both the
activity in the selected branch is finished and the activity in the other branch is skipped. Also, among
the set of branches in a switch activity, the first branch whose condition holds will be taken. In Fig. 3(c),
this is captured by the two λ-transitions annotated by z1 or ∼ z1 ∧ z2, where z1 and z2 are conditions
for the branches with activity A or B, respectively.

A pick activity exhibits the conditional behaviour where decision making is triggered by external
events or system timeout. It has a set of branches in the form of an event followed by an activity, and
exactly one of the branches is selected upon the occurrence of the event associated with it. There are two
types of events: message events (onMessage) which occur upon the arrival of an external message, and
alarm events (onAlarm) which occur upon timeout. In Fig. 3(d), a pick activity is modelled in a similar
way as a switch activity, except for the two transitions, labeled e1 or e2, which model the corresponding
events. As compared to the two local λ-transitions annotated (by conditions associated with branches)
in the mapping of a switch activity (in Fig. 3(c)), the event transitions e1 and e2 (in Fig. 3(d)) are
global transitions enabled upon external or system triggers.

A while activity supports structured loops. In Fig. 3(e), activity X has a sub-activity A that is
performed multiple times as long as the while condition (z) holds and the loop will exit if the condition
does not hold any more (∼z).

( d )  pick

</case>
<case>

<condition>

</condition>

</condition>
activity B

</case>
</switch>

z

z

( c )  switch( b )  flow

( e )  while

name="X">
activity A
activity B

</flow>

( a )  sequence

<flow

<switch name="X">
<case>

<condition>

activity A    

fA

Xr
X

Xr

Xs

B

Br

fB

Xc

fX

A

fA

rA

X

"z "1 2z "

Xr

Xs

fA

rA Br

fB

A B

Y Y

YY

Xc

fX

1"~z V

X

1

2

"z""~z"

A

rA

fA

Xs

Xr

fX

Xc

X

</while>
activity A
</condition>

z
<condition>

<while name="X">

Xs

Xr

Xc

fX

e1

fA

rA Br

fB

<sequence

e2

A B

Y Y

YY

X

e1

e2

</pick>

<onMessage >

><onAlarm
</onMessage>

activity A

<pick name="X">

</onAlarm>
activity B

name="X">
activity A
activity B

</sequence>
B

Br

fB

Xc

Xs

fX

A

rA

Fig. 3. Structured activities (normal behaviour).

From the above, except for a while activity (which always contains one sub-activity), we have con-
sidered two sub-activities when mapping the normal behaviour of structured activities. This yields a
binary version of the mapping, which can be easily extended to an n-ary version.

6

martedì 10 dicembre 13



While z do A

57

λ-transitions (drawn as hollow bars) are introduced for the mapping of routing constructs. Note that in
Figure 3 and subsequent figures, the skip path of the mapping is not shown when it is not used.

A sequence activity consists of one or more activities that are executed sequentially. A flow activity
provides parallel execution and synchronization of activities. The corresponding mappings in Fig. 3(a)
and (b) are straightforward.

A switch activity supports conditional routing between activities. In Fig. 3(c), as soon as one of the
branches is taken in activity X the other needs to be skipped, and X will not complete until both the
activity in the selected branch is finished and the activity in the other branch is skipped. Also, among
the set of branches in a switch activity, the first branch whose condition holds will be taken. In Fig. 3(c),
this is captured by the two λ-transitions annotated by z1 or ∼ z1 ∧ z2, where z1 and z2 are conditions
for the branches with activity A or B, respectively.

A pick activity exhibits the conditional behaviour where decision making is triggered by external
events or system timeout. It has a set of branches in the form of an event followed by an activity, and
exactly one of the branches is selected upon the occurrence of the event associated with it. There are two
types of events: message events (onMessage) which occur upon the arrival of an external message, and
alarm events (onAlarm) which occur upon timeout. In Fig. 3(d), a pick activity is modelled in a similar
way as a switch activity, except for the two transitions, labeled e1 or e2, which model the corresponding
events. As compared to the two local λ-transitions annotated (by conditions associated with branches)
in the mapping of a switch activity (in Fig. 3(c)), the event transitions e1 and e2 (in Fig. 3(d)) are
global transitions enabled upon external or system triggers.

A while activity supports structured loops. In Fig. 3(e), activity X has a sub-activity A that is
performed multiple times as long as the while condition (z) holds and the loop will exit if the condition
does not hold any more (∼z).

( d )  pick

</case>
<case>

<condition>

</condition>

</condition>
activity B

</case>
</switch>

z

z

( c )  switch( b )  flow

( e )  while

name="X">
activity A
activity B

</flow>

( a )  sequence

<flow

<switch name="X">
<case>

<condition>

activity A    

fA

Xr
X

Xr

Xs

B

Br

fB

Xc

fX

A

fA

rA

X

"z "1 2z "

Xr

Xs

fA

rA Br

fB

A B

Y Y

YY

Xc

fX

1"~z V

X

1

2

"z""~z"

A

rA

fA

Xs

Xr

fX

Xc

X

</while>
activity A
</condition>

z
<condition>

<while name="X">

Xs

Xr

Xc

fX

e1

fA

rA Br

fB

<sequence

e2

A B

Y Y

YY

X

e1

e2

</pick>

<onMessage >

><onAlarm
</onMessage>

activity A

<pick name="X">

</onAlarm>
activity B

name="X">
activity A
activity B

</sequence>
B

Br

fB

Xc

Xs

fX

A

rA

Fig. 3. Structured activities (normal behaviour).

From the above, except for a while activity (which always contains one sub-activity), we have con-
sidered two sub-activities when mapping the normal behaviour of structured activities. This yields a
binary version of the mapping, which can be easily extended to an n-ary version.

6

martedì 10 dicembre 13



Switch (z1)A,(z2)B

58

We show the binary 
version, but it can be 

generalized to
an arbitrary number of 

activities

In blue:
alternative flow
to skip activities

(also needed for links)

just decorations

λ-transitions (drawn as hollow bars) are introduced for the mapping of routing constructs. Note that in
Figure 3 and subsequent figures, the skip path of the mapping is not shown when it is not used.

A sequence activity consists of one or more activities that are executed sequentially. A flow activity
provides parallel execution and synchronization of activities. The corresponding mappings in Fig. 3(a)
and (b) are straightforward.

A switch activity supports conditional routing between activities. In Fig. 3(c), as soon as one of the
branches is taken in activity X the other needs to be skipped, and X will not complete until both the
activity in the selected branch is finished and the activity in the other branch is skipped. Also, among
the set of branches in a switch activity, the first branch whose condition holds will be taken. In Fig. 3(c),
this is captured by the two λ-transitions annotated by z1 or ∼ z1 ∧ z2, where z1 and z2 are conditions
for the branches with activity A or B, respectively.

A pick activity exhibits the conditional behaviour where decision making is triggered by external
events or system timeout. It has a set of branches in the form of an event followed by an activity, and
exactly one of the branches is selected upon the occurrence of the event associated with it. There are two
types of events: message events (onMessage) which occur upon the arrival of an external message, and
alarm events (onAlarm) which occur upon timeout. In Fig. 3(d), a pick activity is modelled in a similar
way as a switch activity, except for the two transitions, labeled e1 or e2, which model the corresponding
events. As compared to the two local λ-transitions annotated (by conditions associated with branches)
in the mapping of a switch activity (in Fig. 3(c)), the event transitions e1 and e2 (in Fig. 3(d)) are
global transitions enabled upon external or system triggers.

A while activity supports structured loops. In Fig. 3(e), activity X has a sub-activity A that is
performed multiple times as long as the while condition (z) holds and the loop will exit if the condition
does not hold any more (∼z).

( d )  pick

</case>
<case>

<condition>

</condition>

</condition>
activity B

</case>
</switch>

z

z

( c )  switch( b )  flow

( e )  while

name="X">
activity A
activity B

</flow>

( a )  sequence

<flow

<switch name="X">
<case>

<condition>

activity A    

fA

Xr
X

Xr

Xs

B

Br

fB

Xc

fX

A

fA

rA

X

"z "1 2z "

Xr

Xs

fA

rA Br

fB

A B

Y Y

YY

Xc

fX

1"~z V

X

1

2

"z""~z"

A

rA

fA

Xs

Xr

fX

Xc

X

</while>
activity A
</condition>

z
<condition>

<while name="X">

Xs

Xr

Xc

fX

e1

fA

rA Br

fB

<sequence

e2

A B

Y Y

YY

X

e1

e2

</pick>

<onMessage >

><onAlarm
</onMessage>

activity A

<pick name="X">

</onAlarm>
activity B

name="X">
activity A
activity B

</sequence>
B

Br

fB

Xc

Xs

fX

A

rA

Fig. 3. Structured activities (normal behaviour).

From the above, except for a while activity (which always contains one sub-activity), we have con-
sidered two sub-activities when mapping the normal behaviour of structured activities. This yields a
binary version of the mapping, which can be easily extended to an n-ary version.

6

Y
Y

martedì 10 dicembre 13



Pick (e1)A,(e2)B

59

We show the binary 
version, but it can be 

generalized to
an arbitrary number of 

activities

In blue:
alternative flow
to skip activities

(also needed for links)

just decorations
Y

Y

λ-transitions (drawn as hollow bars) are introduced for the mapping of routing constructs. Note that in
Figure 3 and subsequent figures, the skip path of the mapping is not shown when it is not used.

A sequence activity consists of one or more activities that are executed sequentially. A flow activity
provides parallel execution and synchronization of activities. The corresponding mappings in Fig. 3(a)
and (b) are straightforward.

A switch activity supports conditional routing between activities. In Fig. 3(c), as soon as one of the
branches is taken in activity X the other needs to be skipped, and X will not complete until both the
activity in the selected branch is finished and the activity in the other branch is skipped. Also, among
the set of branches in a switch activity, the first branch whose condition holds will be taken. In Fig. 3(c),
this is captured by the two λ-transitions annotated by z1 or ∼ z1 ∧ z2, where z1 and z2 are conditions
for the branches with activity A or B, respectively.

A pick activity exhibits the conditional behaviour where decision making is triggered by external
events or system timeout. It has a set of branches in the form of an event followed by an activity, and
exactly one of the branches is selected upon the occurrence of the event associated with it. There are two
types of events: message events (onMessage) which occur upon the arrival of an external message, and
alarm events (onAlarm) which occur upon timeout. In Fig. 3(d), a pick activity is modelled in a similar
way as a switch activity, except for the two transitions, labeled e1 or e2, which model the corresponding
events. As compared to the two local λ-transitions annotated (by conditions associated with branches)
in the mapping of a switch activity (in Fig. 3(c)), the event transitions e1 and e2 (in Fig. 3(d)) are
global transitions enabled upon external or system triggers.

A while activity supports structured loops. In Fig. 3(e), activity X has a sub-activity A that is
performed multiple times as long as the while condition (z) holds and the loop will exit if the condition
does not hold any more (∼z).

( d )  pick

</case>
<case>

<condition>

</condition>

</condition>
activity B

</case>
</switch>

z

z

( c )  switch( b )  flow

( e )  while

name="X">
activity A
activity B

</flow>

( a )  sequence

<flow

<switch name="X">
<case>

<condition>

activity A    

fA

Xr
X

Xr

Xs

B

Br

fB

Xc

fX

A

fA

rA

X

"z "1 2z "

Xr

Xs

fA

rA Br

fB

A B

Y Y

YY

Xc

fX

1"~z V

X

1

2

"z""~z"

A

rA

fA

Xs

Xr

fX

Xc

X

</while>
activity A
</condition>

z
<condition>

<while name="X">

Xs

Xr

Xc

fX

e1

fA

rA Br

fB

<sequence

e2

A B

Y Y

YY

X

e1

e2

</pick>

<onMessage >

><onAlarm
</onMessage>

activity A

<pick name="X">

</onAlarm>
activity B

name="X">
activity A
activity B

</sequence>
B

Br

fB

Xc

Xs

fX

A

rA

Fig. 3. Structured activities (normal behaviour).

From the above, except for a while activity (which always contains one sub-activity), we have con-
sidered two sub-activities when mapping the normal behaviour of structured activities. This yields a
binary version of the mapping, which can be easily extended to an n-ary version.

6

martedì 10 dicembre 13



Basic activity + skip

60

Table 1. A comparative summary of related work on BPEL formalisation and analysis.

Tech SA CL EH TAV FDM Comm

Fu et al. [12] FSM + - - +/- - +
Foster et al. [11] FSM + - - +/- - +
Fisteus et al. [10] FSM + - +/- +/- - -
Ferrara [9] PA + - + - - -
Koshkina & van Breugel [15] PA + + - +/- + -
Farahbod et al. [8] ASM + +/- + - + -
Martens [16], Hinz et al. [13] PN + +/- + +/- - +
Stahl [20] HPN + + + +/- - +
our work PN + + + + + -

This paper follows on our previous work on formalising BPEL. A less complete and earlier version
of the formalisation presented here (without the tool support) can be found in [21], while an informal
analysis of BPEL in terms of a set of workflow patterns is given in [23].

3 Mapping WS-BPEL to Petri Nets

In this section we informally establish a mapping of the WS-BPEL control flow constructs to Petri nets.
When using Petri nets for capturing formal semantics of WS-BPEL, we allow the usage of both labeled
and unlabeled transitions. The labeled transitions are used to model events and basic activities. The
transitions without a label, which we hereafter refer to as λ-transitions, represent internal actions that
cannot be observed by external users.

3.1 Activities

We start with the mapping of a basic activity (X) shown in Fig. 2, which also illustrates our mapping
approach for structured activities. The net is divided into two parts: one (drawn in solid lines) models
the normal processing of X, the other (drawn in dashed lines) models the skipping of X. In the normal
processing part, place rx (“ready”) models an initial state when it is ready to start activity X before
checking the status of all control links coming into X, and place fx (“finished”) indicates a final state
when both X completes and the status of all control links leaving from X have been determined. The
transition labeled x models the action to be performed. This is an abstract way of modelling basic
activities, where the core of each activity is considered as an atomic action. Transition x has an input
place sx (“started”) for the state when activity X has started, and an output place cx (“completed”)
for the state when X is completed. Two λ-transitions (drawn as solid bars) model internal actions for
checking pre-conditions or evaluating post-conditions for activities. The skip path is used to facilitate
the mapping of control links, which will be described in Sect. 3.2. Note that the to skip and skipped
places are respectively decorated by two patterns (a letter Y and its upside-down image) so that they
can be graphically identified. In Fig. 2, hiding the subnet enclosed in the box labeled x yields an abstract
graphic representation of the mapping for activities. This will be used in the rest of the paper.

X

Y

skippedX

"skip"

YXto_skip Xr

Xs

X

Xc

Xf

Fig. 2. A basic activity.

Fig. 3 depicts the mapping of structured activities (except scopes) with a focus on their normal
behaviour. Since scopes are mainly concerned with exception handling, their mapping will be given
in Sect. 3.3. In Fig. 3, next to the mapping of each activity is a BPEL snippet of the activity. More

5

Regular
flow

Skip
path

started

completed

ready

finished

martedì 10 dicembre 13



Basic activity + skip

61

Table 1. A comparative summary of related work on BPEL formalisation and analysis.

Tech SA CL EH TAV FDM Comm

Fu et al. [12] FSM + - - +/- - +
Foster et al. [11] FSM + - - +/- - +
Fisteus et al. [10] FSM + - +/- +/- - -
Ferrara [9] PA + - + - - -
Koshkina & van Breugel [15] PA + + - +/- + -
Farahbod et al. [8] ASM + +/- + - + -
Martens [16], Hinz et al. [13] PN + +/- + +/- - +
Stahl [20] HPN + + + +/- - +
our work PN + + + + + -

This paper follows on our previous work on formalising BPEL. A less complete and earlier version
of the formalisation presented here (without the tool support) can be found in [21], while an informal
analysis of BPEL in terms of a set of workflow patterns is given in [23].

3 Mapping WS-BPEL to Petri Nets

In this section we informally establish a mapping of the WS-BPEL control flow constructs to Petri nets.
When using Petri nets for capturing formal semantics of WS-BPEL, we allow the usage of both labeled
and unlabeled transitions. The labeled transitions are used to model events and basic activities. The
transitions without a label, which we hereafter refer to as λ-transitions, represent internal actions that
cannot be observed by external users.

3.1 Activities

We start with the mapping of a basic activity (X) shown in Fig. 2, which also illustrates our mapping
approach for structured activities. The net is divided into two parts: one (drawn in solid lines) models
the normal processing of X, the other (drawn in dashed lines) models the skipping of X. In the normal
processing part, place rx (“ready”) models an initial state when it is ready to start activity X before
checking the status of all control links coming into X, and place fx (“finished”) indicates a final state
when both X completes and the status of all control links leaving from X have been determined. The
transition labeled x models the action to be performed. This is an abstract way of modelling basic
activities, where the core of each activity is considered as an atomic action. Transition x has an input
place sx (“started”) for the state when activity X has started, and an output place cx (“completed”)
for the state when X is completed. Two λ-transitions (drawn as solid bars) model internal actions for
checking pre-conditions or evaluating post-conditions for activities. The skip path is used to facilitate
the mapping of control links, which will be described in Sect. 3.2. Note that the to skip and skipped
places are respectively decorated by two patterns (a letter Y and its upside-down image) so that they
can be graphically identified. In Fig. 2, hiding the subnet enclosed in the box labeled x yields an abstract
graphic representation of the mapping for activities. This will be used in the rest of the paper.

X

Y

skippedX

"skip"

YXto_skip Xr

Xs

X

Xc

Xf

Fig. 2. A basic activity.

Fig. 3 depicts the mapping of structured activities (except scopes) with a focus on their normal
behaviour. Since scopes are mainly concerned with exception handling, their mapping will be given
in Sect. 3.3. In Fig. 3, next to the mapping of each activity is a BPEL snippet of the activity. More

5

Table 1. A comparative summary of related work on BPEL formalisation and analysis.

Tech SA CL EH TAV FDM Comm

Fu et al. [12] FSM + - - +/- - +
Foster et al. [11] FSM + - - +/- - +
Fisteus et al. [10] FSM + - +/- +/- - -
Ferrara [9] PA + - + - - -
Koshkina & van Breugel [15] PA + + - +/- + -
Farahbod et al. [8] ASM + +/- + - + -
Martens [16], Hinz et al. [13] PN + +/- + +/- - +
Stahl [20] HPN + + + +/- - +
our work PN + + + + + -

This paper follows on our previous work on formalising BPEL. A less complete and earlier version
of the formalisation presented here (without the tool support) can be found in [21], while an informal
analysis of BPEL in terms of a set of workflow patterns is given in [23].

3 Mapping WS-BPEL to Petri Nets

In this section we informally establish a mapping of the WS-BPEL control flow constructs to Petri nets.
When using Petri nets for capturing formal semantics of WS-BPEL, we allow the usage of both labeled
and unlabeled transitions. The labeled transitions are used to model events and basic activities. The
transitions without a label, which we hereafter refer to as λ-transitions, represent internal actions that
cannot be observed by external users.

3.1 Activities

We start with the mapping of a basic activity (X) shown in Fig. 2, which also illustrates our mapping
approach for structured activities. The net is divided into two parts: one (drawn in solid lines) models
the normal processing of X, the other (drawn in dashed lines) models the skipping of X. In the normal
processing part, place rx (“ready”) models an initial state when it is ready to start activity X before
checking the status of all control links coming into X, and place fx (“finished”) indicates a final state
when both X completes and the status of all control links leaving from X have been determined. The
transition labeled x models the action to be performed. This is an abstract way of modelling basic
activities, where the core of each activity is considered as an atomic action. Transition x has an input
place sx (“started”) for the state when activity X has started, and an output place cx (“completed”)
for the state when X is completed. Two λ-transitions (drawn as solid bars) model internal actions for
checking pre-conditions or evaluating post-conditions for activities. The skip path is used to facilitate
the mapping of control links, which will be described in Sect. 3.2. Note that the to skip and skipped
places are respectively decorated by two patterns (a letter Y and its upside-down image) so that they
can be graphically identified. In Fig. 2, hiding the subnet enclosed in the box labeled x yields an abstract
graphic representation of the mapping for activities. This will be used in the rest of the paper.

X

Y

skippedX

"skip"

YXto_skip Xr

Xs

X

Xc

Xf

Fig. 2. A basic activity.

Fig. 3 depicts the mapping of structured activities (except scopes) with a focus on their normal
behaviour. Since scopes are mainly concerned with exception handling, their mapping will be given
in Sect. 3.3. In Fig. 3, next to the mapping of each activity is a BPEL snippet of the activity. More

5

The token arrives 
either here... ... or here

(but not both)

martedì 10 dicembre 13



Sequence + skip

62

Regular
flow

Skip
path

The mapping of skipping an entire structured activity is shown in Fig. 4. To capture the control
dependencies generated by structural constructs like sequence, we define separately the mapping of
skipping a non-sequence activity (i.e. flow, switch, pick, or while) in Fig. 4(a), and the mapping of
skipping a sequence activity in Fig. 4(b). In both mappings, a skipping place is added to specify an
intermediate state when the structured activity (X) waits for all its sub-activities (X1 to Xn) to be
skipped before X itself can be skipped. In Fig. 4(a), when a non-sequence activity is skipped, all its
sub-activities will be skipped in parallel. Whereas in Fig. 4(b), when a sequence activity is skipped, all
its sub-activities need to be skipped in the same order as their normal occurrences in the sequence.

( a )  non−sequence

X Xn. . . are all direct sub−activities of X.[note]

.

..

.

..

Xn

Xn

. ..

. . .
. . .

X

n

X1

X1

X1

X

X

X

Y

I

Y Y

Y

Y Y

X

X

r

s

c

f

r

ff

r

"skip"

"skip_fin"

Xto_skip

Xskipped

Xskipping

nX

2X

1X

.

..

Xf

.

..

X

X

Xn

n
r

f

c

X2

X2

r

f

X

X

X1

X1

Y

r

s

r

f

Y

I
Y

Y

Y

Y

Y

Y

"skip"

"skip_fin"

X
X

X

Xskipped

skipping

to_skip

( b )  sequence1

Fig. 4. Skipping structured activities.

3.2 Control Links

Control links are non-structural constructs used to express control dependencies between activities.
Fig. 5 depicts the mapping of control links using an example of a basic activity. The given BPEL
snippet specifies that activity X is the source of links X out

1 to X out
n and the target of links X in

1 to X in
m .

Each control link has a link status that may be set to true or false, as represented by place lst (“link
status true”) or lsf (“link status false”).

..

. BNXnet
boolean

βX

(mapping
of )

jctX

jcfX

...

. ..

lsttc
X
out

lst
lsf

tc

1
out

out

out

lsf
lst

1

lsf
lst

in

in

in

in
1

m

m

X

X

X

X

r

c

f

s

X

X

"sjf"

X
inL

L

n

n

n

1

1

lsf

out

out

out

jlsin Xin
jis the status of control link

where j=1, 2, ... , m.
,[note]

outtcn

out
1tc

...

...

βX lsin
1 , ... , mlsin( )

Xout
n

Xout
1

Xin
1

Xin
m

<targets>
<joinCondition>

</transitionCondition> 
</source>

</sources>

</joinCondition>

<activityX suppressJoinFailure="yes">
<sources>

</transitionCondition> 
</source>

</targets>
</activityX>

<transitionCondition> 

<source linkname="

<source linkname="

<target linkname="

<transitionCondition> 
">

">

<target linkname=" ">

">

Fig. 5. A basic activity with control links.

7

martedì 10 dicembre 13



Non-sequence + skip

63

Regular
flow

Skip
path

The mapping of skipping an entire structured activity is shown in Fig. 4. To capture the control
dependencies generated by structural constructs like sequence, we define separately the mapping of
skipping a non-sequence activity (i.e. flow, switch, pick, or while) in Fig. 4(a), and the mapping of
skipping a sequence activity in Fig. 4(b). In both mappings, a skipping place is added to specify an
intermediate state when the structured activity (X) waits for all its sub-activities (X1 to Xn) to be
skipped before X itself can be skipped. In Fig. 4(a), when a non-sequence activity is skipped, all its
sub-activities will be skipped in parallel. Whereas in Fig. 4(b), when a sequence activity is skipped, all
its sub-activities need to be skipped in the same order as their normal occurrences in the sequence.

( a )  non−sequence

X Xn. . . are all direct sub−activities of X.[note]

.

..

.

..

Xn

Xn

. ..

. . .
. . .

X

n

X1

X1

X1

X

X

X

Y

I

Y Y

Y

Y Y

X

X

r

s

c

f

r

ff

r

"skip"

"skip_fin"

Xto_skip

Xskipped

Xskipping

nX

2X

1X

.

..

Xf

.

..

X

X

Xn

n
r

f

c

X2

X2

r

f

X

X

X1

X1

Y

r

s

r

f

Y

I
Y

Y

Y

Y

Y

Y

"skip"

"skip_fin"

X
X

X

Xskipped

skipping

to_skip

( b )  sequence1

Fig. 4. Skipping structured activities.

3.2 Control Links

Control links are non-structural constructs used to express control dependencies between activities.
Fig. 5 depicts the mapping of control links using an example of a basic activity. The given BPEL
snippet specifies that activity X is the source of links X out

1 to X out
n and the target of links X in

1 to X in
m .

Each control link has a link status that may be set to true or false, as represented by place lst (“link
status true”) or lsf (“link status false”).

..

. BNXnet
boolean

βX

(mapping
of )

jctX

jcfX

...

. ..

lsttc
X
out

lst
lsf

tc

1
out

out

out

lsf
lst

1

lsf
lst

in

in

in

in
1

m

m

X

X

X

X

r

c

f

s

X

X

"sjf"

X
inL

L

n

n

n

1

1

lsf

out

out

out

jlsin Xin
jis the status of control link

where j=1, 2, ... , m.
,[note]

outtcn

out
1tc

...

...

βX lsin
1 , ... , mlsin( )

Xout
n

Xout
1

Xin
1

Xin
m

<targets>
<joinCondition>

</transitionCondition> 
</source>

</sources>

</joinCondition>

<activityX suppressJoinFailure="yes">
<sources>

</transitionCondition> 
</source>

</targets>
</activityX>

<transitionCondition> 

<source linkname="

<source linkname="

<target linkname="

<transitionCondition> 
">

">

<target linkname=" ">

">

Fig. 5. A basic activity with control links.

7

martedì 10 dicembre 13



What about control 
links?

64

Control links are a non-structural element
that introduces control dependencies

An activity can be the source of many links
(it must evaluate the corresponding “transition condition”)

An activity can be the target of many links
(it must receive their boolean evaluation and

apply the join condition)

martedì 10 dicembre 13



Join condition failure

65

 If the attribute suppressJoinFailure is set to no, 
a join failure needs to be thrown, 

which triggers a standard fault handling procedure 

 If the attribute suppressJoinFailure is set to yes, 
the activity will not be performed,
 will end up in the “finished” state, 

(the processing of any following activity will not be affected)
and the status of all outgoing links will be set to false. 

This is known as dead path elimination 
(the false link status is propagated transitively along the 

paths formed by control links, until a join condition is 
reached that evaluates to true)

martedì 10 dicembre 13



Basic activity with 
control links

66

The mapping of skipping an entire structured activity is shown in Fig. 4. To capture the control
dependencies generated by structural constructs like sequence, we define separately the mapping of
skipping a non-sequence activity (i.e. flow, switch, pick, or while) in Fig. 4(a), and the mapping of
skipping a sequence activity in Fig. 4(b). In both mappings, a skipping place is added to specify an
intermediate state when the structured activity (X) waits for all its sub-activities (X1 to Xn) to be
skipped before X itself can be skipped. In Fig. 4(a), when a non-sequence activity is skipped, all its
sub-activities will be skipped in parallel. Whereas in Fig. 4(b), when a sequence activity is skipped, all
its sub-activities need to be skipped in the same order as their normal occurrences in the sequence.

( a )  non−sequence

X Xn. . . are all direct sub−activities of X.[note]

.

..

.

..

Xn

Xn

. ..

. . .
. . .

X

n

X1

X1

X1

X

X

X

Y

I

Y Y

Y

Y Y

X

X

r

s

c

f

r

ff

r

"skip"

"skip_fin"

Xto_skip

Xskipped

Xskipping

nX

2X

1X

.

..

Xf

.

..

X

X

Xn

n
r

f

c

X2

X2

r

f

X

X

X1

X1

Y

r

s

r

f

Y

I
Y

Y

Y

Y

Y

Y

"skip"

"skip_fin"

X
X

X

Xskipped

skipping

to_skip

( b )  sequence1

Fig. 4. Skipping structured activities.

3.2 Control Links

Control links are non-structural constructs used to express control dependencies between activities.
Fig. 5 depicts the mapping of control links using an example of a basic activity. The given BPEL
snippet specifies that activity X is the source of links X out

1 to X out
n and the target of links X in

1 to X in
m .

Each control link has a link status that may be set to true or false, as represented by place lst (“link
status true”) or lsf (“link status false”).

..

. BNXnet
boolean

βX

(mapping
of )

jctX

jcfX

...
. ..

lsttc
X
out

lst
lsf

tc

1
out

out

out

lsf
lst

1

lsf
lst

in

in

in

in
1

m

m

X

X

X

X

r

c

f

s

X

X

"sjf"

X
inL

L

n

n

n

1

1

lsf

out

out

out

jlsin Xin
jis the status of control link

where j=1, 2, ... , m.
,[note]

outtcn

out
1tc

...

...

βX lsin
1 , ... , mlsin( )

Xout
n

Xout
1

Xin
1

Xin
m

<targets>
<joinCondition>

</transitionCondition> 
</source>

</sources>

</joinCondition>

<activityX suppressJoinFailure="yes">
<sources>

</transitionCondition> 
</source>

</targets>
</activityX>

<transitionCondition> 

<source linkname="

<source linkname="

<target linkname="

<transitionCondition> 
">

">

<target linkname=" ">

">

Fig. 5. A basic activity with control links.

7

join condition true

join condition false

suppress join failure is selected

transition conditions
(true / false)

martedì 10 dicembre 13



Skipping a basic activity 
with control links

67

The subnet enclosed in the box labeled Lout
x specifies the mapping of outgoing links from activity X.

Once X is complete, it is ready to evaluate transition conditions, which determine the link status for each
of the outgoing links. Since transition condition expressions are part of the data perspective, they are
not explicitly specified in the mapping and their boolean evaluation is modelled non-deterministically.

The subnet enclosed in the box labeled Lin
x specifies the mapping of incoming links to activity X. A

join condition is defined as a boolean expression (e.g. βX (ls in
1 ,...,ls in

m )) in the set of variables representing
the status of each of the incoming links. It is mapped to a boolean net (BNx), which takes the status
of all incoming links as input and produces an evaluation result as output to place jctx (“join condition
true”) or jcfx (“join condition false”). The definition of this boolean net is given in Sect. 4.2.

If the join condition evaluates to true, activity X can start as normal. Otherwise, a fault called
join failure occurs. A join failure can be handled in two different ways, as determined by a so-called
suppressJoinFailure attribute associated with X. If this attribute is set to yes, the join failure will
be suppressed, as modelled by transition “sjf” (“suppress join failure”). In this case, the activity will
not be performed and the status of all outgoing links will be set to false. This is known as dead path
elimination in the sense that suppressing a join failure has the effect of propagating the false link status
transitively along the paths formed by control links, until a join condition is reached that evaluates to
true. An activity for which a join failure is suppressed, will end up in the “finished” state (e.g. fx) as if it
is completed as normal, and thus the processing of any following activity will not be affected. Otherwise,
if suppressJoinFailure is set to no, a join failure needs to be thrown, which triggers a standard fault
handling procedure as described in Sect. 3.5.

The mapping of skipping a basic activity with control links is shown in Fig. 6. Such an activity X, if
asked to skip, cannot be skipped until the status of all incoming links has been determined. Place jcvx
is used to collect either true or false token which represents the corresponding result of join condition
evaluation, as such result will not affect the skipping behaviour of X. In this way, we capture the control
dependency between activity X and the source activity of each of the incoming links to X. As soon as
activity X is skipped, the status of each of the outgoing links from X will be set to false, which captures
the dead path elimination as a result of skipping the activity.

jcfX

jctX

jcvX

. . . .. .

X

X
in

X

X

X

r

c

f

s

X

X

.

L

.

.

LX
out"skip"

Y

Y

.

..

. . .

. . .

out
1

n
outlsf

lsf

skipped

X

X

to_skip

Fig. 6. Mapping of skipping a basic activity with control links.

. ..

. . .

Xto_f

.

..

.

..

. . .
. . .

Xr

Xn

Xn

jcfX

jctX

XLin

.

.

.

...
. . .

. . .

LX
out

out
1

n
outlsf

lsf

X

Xs

Xc

Xf

X1

X1

X1

f

rY

Y

Xn

r

f

Y

Y

. . .

"sjf_fin"

"sjf"
.
..

.

..

Xc

Xr
. ..X1 Xn

Xn

Xn

jcfX

jctX

XLin

.

.

.

...
. . .

. . .

LX
out

out
1

n
outlsf

lsf

Xs

X

Xf

Y

Y

X1

X1

r

f

r

f
I

. . .

Y Y

Y Y

"skip_fin"

"skip"

to_skipX

skippedX

skipping

. . .
. . .

. . .

Xjcv

X

( a )  normal behaviour ( b )  skipping behaviour

Fig. 7. A non-sequence structured activity with control links.

8

join condition true

join condition false

link status false

link status false

martedì 10 dicembre 13



Sequence activity with control links

68

We now extend the mapping of control links for structured activities. This is shown in Fig. 7 which
includes mappings for both (a) normal behaviour and (b) skipping behaviour of a non-sequence activity.
For the mapping of suppressing a join failure in Fig. 7(a), place to fx is added to capture an intermediate
state when activity X waits for all its sub-activities X1 to Xn to be skipped, before it is finished (fx).
For both mappings in Fig. 7(a) and (b), the dead path elimination is captured upon the completion of
suppressing the join failure (transition “sjffin”) or skipping all sub-activities of X (transition “skipfin”).
The mapping for a sequence activity can be extended in a similar way, as shown in Fig. 8. Note that
there is an exclusive choice between the normal behaviour (Fig. 7 (a) and Fig. 8 (a)) and the skipping
behaviour (Fig. 7 (b) and Fig. 8 (b)), because the environment puts a token in either place rx or to skipx.

Xn

Xn

. . .

to_fX

Xf

Xn

Xn

. . .

...

rX

skippedX

jctX

jcfX

XLin

...

XLin

jctX

jcfX

.

.

.

...
. . .

. . .

LX
out

out
1

n
outlsf

lsf ...
. . .

. . .

LX
out

out
1

n
outlsf

lsf......

to_skipX

skippingX

X1

X2

XnXn

X2

X1

( a )  normal behaviour ( b )  skipping behaviour

X

r

f

c
"sjf_fin"

X2

2

r

Xf

rX

X

X1

X1

s

r

f

X

"sjf"

X

r

f

c

X2

2

r

Xf

X

X1

X1

s

r

f

X

Y

...

Xf

Y

Y

I

Y

Y

Y

Y

Y

.

.

.

"skip"
Y

Y

Y

Y

Y

Y

...

jcv

"skip_fin"

X

Fig. 8. A sequence activity with control links.

As an example, Figure 9 depicts the mapping of the BPEL process shown in Figure 1.

"c1"

FL

rFL

cFL

fFL

cSW

fSW

rSW

sSW

Y Y

Y Y

"~c1 c2"v

tc

tc

"tt"

"ff"

"tf"

"ft"

r

s

A3

c

f

c

s

r

f f

c

A2

s

A2r

jct

jcflsf

lst
lsf

lst

A1

A1 A2

A2A1

A1 A2

A3

A3

A3

A3

A1
x2

x1

x2

x2

x1

A3

A3

x1

s

Fig. 9. Mapping of the BPEL process shown in Figure 1.

9

We now extend the mapping of control links for structured activities. This is shown in Fig. 7 which
includes mappings for both (a) normal behaviour and (b) skipping behaviour of a non-sequence activity.
For the mapping of suppressing a join failure in Fig. 7(a), place to fx is added to capture an intermediate
state when activity X waits for all its sub-activities X1 to Xn to be skipped, before it is finished (fx).
For both mappings in Fig. 7(a) and (b), the dead path elimination is captured upon the completion of
suppressing the join failure (transition “sjffin”) or skipping all sub-activities of X (transition “skipfin”).
The mapping for a sequence activity can be extended in a similar way, as shown in Fig. 8. Note that
there is an exclusive choice between the normal behaviour (Fig. 7 (a) and Fig. 8 (a)) and the skipping
behaviour (Fig. 7 (b) and Fig. 8 (b)), because the environment puts a token in either place rx or to skipx.

Xn

Xn

. . .

to_fX

Xf

Xn

Xn

. . .

...

rX

skippedX

jctX

jcfX

XLin

...

XLin

jctX

jcfX

.

.

.

...
. . .

. . .

LX
out

out
1

n
outlsf

lsf ...
. . .

. . .

LX
out

out
1

n
outlsf

lsf......

to_skipX

skippingX

X1

X2

XnXn

X2

X1

( a )  normal behaviour ( b )  skipping behaviour

X

r

f

c
"sjf_fin"

X2

2

r

Xf

rX

X

X1

X1

s

r

f

X

"sjf"

X

r

f

c

X2

2

r

Xf

X

X1

X1

s

r

f

X

Y

...

Xf

Y

Y

I

Y

Y

Y

Y

Y

.

.

.

"skip"
Y

Y

Y

Y

Y

Y

...

jcv

"skip_fin"

X

Fig. 8. A sequence activity with control links.

As an example, Figure 9 depicts the mapping of the BPEL process shown in Figure 1.

"c1"

FL

rFL

cFL

fFL

cSW

fSW

rSW

sSW

Y Y

Y Y

"~c1 c2"v

tc

tc

"tt"

"ff"

"tf"

"ft"

r

s

A3

c

f

c

s

r

f f

c

A2

s

A2r

jct

jcflsf

lst
lsf

lst

A1

A1 A2

A2A1

A1 A2

A3

A3

A3

A3

A1
x2

x1

x2

x2

x1

A3

A3

x1

s

Fig. 9. Mapping of the BPEL process shown in Figure 1.

9

martedì 10 dicembre 13



Non-sequence activity with control links

69

The subnet enclosed in the box labeled Lout
x specifies the mapping of outgoing links from activity X.

Once X is complete, it is ready to evaluate transition conditions, which determine the link status for each
of the outgoing links. Since transition condition expressions are part of the data perspective, they are
not explicitly specified in the mapping and their boolean evaluation is modelled non-deterministically.

The subnet enclosed in the box labeled Lin
x specifies the mapping of incoming links to activity X. A

join condition is defined as a boolean expression (e.g. βX (ls in
1 ,...,ls in

m )) in the set of variables representing
the status of each of the incoming links. It is mapped to a boolean net (BNx), which takes the status
of all incoming links as input and produces an evaluation result as output to place jctx (“join condition
true”) or jcfx (“join condition false”). The definition of this boolean net is given in Sect. 4.2.

If the join condition evaluates to true, activity X can start as normal. Otherwise, a fault called
join failure occurs. A join failure can be handled in two different ways, as determined by a so-called
suppressJoinFailure attribute associated with X. If this attribute is set to yes, the join failure will
be suppressed, as modelled by transition “sjf” (“suppress join failure”). In this case, the activity will
not be performed and the status of all outgoing links will be set to false. This is known as dead path
elimination in the sense that suppressing a join failure has the effect of propagating the false link status
transitively along the paths formed by control links, until a join condition is reached that evaluates to
true. An activity for which a join failure is suppressed, will end up in the “finished” state (e.g. fx) as if it
is completed as normal, and thus the processing of any following activity will not be affected. Otherwise,
if suppressJoinFailure is set to no, a join failure needs to be thrown, which triggers a standard fault
handling procedure as described in Sect. 3.5.

The mapping of skipping a basic activity with control links is shown in Fig. 6. Such an activity X, if
asked to skip, cannot be skipped until the status of all incoming links has been determined. Place jcvx
is used to collect either true or false token which represents the corresponding result of join condition
evaluation, as such result will not affect the skipping behaviour of X. In this way, we capture the control
dependency between activity X and the source activity of each of the incoming links to X. As soon as
activity X is skipped, the status of each of the outgoing links from X will be set to false, which captures
the dead path elimination as a result of skipping the activity.

jcfX

jctX

jcvX

. . . .. .

X

X
in

X

X

X

r

c

f

s

X

X

.

L

.

.

LX
out"skip"

Y

Y

.

..

. . .

. . .

out
1

n
outlsf

lsf

skipped

X

X

to_skip

Fig. 6. Mapping of skipping a basic activity with control links.

. ..

. . .

Xto_f

.

..

.

..

. . .
. . .

Xr

Xn

Xn

jcfX

jctX

XLin

.

.

.

...
. . .

. . .

LX
out

out
1

n
outlsf

lsf

X

Xs

Xc

Xf

X1

X1

X1

f

rY

Y

Xn

r

f

Y

Y

. . .

"sjf_fin"

"sjf"
.
..

.

..

Xc

Xr

. ..X1 Xn

Xn

Xn

jcfX

jctX

XLin

.

.

.

...
. . .

. . .

LX
out

out
1

n
outlsf

lsf

Xs

X

Xf

Y

Y

X1

X1

r

f

r

f
I

. . .

Y Y

Y Y

"skip_fin"

"skip"

to_skipX

skippedX

skipping

. . .
. . .

. . .

Xjcv

X

( a )  normal behaviour ( b )  skipping behaviour

Fig. 7. A non-sequence structured activity with control links.

8

The subnet enclosed in the box labeled Lout
x specifies the mapping of outgoing links from activity X.

Once X is complete, it is ready to evaluate transition conditions, which determine the link status for each
of the outgoing links. Since transition condition expressions are part of the data perspective, they are
not explicitly specified in the mapping and their boolean evaluation is modelled non-deterministically.

The subnet enclosed in the box labeled Lin
x specifies the mapping of incoming links to activity X. A

join condition is defined as a boolean expression (e.g. βX (ls in
1 ,...,ls in

m )) in the set of variables representing
the status of each of the incoming links. It is mapped to a boolean net (BNx), which takes the status
of all incoming links as input and produces an evaluation result as output to place jctx (“join condition
true”) or jcfx (“join condition false”). The definition of this boolean net is given in Sect. 4.2.

If the join condition evaluates to true, activity X can start as normal. Otherwise, a fault called
join failure occurs. A join failure can be handled in two different ways, as determined by a so-called
suppressJoinFailure attribute associated with X. If this attribute is set to yes, the join failure will
be suppressed, as modelled by transition “sjf” (“suppress join failure”). In this case, the activity will
not be performed and the status of all outgoing links will be set to false. This is known as dead path
elimination in the sense that suppressing a join failure has the effect of propagating the false link status
transitively along the paths formed by control links, until a join condition is reached that evaluates to
true. An activity for which a join failure is suppressed, will end up in the “finished” state (e.g. fx) as if it
is completed as normal, and thus the processing of any following activity will not be affected. Otherwise,
if suppressJoinFailure is set to no, a join failure needs to be thrown, which triggers a standard fault
handling procedure as described in Sect. 3.5.

The mapping of skipping a basic activity with control links is shown in Fig. 6. Such an activity X, if
asked to skip, cannot be skipped until the status of all incoming links has been determined. Place jcvx
is used to collect either true or false token which represents the corresponding result of join condition
evaluation, as such result will not affect the skipping behaviour of X. In this way, we capture the control
dependency between activity X and the source activity of each of the incoming links to X. As soon as
activity X is skipped, the status of each of the outgoing links from X will be set to false, which captures
the dead path elimination as a result of skipping the activity.

jcfX

jctX

jcvX

. . . .. .

X

X
in

X

X

X

r

c

f

s

X

X

.

L

.

.

LX
out"skip"

Y

Y

.

..

. . .

. . .

out
1

n
outlsf

lsf

skipped

X

X

to_skip

Fig. 6. Mapping of skipping a basic activity with control links.

. ..

. . .

Xto_f

.

..

.

..

. . .
. . .

Xr

Xn

Xn

jcfX

jctX

XLin

.

.

.

...
. . .

. . .

LX
out

out
1

n
outlsf

lsf

X

Xs

Xc

Xf

X1

X1

X1

f

rY

Y

Xn

r

f

Y

Y

. . .

"sjf_fin"

"sjf"
.
..

.

..

Xc

Xr

. ..X1 Xn

Xn

Xn

jcfX

jctX

XLin

.

.

.

...
. . .

. . .

LX
out

out
1

n
outlsf

lsf

Xs

X

Xf

Y

Y

X1

X1

r

f

r

f
I

. . .

Y Y

Y Y

"skip_fin"

"skip"

to_skipX

skippedX

skipping

. . .
. . .

. . .

Xjcv

X

( a )  normal behaviour ( b )  skipping behaviour

Fig. 7. A non-sequence structured activity with control links.

8

martedì 10 dicembre 13



The previous example

70

which, together with the associated notions of join condition and transition condition, support the
definition of precedence, synchronization and conditional dependencies on top of those captured by the
structured activity constructs. A control link between activities A and B indicates that B cannot start
before A has either completed or has been “skipped”. Moreover, B can only be executed if its associated
join condition evaluates to true, otherwise B is skipped. This join condition is expressed in terms of
the tokens carried by control links leading to B. These tokens may take either a positive (true) or a
negative (false) value. An activity X propagates a token with a positive value along an outgoing link L
if and only if X was executed (as opposed to being skipped) and the transition condition associated to
L evaluates to true. Transition conditions are boolean expressions over the process variables (just like
the conditions in a switch activity). The process by which positive and negative tokens are propagated
along control links, causing activities to be executed or skipped, is called dead path elimination.

Control links may cross the boundaries of most structured activities. However, they must not create
cyclic control dependencies and must not cross the boundary of a while activity or a serializable scope.4
Prior to our work, the interaction between structured activities and control links was not fully under-
stood, resulting in ambiguities and contradictions in the wording of the BPEL specification [5]. Following
our formalisation effort, some of these issues were reported and discussed in the BPEL standardisation
committee, and changes to the specification’s wording have been proposed, albeit not yet adopted (see
footnote 3).

Also, whilst the control flow constructs of BPEL have been designed in a way to ensure that no
BPEL process execution can deadlock5, some combinations of structured activities (in particular switch
and pick) with control links can lead to situations where some activities are “unreachable”. Consider the
BPEL process definition in Fig. 1 where both the XML code and a graphical representation are provided.
During the execution of this process, either A1 or A2 will be skipped because these two activities are
placed in different branches of a switch and in any execution of a switch only one branch is taken. Thus,
one of the two control links x1 or x2 will carry a negative token. On the other hand, we assume that
the join condition attached to activity A3 (denoted by keyword “AND”) evaluates to true if and only if
both links x1 and x2 carry positive values. Hence, this join condition will always evaluate to false and
activity A3 is always skipped (i.e. it is unreachable).

<invoke name = "A3"> 

AND

A1 A2

x2

x1

A3

SW

FL

c1 c2

Flow

Switch

Control Link

Legend:

Basic Activity

<process name="unreachableTask"

<flow name="FL" suppressJoinFailure="yes">
<links>
   <link name="x1"/>
   <link name="x2"/>
</links>
<switch name="SW">
   <case>
     <invoke name="A1">
       <sources>
     </invoke>
   </case>
   <otherwise>     
     <invoke name="A2">
       <sources>
     </invoke>
   </otherwise>
</switch>

  <targets> 
   <joinCondition> 

   </joinCondition>
   <target linkName="x1"/>
   <target linkName="x2"/>
  </targets>
</invoke>  
</flow>

</process>

        <source linkName="x1"/>       </sources>

       </sources>

     targetNamespace="http://samples.otn.com"
     suppressJoinFailure="yes"
     xmlns:tns="http://samples.otn.com"
     xmlns:services="http://services.otn.com"
     xmlns="http://schemas.xmlsoap.org/ws/2003/03/business−process/">

     bpws:getLinkStatus(‘x1’) and bpws:getLinkStatus(‘x2’)

         <source linkName="x2"/>

Fig. 1. Example of a BPEL process with an unreachable activity.

4 Serializable scopes are not covered in this paper since they are not a control-flow construct and thus fall
outside the scope of this work. Instead, serializable scopes are fundamentally related to data manipulation.

5 Although it has not been formally proved that BPEL processes are deadlock-free, to the best of our knowledge
no example of a deadlocking BPEL process has been put forward. Also, Kiepuszewski et al. [14] proves
that synchronizing workflows (a subset of BPEL processes made up of elementary actions, control links,
and restricted forms of join conditions) are non-deadlocking. Note that here we refer to “individual BPEL
processes” as opposed to “sets of communicating BPEL processes” which are outside the scope of our work.

3

We now extend the mapping of control links for structured activities. This is shown in Fig. 7 which
includes mappings for both (a) normal behaviour and (b) skipping behaviour of a non-sequence activity.
For the mapping of suppressing a join failure in Fig. 7(a), place to fx is added to capture an intermediate
state when activity X waits for all its sub-activities X1 to Xn to be skipped, before it is finished (fx).
For both mappings in Fig. 7(a) and (b), the dead path elimination is captured upon the completion of
suppressing the join failure (transition “sjffin”) or skipping all sub-activities of X (transition “skipfin”).
The mapping for a sequence activity can be extended in a similar way, as shown in Fig. 8. Note that
there is an exclusive choice between the normal behaviour (Fig. 7 (a) and Fig. 8 (a)) and the skipping
behaviour (Fig. 7 (b) and Fig. 8 (b)), because the environment puts a token in either place rx or to skipx.

Xn

Xn

. . .

to_fX

Xf

Xn

Xn

. . .

...

rX

skippedX

jctX

jcfX

XLin

...

XLin

jctX

jcfX

.

.

.

...
. . .

. . .

LX
out

out
1

n
outlsf

lsf ...
. . .

. . .

LX
out

out
1

n
outlsf

lsf......

to_skipX

skippingX

X1

X2

XnXn

X2

X1

( a )  normal behaviour ( b )  skipping behaviour

X

r

f

c
"sjf_fin"

X2

2

r

Xf

rX

X

X1

X1

s

r

f

X

"sjf"

X

r

f

c

X2

2

r

Xf

X

X1

X1

s

r

f

X

Y

...

Xf

Y

Y

I

Y

Y

Y

Y

Y

.

.

.

"skip"
Y

Y

Y

Y

Y

Y

...

jcv

"skip_fin"

X

Fig. 8. A sequence activity with control links.

As an example, Figure 9 depicts the mapping of the BPEL process shown in Figure 1.

"c1"

FL

rFL

cFL

fFL

cSW

fSW

rSW

sSW

Y Y

Y Y
"~c1 c2"v

tc

tc

"tt"

"ff"

"tf"

"ft"

r

s

A3

c

f

c

s

r

f f

c

A2

s

A2r

jct

jcflsf

lst
lsf

lst

A1

A1 A2

A2A1

A1 A2

A3

A3

A3

A3

A1
x2

x1

x2

x2

x1

A3

A3

x1

s

Fig. 9. Mapping of the BPEL process shown in Figure 1.

9

martedì 10 dicembre 13



Scope

71

 Remind that a scope has a primary activity, and optionally:
a set of fault handlers,

a set of event handlers, and
one compensation handler.

To deal with them, four “flags” are attached to a scope:
to_continue (no exception, execution is in progress)
to_stop (an error occurred, activities need to stop)
snapshot (successfully completed, uncompensated)

no_snapshot (no compensation needed)

In the following, we just sketch the handling of faults

martedì 10 dicembre 13



Scope

72

3.3 Scopes

A scope is a special type of structured activity defined for event and exception handling. It has a
primary (i.e. main) activity, and can provide event handlers (Sect. 3.4), fault handlers (Sect. 3.5) and
a compensation handler (Sect. 3.6). Like other structured activities, scopes can be nested to arbitrary
depth, and the whole process is implicitly regarded as the top level scope.

To facilitate the mapping of exception handling, we define four flags for a scope. These are: to continue,
indicating the execution of the scope is in progress and no exception has occurred; to stop, signaling an
error has occurred and all active activities nested in the scope need to stop; snapshot, capturing the scope
snapshot defined in [5] which refers to the preserved state of a successfully completed uncompensated
scope; and no snapshot, indicating the absence of a scope snapshot.

Fig. 10 depicts the basic mapping for a scope (Q) in which the mapping of any event or exception
handler associated with the scope is not included. Assume that no exception occurs. Scope Q remains in
the status of to continue during its normal performance (i.e. the execution of Q’s main activity A). Upon
the completion of activity A, a snapshot is preserved for scope Q. Next, consider the case of skipping
scope Q (see Fig. 10(a)) or the case of suppressing a join failure for Q (see Fig. 10(b)). Once activity A
has been skipped (upon the occurrence of transition “skip fin” or “sjf fin”), the status indicating the
absence of a scope snapshot for Q (place no snapshotQ) will be recorded. Finally, faults may occur during
the normal performance of scope Q, causing the status of Q to change from to continue to to stop. This
will be described further in Sect. 3.5.

( b )  suppressing join failure

to_stopX

to_continueQC

snapshotQ

:)

Qno_snapshotskippedQ

Qskipping

to_skipQ

Q

A

A

A

Qr

s

r

f

Y
Q

Q

Q

c

f

Y !

Y

I

Y

"skip_fin"

"skip"

( a )  skipping behaviour

Qr

Qs

Qc

snapshotQ

:)

Qno_snapshot ! Qf

jctQ

jcfQ

Q
inL

to_fQ

LX
out

...
. . .

. . .

out
1

n
outlsf

lsf

Qto_stopX

to_continueQC

Ar

A

Af

.

.

.

"sjf"

"sjf_fin"

Y

Y

Q

. ..

. . .

Q

Fig. 10. A scope with its main activity.

3.4 Event Handlers

A scope can provide event handlers that are responsible for handling normal events (i.e. message or alarm
events) that occur concurrently while the scope is running. A message event handler can be triggered
multiple times if the expected message event occurs multiple times, and an alarm event handler, except
for a repeatEvery alarm, can be invoked at most once (upon timeout). The repeatEvery alarm event
occurs repeatedly upon each timeout when the scope is active, and the corresponding event handler can
be invoked multiple times as long as the alarm event occurs.

We discuss a couple of decisions made for the mapping of event handlers. Firstly, since no control
links are allowed to cross the boundary of event handlers, each event handler can be viewed as an
independent unit of activities within a scope. Secondly, the occurrence of an event is either triggered by
the system (for an alarm event) or by the environment (for a message event), and the event handler is
invoked only if the expected event occurs. So it is not necessary to distinguish between the mappings
of the different types of event handlers.

Fig. 11 depicts the mapping of a scope (Q) with an event handler (EH). The four flags associated
with the scope are omitted. The subnet enclosed in the box labeled EH specifies the mapping of event
handler EH. As soon as scope Q starts, it is ready to invoke EH. Meanwhile, event enormal is enabled
and may occur upon an environment or a system trigger. When enormal occurs, an instance of EH is
created, in which activity HE (“handling event”) is executed. EH remains active as long as Q is active.
Finally, event enormal becomes disabled once the normal process of Q (i.e. Q’s main activity A) is finished.

10

3.3 Scopes

A scope is a special type of structured activity defined for event and exception handling. It has a
primary (i.e. main) activity, and can provide event handlers (Sect. 3.4), fault handlers (Sect. 3.5) and
a compensation handler (Sect. 3.6). Like other structured activities, scopes can be nested to arbitrary
depth, and the whole process is implicitly regarded as the top level scope.

To facilitate the mapping of exception handling, we define four flags for a scope. These are: to continue,
indicating the execution of the scope is in progress and no exception has occurred; to stop, signaling an
error has occurred and all active activities nested in the scope need to stop; snapshot, capturing the scope
snapshot defined in [5] which refers to the preserved state of a successfully completed uncompensated
scope; and no snapshot, indicating the absence of a scope snapshot.

Fig. 10 depicts the basic mapping for a scope (Q) in which the mapping of any event or exception
handler associated with the scope is not included. Assume that no exception occurs. Scope Q remains in
the status of to continue during its normal performance (i.e. the execution of Q’s main activity A). Upon
the completion of activity A, a snapshot is preserved for scope Q. Next, consider the case of skipping
scope Q (see Fig. 10(a)) or the case of suppressing a join failure for Q (see Fig. 10(b)). Once activity A
has been skipped (upon the occurrence of transition “skip fin” or “sjf fin”), the status indicating the
absence of a scope snapshot for Q (place no snapshotQ) will be recorded. Finally, faults may occur during
the normal performance of scope Q, causing the status of Q to change from to continue to to stop. This
will be described further in Sect. 3.5.

( b )  suppressing join failure

to_stopX

to_continueQC

snapshotQ

:)

Qno_snapshotskippedQ

Qskipping

to_skipQ

Q

A

A

A

Qr

s

r

f

Y
Q

Q

Q

c

f

Y !

Y

I
Y

"skip_fin"

"skip"

( a )  skipping behaviour

Qr

Qs

Qc

snapshotQ

:)

Qno_snapshot ! Qf

jctQ

jcfQ

Q
inL

to_fQ

LX
out

...
. . .

. . .

out
1

n
outlsf

lsf

Qto_stopX

to_continueQC

Ar

A

Af

.

.

.

"sjf"

"sjf_fin"

Y

Y

Q

. ..

. . .

Q

Fig. 10. A scope with its main activity.

3.4 Event Handlers

A scope can provide event handlers that are responsible for handling normal events (i.e. message or alarm
events) that occur concurrently while the scope is running. A message event handler can be triggered
multiple times if the expected message event occurs multiple times, and an alarm event handler, except
for a repeatEvery alarm, can be invoked at most once (upon timeout). The repeatEvery alarm event
occurs repeatedly upon each timeout when the scope is active, and the corresponding event handler can
be invoked multiple times as long as the alarm event occurs.

We discuss a couple of decisions made for the mapping of event handlers. Firstly, since no control
links are allowed to cross the boundary of event handlers, each event handler can be viewed as an
independent unit of activities within a scope. Secondly, the occurrence of an event is either triggered by
the system (for an alarm event) or by the environment (for a message event), and the event handler is
invoked only if the expected event occurs. So it is not necessary to distinguish between the mappings
of the different types of event handlers.

Fig. 11 depicts the mapping of a scope (Q) with an event handler (EH). The four flags associated
with the scope are omitted. The subnet enclosed in the box labeled EH specifies the mapping of event
handler EH. As soon as scope Q starts, it is ready to invoke EH. Meanwhile, event enormal is enabled
and may occur upon an environment or a system trigger. When enormal occurs, an instance of EH is
created, in which activity HE (“handling event”) is executed. EH remains active as long as Q is active.
Finally, event enormal becomes disabled once the normal process of Q (i.e. Q’s main activity A) is finished.

10

martedì 10 dicembre 13



Faults

73

 BPEL defines three kinds of faults:

application faults (also service faults)
generated by invoked services

process-defined faults
generated by a <throw> activity

system faults
generated by the process engine, such as join failures

“it is never possible to run more than one fault handler for 
the same scope, under any circumstances”

martedì 10 dicembre 13



Some assumptions

74

 It is not shown entirely here, but the scope is encoded in 
such a way that when the token is in to_stop

(instead of to_continue)
all active activities in the scope are by-passed:

they will be terminated reaching their “finished” state

We do not show the case of a fault occurred during the 
faulty mode of a scope (it is handled by the parent scope)

Control links are only allowed to leave the boundary of a 
fault handler: we do not show dead-path elimination for them 

martedì 10 dicembre 13



By-pass a basic activity

75

.  .  .

1<scope name=" ">Q1<scope name=" ">

...

...

...

...

</activity >Ai

...
Q1<compensate scope=" ">

...

FHi(of )

<activity >Ai

Q CH
i<scope name=" ">

...

Q1(of )

...

<activityA>

<compensationHandler>

<throw faultname="fault">

<activity

</activity
</compensationHandler>

</compensationHandler>

</scope>

<faultHandlers>
<catch faultName="fault">

activity
</catch>

</faultHandlers>

<compensationHandler>
<scope name="Q">

activity
</scope>

</activity>
</scope>

HC >1

HC >1

sthrow

cthrow

fthrow

rthrow

HC1
r

to_invokeCH1

HC1
f

!

:)

CH1

Q1

f

c

compensates

compensater

compensate

compensate

compensate

Q i
CH

A i

...

...

throw

X

C  iFH
.  .  .

.  .  .

.  
 . 

  .

. .
 .

. .
 .

A

CH

Q

.  .  .

Q

Fig. 20. Handling faults thrown from within a compensate handler.

Termination of a scope due to a fault The main activity of a scope needs to terminate when the
scope is faulty. If the fault has been handled successfully, the scope will end as if it is completed normally
and thus the processing of its parent scope will not be affected. Also, the control dependencies should
be preserved during activity termination. Hence, for the mapping of activity termination, we adopt an
approach of conducting a dry run of the activity without performing its concrete actions (i.e. the core
action of each basic activity) nor allowing it to process any normal events (i.e. message or alarm events).

Fig. 21 depicts the mapping for the termination of a basic activity with suppressJoinFailure
attribute set to (a) yes or (b) no. We assume that activity X is directly enclosed in scope Q and has
incoming and outgoing links. As shown in both mappings, the core action of X (transition X) can be
performed only if Q is allowed to continue its normal process. Otherwise, if Q is asked to stop, the core
action of X will be bypassed, as captured by the λ-transition “bypass”. The dead path elimination is
realised by imposing an additional condition to link status evaluation of each outgoing link from X, such
that a true status may be obtained only if Q is in the normal processing mode.

Suppose that a join failure occurs at activity X when X is required to terminate. A dry run of
suppressing join failure is performed by transition “sjf” shown in Fig. 21 (a). However, it is not possible
to conduct a dry run of throwing join failure to scope Q when Q needs to stop. Recall the mapping of
handling a join failure fault in Fig. 15, where ejoinf may be triggered only within the normal process of Q.
In order to continue the dry run of activity X which attempts to throw a join failure during termination
of scope Q, we add transition “ignore” to the mapping in Fig. 21 (b). This transition will fire if a join
failure occurs at X and X needs to terminate. As a result, the join failure is ignored and the dry run of
X is continued.

out

in
X

jctX

jcfX

Qto_stop

XLout

lstout
tcout

( a )  suppressJoinFailure = yes

X

X

CX

rX

X

X

X

s

c

f

"bypass"
Qto_continue

"sjf"

lsfout

Lin
X

jctX

jcfX

XLout

tcout

X

X

X C

( b )  suppressJoinFailure = no

X

X

X

Xr

s

c

f

to_stopQ

to_continueQ
"bypass"

"ignore"

lsfout

lst

L

Fig. 21. Termination of a basic activity.

17

.  .  .

1<scope name=" ">Q1<scope name=" ">

...

...

...

...

</activity >Ai

...
Q1<compensate scope=" ">

...

FHi(of )

<activity >Ai

Q CH
i<scope name=" ">

...

Q1(of )

...

<activityA>

<compensationHandler>

<throw faultname="fault">

<activity

</activity
</compensationHandler>

</compensationHandler>

</scope>

<faultHandlers>
<catch faultName="fault">

activity
</catch>

</faultHandlers>

<compensationHandler>
<scope name="Q">

activity
</scope>

</activity>
</scope>

HC >1

HC >1

sthrow

cthrow

fthrow

rthrow

HC1
r

to_invokeCH1

HC1
f

!

:)

CH1

Q1

f

c

compensates

compensater

compensate

compensate

compensate

Q i
CH

A i

...

...

throw

X

C  iFH
.  .  .

.  .  .

.  
 . 

  .

. .
 .

. .
 .

A

CH

Q

.  .  .

Q

Fig. 20. Handling faults thrown from within a compensate handler.

Termination of a scope due to a fault The main activity of a scope needs to terminate when the
scope is faulty. If the fault has been handled successfully, the scope will end as if it is completed normally
and thus the processing of its parent scope will not be affected. Also, the control dependencies should
be preserved during activity termination. Hence, for the mapping of activity termination, we adopt an
approach of conducting a dry run of the activity without performing its concrete actions (i.e. the core
action of each basic activity) nor allowing it to process any normal events (i.e. message or alarm events).

Fig. 21 depicts the mapping for the termination of a basic activity with suppressJoinFailure
attribute set to (a) yes or (b) no. We assume that activity X is directly enclosed in scope Q and has
incoming and outgoing links. As shown in both mappings, the core action of X (transition X) can be
performed only if Q is allowed to continue its normal process. Otherwise, if Q is asked to stop, the core
action of X will be bypassed, as captured by the λ-transition “bypass”. The dead path elimination is
realised by imposing an additional condition to link status evaluation of each outgoing link from X, such
that a true status may be obtained only if Q is in the normal processing mode.

Suppose that a join failure occurs at activity X when X is required to terminate. A dry run of
suppressing join failure is performed by transition “sjf” shown in Fig. 21 (a). However, it is not possible
to conduct a dry run of throwing join failure to scope Q when Q needs to stop. Recall the mapping of
handling a join failure fault in Fig. 15, where ejoinf may be triggered only within the normal process of Q.
In order to continue the dry run of activity X which attempts to throw a join failure during termination
of scope Q, we add transition “ignore” to the mapping in Fig. 21 (b). This transition will fire if a join
failure occurs at X and X needs to terminate. As a result, the join failure is ignored and the dry run of
X is continued.

out

in
X

jctX

jcfX

Qto_stop

XLout

lstout
tcout

( a )  suppressJoinFailure = yes

X

X

CX

rX

X

X

X

s

c

f

"bypass"
Qto_continue

"sjf"

lsfout

Lin
X

jctX

jcfX

XLout

tcout

X

X

X C

( b )  suppressJoinFailure = no

X

X

X

Xr

s

c

f

to_stopQ

to_continueQ
"bypass"

"ignore"

lsfout

lst

L

Fig. 21. Termination of a basic activity.

17

ignore join-failure
when to_stop

martedì 10 dicembre 13



A fault handler (general case)

76

Q

<faultHandlers>
<catch faultName="fault">

activityHF

<scope name="Q">

</scope>

</catch>

activityA

!

X

C

FHinvoked

FHto_invoke

"efault"

Qto_stop

Qto_continue

Q

Q

no_snapshotQ

FH

HF

A

A

A

Q

r

s

r

c

fQ

f
HF

HF

r

f

Q

:) snapshot

</faultHandlers>

Fig. 13. A fault handler (general mapping).

The above throw activity in A

X

C

.. .

Af

Qc

rthrow

sthrow

cthrow

fthrow

.. .
Q

Q

A

r

s

r

snapshotQ

:)no_snapshotQ! Qf

HFt

throw

A

Q

HF

HF

FHt

r

f

t

t

t
to_invokeFH

FHinvoked t

.

..

.

..

</scope>

</faultHandlers>
</catch>

<activityA>

</activityA>

<throw faultName="fault"/>

<faultHandlers>
<catch faultName="fault">

<scope name="Q">

activityHFt

[note]
is directly enclosed in scope Q.

Fig. 14. Handling a process-defined fault generated by the throw activity.

Handling a join failure fault. We instantiate the general mapping of a fault handler for a join failure
fault, as shown in Fig. 15. Assume that activity X, which is part of the normal process of scope Q and
is directly enclosed Q, has the suppressJoinFailure attribute set to no. The occurrence of fault event
ejoinf will be triggered if a join failure occurs (place jcfX being marked) at activity X and X is ready to
start (place rX being marked). The arc from transition “ejoinf” to place sX allows the continuation of the
flow in the normal process of scope Q. This is necessary in the mapping of activity termination (see
Section 3.7) which requires a dry run of the uncompleted activities in the scope.

Handling faults occurred within fault handlers. Any type of activity (e.g. a scope) can be used
for fault handling, and thus the main activity carried out by a fault handler may contain scope activities
that are nested to arbitrary depth. If a fault occurred within a fault handler can be solved inside the
fault handler, the mapping of fault handling shown in Fig. 13 can be used. Otherwise, if the fault cannot
be solved locally, it needs to be thrown to outside of the fault handler. Fig. 16 depicts the mapping
of throwing a fault from within a fault handler (FH1) of the current scope (Q1), which invokes the
fault handler (FH) for the parent scope (Q) of Q1. Note that the BPEL specification [5] also defines a
rethrow activity, which in essence “can be considered a macro for a <throw> (i.e. throw activity) that
throws the fault caught by the corresponding fault handler” but cannot be solved by that fault handler
(Section 13.4 of [5]).

13

efault is only enabled
while A is running

martedì 10 dicembre 13



Example: process-defined fault

77

Q

<faultHandlers>
<catch faultName="fault">

activityHF

<scope name="Q">

</scope>

</catch>

activityA

!

X

C

FHinvoked

FHto_invoke

"efault"

Qto_stop

Qto_continue

Q

Q

no_snapshotQ

FH

HF

A

A

A

Q

r

s

r

c

fQ

f
HF

HF

r

f

Q

:) snapshot

</faultHandlers>

Fig. 13. A fault handler (general mapping).

The above throw activity in A

X

C

.. .

Af

Qc

rthrow

sthrow

cthrow

fthrow

.. .

Q

Q

A

r

s

r

snapshotQ

:)no_snapshotQ! Qf

HFt

throw

A

Q

HF

HF

FHt

r

f

t

t

t
to_invokeFH

FHinvoked t

.

..

.

..

</scope>

</faultHandlers>
</catch>

<activityA>

</activityA>

<throw faultName="fault"/>

<faultHandlers>
<catch faultName="fault">

<scope name="Q">

activityHFt

[note]
is directly enclosed in scope Q.

Fig. 14. Handling a process-defined fault generated by the throw activity.

Handling a join failure fault. We instantiate the general mapping of a fault handler for a join failure
fault, as shown in Fig. 15. Assume that activity X, which is part of the normal process of scope Q and
is directly enclosed Q, has the suppressJoinFailure attribute set to no. The occurrence of fault event
ejoinf will be triggered if a join failure occurs (place jcfX being marked) at activity X and X is ready to
start (place rX being marked). The arc from transition “ejoinf” to place sX allows the continuation of the
flow in the normal process of scope Q. This is necessary in the mapping of activity termination (see
Section 3.7) which requires a dry run of the uncompleted activities in the scope.

Handling faults occurred within fault handlers. Any type of activity (e.g. a scope) can be used
for fault handling, and thus the main activity carried out by a fault handler may contain scope activities
that are nested to arbitrary depth. If a fault occurred within a fault handler can be solved inside the
fault handler, the mapping of fault handling shown in Fig. 13 can be used. Otherwise, if the fault cannot
be solved locally, it needs to be thrown to outside of the fault handler. Fig. 16 depicts the mapping
of throwing a fault from within a fault handler (FH1) of the current scope (Q1), which invokes the
fault handler (FH) for the parent scope (Q) of Q1. Note that the BPEL specification [5] also defines a
rethrow activity, which in essence “can be considered a macro for a <throw> (i.e. throw activity) that
throws the fault caught by the corresponding fault handler” but cannot be solved by that fault handler
(Section 13.4 of [5]).

13

fault due to 
throw activity

martedì 10 dicembre 13



Example: system fault

78

fault due to 
join-failure

FH

X is directly enclosed in scope Q.

...

. . .

. . .<target linkname= >

...

<activityA>

<scope name="Q">

</faultHandlers>

<faultHandlers>
<catch faultname="bpws: joinFailure">

</catch>

<activityX suppressJoinFailure="no">

</activityA>
</scope>

<targets>
<joinCondition>

</joinCondition>

</targets>
</activityX>

activity HFjf

:)

C

X

!

.. .
.. .

"ejoinf "

jctX

jcfX

Q

rQ

sQ

rA

fA

c

fQ

Q

rHF

fHF

HF

FH

r

s

c

f

X

X

A
X

X

X

X

jf

jf

jf

jf

to_invokeFHjf

jf
invoked

[note]  

Fig. 15. Handling a join failure as an example of a system fault.

f

1[note]

.

..
Q1<scope name=" ">

.

..

.

..

.

..

</catch>
</faultHandlers>
<activityA> 

<faultHandlers>
<catch faultName="fault">

<scope name="Q">
<faultHandlers>

<catch faultname="fault">

</catch>
</faultHandlers>

</scope>

</activityA> 
</scope>

activity (of FH  )t

activity (of Q  )1

<rethrow/>

X

C to_continue Q

to_stopQ

.

.

.

FHinvoked t

FHt

t
to_invokeFH

rthrow

sthrow

cthrow

fthrow

..

.

..

. FH1

rFH1

fFH1

.

.

.

Q1

.. .

Af

Ar

Q

Q

r

s

.. .

...

throw

A

Q

Q

Q  is directly enclosed in scope Q.

Fig. 16. Handling a fault thrown from within a fault handler.

Handling faults occurred in a scope with event handlers. Since event handlers are considered as
part of the normal process of a scope, faults occurred within a scope include those occurred within the
event handlers attached to the scope. Fig. 17 depicts the mapping of handling a fault occurred within
a scope that has event handlers attached to it. This mapping is mainly obtained by combining the
mappings of event handling (Fig. 11) and fault handling (Fig. 13) for the scope. Based on this, we add
the following two arcs, both drawn in thick dashed lines. The arc from place to invokeEH to the input
transition of place rHF, is added to ensure that any active instance of event handler (EH) will terminate
before the fault handling (activity HF) starts. The bidirectional arc connecting place to continueQ and
transition “enormal”, is added to disable event enormal once a fault occurs within scope Q.

14

martedì 10 dicembre 13



Expressiveness...
not in the formal sense

(w.r.t. WF patterns)

79

martedì 10 dicembre 13



80

Basic Control Flow Patterns

• Pattern 1 (Sequence)

• Pattern 2 (Parallel Split)

• Pattern 3 (Synchronization)

• Pattern 4 (Exclusive Choice)

• Pattern 5 (Simple Merge)

Advanced Branching and

Synchronization Patterns

• Pattern 6 (Multi - choice)

• Pattern 7 (Synchronizing Merge)

• Pattern 8 (Multi - merge)

• Pattern 9 (Discriminator)

Structural Patterns

• Pattern 10 (Arbitrary Cycles)

• Pattern 11 (Implicit Termination)

State-based Patterns

• Pattern 16 (Deferred
Choice)

• Pattern 17 (Interleaved
Parallel Routing)

• Pattern 18 (Milestone)

Patterns involving Multiple Instances

• Pattern 12 (Multiple Instances Without
Synchronization)

• Pattern 13 (Multiple Instances With a Priori
Design Time Knowledge)

• Pattern 14 (Multiple Instances With a Priori
Runtime Knowledge)

• Pattern 15 (Multiple Instances Without a Priori
Runtime Knowledge)

Cancellation Patterns

• Pattern 19 (Cancel Activity)

• Pattern 20 (Cancel Case)

Fig. 1. Overview of the 20 most relevant patterns.

WWW site” [48]. The patterns range from very simple patterns such as sequential rout-

ing (Pattern 1) to complex patterns involving complex synchronizations such as the

discriminator pattern (Pattern 9). In this paper, we restrict ourselves to the 20 most

relevant patterns. These patterns can be classified into six categories:

1. Basic control flow patterns. These are the basic constructs present in most workflow

languages to model sequential, parallel and conditional routing.

2. Advanced branching and synchronization patterns. These patterns transcend the

basic patterns to allow for more advanced types of splitting and joining behavior.

An example is the Synchronizing merge (Pattern 7) which behaves like an AND-

join or XOR-join depending on the context.

3. Structural patterns. In programming languages a block structure which clearly

identifies entry and exit points is quite natural. In graphical languages allowing for

parallelism such a requirement is often considered to be too restrictive. Therefore,

we have identified patterns that allow for a less rigid structure.

4. Patterns involvingmultiple instances.Within the context of a single case (i.e., work-

flow instance) sometimes parts of the process need to be instantiated multiple times,

e.g., within the context of an insurance claim, multiple witness statements need to

be processed.

5. State-based patterns. Typical workflow systems focus only on activities and events

and not on states. This limits the expressiveness of the workflow language because

it is not possible to have state dependent patterns such as the Milestone pattern

(Pattern 18).

martedì 10 dicembre 13



81

Pattern-Based Analysis of BPML (and WSCI) 24

pattern standard
BPEL XLANG WSFL BPML WSCI

Sequence + + + + +
Parallel Split + + + + +
Synchronization + + + + +
Exclusive Choice + + + + +
Simple Merge + + + + +
Multi Choice + – + – –
Synchronizing Merge + – + – –
Multi Merge – – – +/– +/–
Discriminator – – – – –
Arbitrary Cycles – – – – –
Implicit Termination + – + + +
MI without Synchronization + + + + +
MI with a Priori Design Time Knowledge + + + + +
MI with a Priori Runtime Knowledge – – – – –
MI without a Priori Runtime Knowledge – – – – –
Deferred Choice + + – + +
Interleaved Parallel Routing +/– – – – –
Milestone – – – – –
Cancel Activity + + + + +
Cancel Case + + + + +
Request/Reply + + + + +
One-Way + + + + +
Synchronous Polling + + + + +
Message Passing + + + + +
Publish/Subscribe – – – – –
Broadcast – – – – –

Table 1. Comparison of BPEL4WS, XLANG, WSFL, BPML and WSCI using both
workflow and communication patterns.

– BPML does not o�er direct support for the Multi Choice and Synchro-
nizing Merge while BPEL4WS does. This comes from the fact that
BPEL4WS borrows the concept of “dead-path elimination” charac-
teristic of WSFL/IBM MQSeries.

– Each of the languages supports Multiple Instances without Synchro-
nization, Multiple Instances with a Priori Design Time Knowledge,
Cancel Activity, and Cancel Case.

– Most of the languages support the Implicit Termination and the De-
ferred Choice.

– None of the compared languages support arbitrary cycles, although
all of them directly support structured cycles.

When comparing BPEL4WS, XLANG, WSFL, BPML and WSCI to
contemporary workflow systems [3] on the basis of the patterns discussed

FIT Technical Report FIT-TR-2002-05

martedì 10 dicembre 13


