Business Processes Modelling

MPB (6 cfu, 295AA)

Roberto Bruni

http://www.di.unipi.it/~bruni

20 - Workflow modules
We study Workflow modules to model interaction between workflows

Ch.6 of Business Process Management: Concepts, Languages, Architectures
Problem

Not all tasks of a workflow net are automatic:
they can be triggered manually or by a message
they can be used to trigger other tasks
How do we represent this?
Implicit interaction

Separately developed workflow

Some activities can input messages

Some activities can output messages
Implicit interaction

Seller can receive (symbol ?) recommendations

Seller can send (symbol !) decisions
Interface

Seller has an interface for interaction

It consists of some **input** places and some **output** places
Interface
Problem

Assume the original workflow net has been validated:

it is a sound (and maybe safe) workflow net

When we add the (places in the) interface it is no longer a workflow net!
Definition: A workflow module consists of

- a workflow net \((P, T, F)\)
- a set \(P^I\) of incoming places
- a set of incoming arcs \(F^I \subseteq (P^I \times T)\)
- a set \(P^O\) of outgoing places
- a set of outgoing arcs \(F^O \subseteq (T \times P^O)\)

such that each transition has at most one connection to places in the interface.
Problem

Workflow modules must be capable to interact

How do we check that their interfaces match?

How do we combine them together?
Strong structural compatibility

A set of workflow modules is called strongly structural compatible if
for every message that can be sent there is a module who can receive it, and
for every message that can be received there is a module who can send it

(formats of message data are assumed to match)
Weak structural compatibility

A set of workflow modules is called weakly structural compatible if all messages sent by modules can be received by other modules more likely than a complete structural match (workflow modules are developed separately)
Interaction
We have added places and arcs to single nets
We have joined places of different nets
We have paired their initial markings

How do we check that the system behaves well?

What has this check to do with WF net soundness?
Workflow systems
Workflow system
Workflow system

Definition: A workflow system consists of

a set of n structurally compatible workflow modules
(initial places i_1, \ldots, i_n, final places o_1, \ldots, o_n)

plus an initial place i
and a transition t_i from i to i_1, \ldots, i_n

plus a final place o
and a transition t_o from o_1, \ldots, o_n to o
Soundness of workflow systems

A workflow system is just an ordinary workflow net

We can check its soundness as usual
Exercise

Can the system deadlock?
Exercise

Can the system deadlock?
Exercise

Complete with missing arcs the following behavioural interfaces and check their compatibility.
Weak soundness
Problem

When checking behavioural compatibility the soundness of the overall net is a too restrictive requirement

Workflow modules are designed separately, possibly reused in several systems. It is unlikely that every functionality they offer is involved in each system.
Problem

Definition: A workflow net is *weak sound* if it satisfies “option to complete” and “proper completion” (dead tasks are allowed)

Weak soundness can be checked on the RG

It guarantees deadlock freedom and proper termination of all modules
Sound + Sound = ?

Sound + Sound = not sound

Dead tasks!
Sound + Sound = not sound

Weak Sound!
Exercise: Preliminaries
Exercise: Check Weak Soundness of The Assembly
Exercise: Check Again After Refactoring Contractor
Exercise: Check Again After Refactoring Both
(Contractor zoom-in)
(Subcontractor zoom-in)