
Methods for the specification and
verification of business processes

MPB (6 cfu, 295AA) ��

Roberto Bruni ��
http://www.di.unipi.it/~bruni

20 - Workflow modules

1

http://www.di.unipi.it/~bruni

Object

2

We study Workflow modules to model
interaction between workflows

Ch.6 of Business Process Management: Concepts, Languages, Architectures

Problem

3

Not all tasks of a workflow net are automatic:

they can be triggered manually or by a message

they can be used to trigger other tasks

How do we represent this?

4

M
.

W
es

ke
:

B
us

in
es

s
 P

ro
ce

ss
 M

an
ag

em
en

t,

©
 S

pr
in

ge
r-

V
e

rla
g

 B
er

lin
 H

ei
de

lb
er

g
 2

00
7

Seller

rec_reject rec_accept

reject accept

Implicit interaction
Separately developed

workflow

Some activities can
input messages

Some activities can
output messages

5

M
.

W
es

ke
:

B
us

in
es

s
 P

ro
ce

ss
 M

an
ag

em
en

t,

©
 S

pr
in

ge
r-

V
e

rla
g

 B
er

lin
 H

ei
de

lb
er

g
 2

00
7

Seller

?rec_reject ?rec_accept

!reject !accept

Implicit interaction

Seller can receive
(symbol ?)

recommendations

Seller can send
(symbol !)
decisions

6

M
.

W
es

ke
:

B
us

in
es

s
 P

ro
ce

ss
 M

an
ag

em
en

t,

©
 S

pr
in

ge
r-

V
e

rla
g

 B
er

lin
 H

ei
de

lb
er

g
 2

00
7

Seller

sa

sr

ra

rr
?rec_reject ?rec_accept

!reject !accept

Interface

Seller has an interface
for interaction

It consists of
some input places

and
some output places

7

M
.

W
es

ke
:

B
us

in
es

s
 P

ro
ce

ss
 M

an
ag

em
en

t,

©
 S

pr
in

ge
r-

V
e

rla
g

 B
er

lin
 H

ei
de

lb
er

g
 2

00
7

Seller

sa

sr

ra

rr
?rec_reject ?rec_accept

!reject !accept

PI

PO

sending
!

receiving
?

Interface

Problem

8

Assume the original workflow net has been
validated:

it is a sound (and maybe safe) workflow net

When we add the (places in the) interface
it is no longer a workflow net!

Workflow Modules

9

Definition : A workflow module consists of

a workflow net (P,T,F)

plus a set PI of incoming places
plus a set of incoming arcs FI ! (PI x T)

plus a set PO of outgoing places
plus a set of outgoing arcs FO ! (T x PO)

such that each transition has
at most one connection to places in the interface

Problem

10

Workflow modules must be capable to interact

How do we check that their interfaces match?

How do we combine them together?

Strong structural
compatibility

11

A set of workflow modules is called
strongly structural compatible

if
for every message that can be sent

there is a module who can receive it,
and

for every message that can be received
there is a module who can send it

(formats of message data are assumed to match)

Weak structural
compatibility

12

A set of workflow modules is called
weakly structural compatible

if
all messages sent by modules

can be received by other modules

more likely than a complete structural match
(workflow modules are developed separately)

13

Auctioning Service

!rec_accept
rr

ra

sr

sa

M
.

W
es

ke
:

B
us

in
es

s
 P

ro
ce

ss
 M

an
ag

em
en

t,

©
 S

pr
in

ge
r-

V
e

rla
g

 B
er

lin
 H

ei
de

lb
er

g
 2

00
7

!rec_reject

?accept ?reject

Seller

sa

sr

ra

rr
?rec_reject ?rec_accept

!reject !accept

PO

PI

PI

PO

sending
!

receiving
?

Interaction

14

M
.

W
es

ke
:

B
us

in
es

s
 P

ro
ce

ss
 M

an
ag

em
en

t,

©
 S

pr
in

ge
r-

V
e

rla
g

 B
er

lin
 H

ei
de

lb
er

g
 2

00
7

Seller

sa

sr

ra

rr
?rec_reject ?rec_accept

!reject !accept

Auctioning Service

!rec_accept
rr

ra

sr

sa

!rec_reject

?accept ?reject

Interaction

Problem

15

We have added places and arcs to single nets
We have joined places of different nets
We have paired their initial markings

How do we check that the system behaves well?

What has this check to do with WF net soundness?

Workflow systems

16

17

Auctioning Service

!rec_accept
rr

ra

sr

sa

M
.

W
es

ke
:

B
us

in
es

s
 P

ro
ce

ss
 M

an
ag

em
en

t,

©
 S

pr
in

ge
r-

V
e

rla
g

 B
er

lin
 H

ei
de

lb
er

g
 2

00
7

!rec_reject

?accept ?reject

Seller

sa

sr

ra

rr
?rec_reject ?rec_accept

!reject !accept

Workflow system

Workflow system

18

Definition : A workflow system consists of

a set of n structurally compatible workflow modules
(initial places i1,...,in, final places o1,...,on)

plus an initial place i
and a transition ti from i to i1,...,in

plus a final place o
and a transition to from o1,...,on to o

Soundness
of workflow system s

19

A workflow system is just an ordinary workflow net

We can check its soundness as usual

20

Auctioning Service

!rec_accept
rr

ra

sr

sa

M
.

W
es

ke
:

B
us

in
es

s
 P

ro
ce

ss
 M

an
ag

em
en

t,

©
 S

pr
in

ge
r-

V
e

rla
g

 B
er

lin
 H

ei
de

lb
er

g
 2

00
7

!rec_reject

?accept ?reject

Seller

sa

sr

ra

rr
?rec_reject ?rec_accept

!reject !accept

Exercise
Can the system deadlock?

21

Auctioning Service'

!rec_accept
rr

ra

sr

sa

M
.

W
es

ke
:

B
us

in
es

s
 P

ro
ce

ss
 M

an
ag

em
en

t,

©
 S

pr
in

ge
r-

V
e

rla
g

 B
er

lin
 H

ei
de

lb
er

g
 2

00
7

!rec_reject

?accept ?reject

Seller

sa

sr

ra

rr
?rec_reject ?rec_accept

!reject !accept

Can the system deadlock?

Exercise

22

! participation_req ? participation_req

! rec_reject! rec_accept

pr

a

r

pr

? reject? accept ! accept! reject

? rec_accept? rec_reject
rr

ra

br

ba

! reject! accept
a

r

? accept? reject

ba

br

ra

rr

! notify ? notify
n n

M
.

W
es

ke
:

B
us

in
es

s
 P

ro
ce

ss
 M

an
ag

em
en

t,

©
 S

pr
in

ge
r-

V
e

rla
g

 B
er

lin
 H

ei
de

lb
er

g
 2

00
7

Complete with missing arcs the following
behavioural interfaces and check their compatibility

Exercise

Exercise

23

Does My Service Have Partners? 155

!

"

#

$

(a)

!

"

#

$

%

&

'

(

(b)

!

"

#

$

(c)

Fig. 1. Two single-port open nets (a,c) and a multi-port open net (b)

N1 ! N2 of two composable open netsN1 and N2 is the net N with the following
constituents: S = S1 " S2, T = T1 " T2, F = F1 " F2, m0 = m01 ! m02,
Si = (Si 1 " Si 2) \ (P1 " P2), So = (So1 " So2) \ (P1 " P2), M F = { m ! m! |
m # M F 1, m! # M F 2} , and P = (P1 " P2) \ { P1, P2} . Thereby, m1 ! m2 is the
marking satisfying (m1 ! m2)(s) = m1(s) for s # S1, and (m1 ! m2)(s) = m2(s)
for s # S2.

For the markings involved in this deÞnition, the composition operation ! is
well deÞned, as none of them marks interface places. If the result of multiple
composition does not depend on the order of application (up to isomorphism),
we use the notationN1 ! N2 ! á á á! Nk for the composition of k open nets. In
Fig. 1, open nets (a) and (c) are composable to net (b). Composition of all three
leads to a closed net.

Services are executed in composition with other services. Consequently, be-
havioral properties are only deÞned for closed nets, i.e. complete service chore-
ographies.

DeÞnition 4 (Behavior). A closed netN is deadlock-free(DF) if, for every
m # RN (m0) \ M F , there is a transition enabled in m. N is livelock-free (LF)
if, for all m # R(m0), RN (m) $ M F %= &. N is quasi-live (QL) if, for all t # T ,

there is an m # R(m0) such that m t'(N .

The composition of the three nets in Fig. 1 forms a closed net with properties
DF , LF , and QL . The well-known property of soundness of workßow nets [36]
closely corresponds to the properties LF and QL. Note that the composition of
responsive nets is not necessarily deadlock-free, livelock-free, or quasi-live.

DeÞnition 5 (Controllability, Strategy). Let X) { DF, LF, QL } and k #
N \ { 0} . Let N be a normal, bounded, and responsive open net with|P| = j , for
some j . N is X, k -controllable if there exist normal, bounded, and responsive
single-port servicesN1, . . . , Nj such that N " = N ! N1 ! á á á! Nj is a closed net
holding all properties in X , and, for all markings m reachable fromm"

0 in N " ,
and all s # I N , m(s) * k. In this case, [N1, . . . , Nj] is called an X, k -strategy
of N . Denote Strat X,k (N) the set of all X, k -strategies for a given open netN .

Check compatibility of WF modules below

Weak soundness

24

Problem

25

When checking behavioural compatibility
the soundness of the overall net
is a too restrictive requirement

Workflow modules are designed separately,
possibly reused in several systems

It is unlikely that every functionality they offer is
involved in each system

Problem

26

Definition : A workflow net is weak sound if
it satisfies Òoption to completeÓ

 and Òproper completionÓ

(dead tasks are allowed)

Weak soundness can be checked on the RG

It guarantees deadlock freedom and proper
termination of all modules

27

Sound + Sound = ?

p1

p2

p3

M
.

W
e

s
ke

:B
u

s
in

e
s

s
P

ro
ce

ss
M

a
n

a
g

e
m

e
n

t,
©

S
p

ri
ng

e
r-

V
e

rl
a

g
B

e
rl

in
H

e
id

e
lb

e
rg

2
0

0
7

28

M
.

W
e

s
ke

:B
u

s
in

e
s

s
P

ro
ce

ss
M

a
n

a
g

e
m

e
n

t,
©

S
p

ri
ng

e
r-

V
e

rl
a

g
B

e
rl

in
H

e
id

e
lb

e
rg

2
0

0
7

Sound + Sound = not sound

29

M
.

W
e

s
ke

:B
u

s
in

e
s

s
P

ro
ce

ss
M

a
n

a
g

e
m

e
n

t,
©

S
p

ri
ng

e
r-

V
e

rl
a

g
B

e
rl

in
H

e
id

e
lb

e
rg

2
0

0
7

Sound + Sound = not sound

30

M
.

W
e

s
ke

:B
u

s
in

e
s

s
P

ro
ce

ss
M

a
n

a
g

e
m

e
n

t,
©

S
p

ri
ng

e
r-

V
e

rl
a

g
B

e
rl

in
H

e
id

e
lb

e
rg

2
0

0
7

Sound + Sound = not sound

31

M
.

W
e

s
ke

:B
u

s
in

e
s

s
P

ro
ce

ss
M

a
n

a
g

e
m

e
n

t,
©

S
p

ri
ng

e
r-

V
e

rl
a

g
B

e
rl

in
H

e
id

e
lb

e
rg

2
0

0
7

Sound + Sound = not sound

32

M
.

W
e

s
ke

:B
u

s
in

e
s

s
P

ro
ce

ss
M

a
n

a
g

e
m

e
n

t,
©

S
p

ri
ng

e
r-

V
e

rl
a

g
B

e
rl

in
H

e
id

e
lb

e
rg

2
0

0
7

Sound + Sound = not sound

33

M
.

W
e

s
ke

:B
u

s
in

e
s

s
P

ro
ce

ss
M

a
n

a
g

e
m

e
n

t,
©

S
p

ri
ng

e
r-

V
e

rl
a

g
B

e
rl

in
H

e
id

e
lb

e
rg

2
0

0
7

Sound + Sound = not sound

34

M
.

W
e

s
ke

:B
u

s
in

e
s

s
P

ro
ce

ss
M

a
n

a
g

e
m

e
n

t,
©

S
p

ri
ng

e
r-

V
e

rl
a

g
B

e
rl

in
H

e
id

e
lb

e
rg

2
0

0
7

Sound + Sound = not sound

35

M
.

W
e

s
ke

:B
u

s
in

e
s

s
P

ro
ce

ss
M

a
n

a
g

e
m

e
n

t,
©

S
p

ri
ng

e
r-

V
e

rl
a

g
B

e
rl

in
H

e
id

e
lb

e
rg

2
0

0
7

Sound + Sound = not sound

36

M
.

W
e

s
ke

:B
u

s
in

e
s

s
P

ro
ce

ss
M

a
n

a
g

e
m

e
n

t,
©

S
p

ri
ng

e
r-

V
e

rl
a

g
B

e
rl

in
H

e
id

e
lb

e
rg

2
0

0
7

Dead
tasks!

Sound + Sound = not sound

37

M
.

W
e

s
ke

:B
u

s
in

e
s

s
P

ro
ce

ss
M

a
n

a
g

e
m

e
n

t,
©

S
p

ri
ng

e
r-

V
e

rl
a

g
B

e
rl

in
H

e
id

e
lb

e
rg

2
0

0
7

Weak
Sound!

Sound + Sound = not sound

38

Exercise: Preliminaries

N0
part

contractor

order

cost_statement

specification

product

N1
part

subcontractor

39

Exercise: Check Weak
Soundness of The Assembly

order

specification

cost_statement

product

40

Exercise: Check Again After
Refactoring Contractor

order

specification

cost_statement

product

41

Exercise: Check Again After
Refactoring Both

order

specification

cost_statement

product

order

specification

cost_statement

product

42

(Contractor zoom-in)

43

(Subcontractor zoom-in)

Partner existence
(aka controllability)

44

Does My Service Have Partners?

Karsten Wolf

Universität Rostock, Institut für Informatik, 18051 Rostock, Germany
karsten.wolf@uni-rostock.de

Abstract. Controllability for service models is a similar criterion as
soundness for workflow models: it establishes a necessary condition for
correct behavior of a given service model. Technically, controllability is
the problem to decide, for a given service, whether it can interact cor-
rectly with at least one other service. Parameters to the problem are
the established correctness criterion (e.g. deadlock freedom, livelock free-
dom, quasi-liveness), the shape of partners (centralized partners versus
independently acting partners), or the shape of communication (asyn-
chronous versus synchronous).

In this article, we survey and partly extend various recent results
concerning the verification of controllability for Petri net based service
models. Significant extensions include the study of livelock freedom as
correctness criterion as well as the new results on autonomous multi-port
controllability.

1 Introduction

Service oriented computing [15,29,14,1] is a paradigm that can be applied in
the management of interorganisational workßows, for the programming-in-the-
large, for loosely coupled interaction and aggregation over the web, and probably
for many more use cases. It is centered around the concept of aservice, i.e.
a self-contained and self-explaining software unit that offers an encapsulated
functionality over a well-deÞned interface.

These days, the language WS-BPEL [2] is one of the most important lan-
guages for the speciÞcation of servicesin practice. WS-BPEL speciÞcations can
be transformed into formal models using one of the various formal semantics,
among which some [33,24,13] are feature complete, i.e. cover all exceptional be-
havior including fault handling, compensation handling, and termination han-
dling. Petri nets are particularly useful as a formal model of services as there is
even a translation from Petri nets back to WS-BPEL [20].

A service is controllable if it has at least one partner such that the composition
of both is well-behaving. This question can be asked for several notions of Òwell
behavingÓ as well as for various settings concerning the shape of services and
their mutual communication.

In this article, we collect results concerning controllability in di fferent settings.
In particular we vary the correctness criterion (deadlock freedom, livelock free-
dom, quasi-liveness), the shape of partners (single partners, several partners with

K. Jensen and W. van der Aalst (Eds.): ToPNoC II, LNCS 5460, pp. 152Ð171, 2009.
c! Springer-Verlag Berlin Heidelberg 2009

Does My Service Have Partners?

Karsten Wolf

Universit¬at Rostock, Institut f¬ur Informatik, 18051 Rostock, Germany
karsten.wolf@uni-rostock.de

Abstract. Controllability for service models is a similar criterion as
soundness for workßow models: it establishes a necessary condition for
correct behavior of a given service model. Technically, controllability is
the problem to decide, for a given service, whether it can interact cor-
rectly with at least one other service. Parameters to the problem are
the established correctness criterion (e.g. deadlock freedom, livelock free-
dom, quasi-liveness), the shape of partners (centralized partners versus
independently acting partners), or the shape of communication (asyn-
chronous versus synchronous).

In this article, we survey and partly extend various recent results
concerning the veriÞcation of controllability for Petri net based service
models. SigniÞcant extensions include the study of livelock freedom as
correctness criterion as well as the new results on autonomous multi-port
controllability.

1 Introduction

Service oriented computing [15,29,14,1] is a paradigm that can be applied in
the management of interorganisational workßows, for the programming-in-the-
large, for loosely coupled interaction and aggregation over the web, and probably
for many more use cases. It is centered around the concept of aservice, i.e.
a self-contained and self-explaining software unit that o! ers an encapsulated
functionality over a well-deÞned interface.

These days, the language WS-BPEL [2] is one of the most important lan-
guages for the speciÞcation of servicesin practice. WS-BPEL speciÞcations can
be transformed into formal models using one of the various formal semantics,
among which some [33,24,13] are feature complete, i.e. cover all exceptional be-
havior including fault handling, compensation handling, and termination han-
dling. Petri nets are particularly useful as a formal model of services as there is
even a translation from Petri nets back to WS-BPEL [20].

A service is controllable if it has at least one partner such that the composition
of both is well-behaving. This question can be asked for several notions of Òwell
behavingÓ as well as for various settings concerning the shape of services and
their mutual communication.

In this article, we collect results concerning controllability in di ! erent settings.
In particular we vary the correctness criterion (deadlock freedom, livelock free-
dom, quasi-liveness), the shape of partners (single partners, several partners with

K. Jensen and W. van der Aalst (Eds.): ToPNoC II, LNCS 5460, pp. 152Ð171, 2009.
c⃝ Springer-Verlag Berlin Heidelberg 2009

Problem

45

Processes are designed in isolation
(loose coupling)

We would like their composition to be well-behaved

Given a process:

Can we guarantee that at least one partner exists?

If so, can we synthesize the most permissive partner?

Controllability

46

Assume a notion of well-behaving is defined

We say that a process N is controllable
if it has at least one partner NÕ such that

the composition of N with NÕ is well-behaving

Controllability: idea

47

Given a process N
we aim to construct an automaton that

over-approximates the behaviour of any partner,
then we iteratively remove states and arcs that
invalidate the behavioural property we are after:

if we end up with the empty automaton,
then the process N is uncontrollable

otherwise, the automaton defines the most general
strategy to collaborate with N

(guaranteeing the behavioural property we are after)

Open nets

48

Definition : An open net consists of a net (P,T,F,m0)
plus incoming places PI! P
plus outgoing places PO! P

plus a finite set Mf of final markings

such that

each transition has
at most one connection to places in the interface

any initial or final marking
does not mark any place in the interface

Example: open net

49

m0 = a
PI = { i }
PO = { o }
Mf = { b }

Notation

50

Definition : The label of a transition t
is the interface place connected to t, if any,

or the special silent action tau otherwise

! (t) =
!

x if x ! (P I " P

O) and (t, x) ! F # (x, t) ! F

" otherwise

Example: open net

51

m0 = a
PI = { i }
PO = { o }
Mf = { b }

`(t1) = i

`(t2) = o

Closed nets

52

An open net

N = (P,T,F,m0,PI,PO,Mf)

is called closed if

PI = PO = "

Inner nets

53

Let N = (P,T,F,m0,PI,PO,Mf) be an open net
and let IO = (PI#PO) be its interface

its inner net In(N) is the closed net
obtained by removing the interface

In(N) = (P \ IO , T , F \ ((IO! T)#(T! IO)) , m0 , " , " , Mf)

Example: inner net

54

Bounded and responsive
nets

55

We focus on open nets N such that
their inner nets In(N) are

bounded
(in the usual sense, they have finite occurrence graphs)

responsive
from any marking m

either a final marking is reachable
or m enables a transition t connected to the interface

Composition of open nets

56

Given two open nets
N1 = (P1,T1,F1,m01,PI1,PO1,Mf1)
N2 = (P2,T2,F2,m02,PI2,PO2,Mf2)

such that PI1=PO2 and PO1= PI2
É

Composition of open nets

57

Given two open nets
N1 = (P1,T1,F1,m01,PI,PO,Mf1)
N2 = (P2,T2,F2,m02,PO,PI,Mf2)

their composition N = N1 $ N2 is the closed net
N = (P1#P2 , T1#T2 , F1#F2 , m01+m02 , " , " , Mf1! Mf2)

note that even if N1 and N2 are bounded and responsive,
their composition N1 $ N2 is not necessarily so

A Þnal marking of the composed net
is any combination of Þnal markings of the original nets

Behavioural properties:
DF

58

A closed net N = (P,T,F,m0," ," ,Mf)

is DF (deadlock-free)
if any non-final reachable marking enables a transition

8m 2 ([m0i \ M f). 9t. M t�!

DF,k-controllable nets

59

A bounded and responsive open net
N = (P,T,F,m0,PI,PO,Mf)
 is DF,k-controllable

if there is a (bounded and responsive) partner NÕ
such that

N $ NÕ is DF
and any place p % (PI#PO) is k-bounded in N $ NÕ

such an NÕ is called a DF,k-strategy of N

Approach

60

Start with a bounded and responsive open net
N = (P,T,F,m0,PI,PO,Mf)

1st step
Define a strategy TS0 which is an automaton

such that a state q of TS0
represents the set of markings N can be in

while TS0 is in q

i.e. q is the view of N
according to the interactions observed so far

Note that TS0 can be infinite

Notation

61

A special symbol # tags final states

Given a set of markings M of N,
we denote by cl(M)N the closure of M

i.e., the set of markings reachable in N
from any of the markings in M

cl(M)N = { m! | ! m " M. m! " [M#N }

TS0

62

T S0 = (Q, E, q0, Qf)

q0 = cl({m0})N q0 2 Q

if q ! Q

if # !" q

then q! = q ! # " Q, q !#$ q " E , q !#$ q! " E

if x ! P

I " # #!q
then q! = cl({ m + x | m ! q}) ! Q, q x"# q! ! E

if x ! PO

then q! = { m ! x | m " q, m(x) > 0} \ { # } " Q, q x!# q!

Qf = { q ! Q | # ! q}

any state q has a final counterpart

TS0 simulates the production of messages in input places

TS0 simulates the consumption of messages from output places

Approach

63

Starting from the strategy TS0

2nd step
Define a strategy TS1

that removes from TS0 all states q
that contains a marking m that exceeds the capacity

bound k for some place in the interface

(as a consequence remove all adjacent edges
and all states that become unreachable)

TS1 is always a finite automaton
(actually it can be constructed directly from N)

TS1

64

T S0 = (Q, E, q0, Qf)

Q1 = Q \ { q ! Q | " m ! q. " x ! (P I # PO). m(x) > k }

E1 = { q ↵!" q0 # E | q, q0 # Q1}

Qf1 = Qf ! Q1

T S1 = (Q1, E1, q0, Qf1)

DF,1-controllability
example: TS 1

65

cl({ a})N

N

DF,1-controllability
example: TS 1

66

N

any state q has a final counterpart

DF,1-controllability
example: TS 1

67

N
simulates the production of messages in input places

cl({ a + i, b + o + i })N

DF,1-controllability
example: TS 1

68

N

any state q has a final counterpart

DF,1-controllability
example: TS 1

69

N

q1 has not outgoing arc with label i
because of 1-boundedness

(this is TS1, not TS0)

DF,1-controllability
example: TS 1

70

N

simulates the consumption of messages from output places

cl({ b})N

DF,1-controllability
example: TS 1

71

N

any state q has a final counterpart

DF,1-controllability
example: TS 1

72

N

simulates the production of messages in input places

simulates the consumption of messages from output places

cl({ b + i})N

DF,1-controllability
example: TS 1

73

N

any state q has a final counterpart

DF,1-controllability
example: TS 1

74

N

simulates the consumption of messages from output places

DF,1-controllability
example: TS 1

75

simulates the consumption of messages from output places

cl({})N

N

DF,1-controllability
example: TS 1

76

any state q has a final counterpart

N

DF,1-controllability
example: TS 1

77

N

Approach

78

Starting from the strategy TSi

Iterative step
Define a strategy TSi+1

that removes from TSi all states q
that can invalidate the property of interest

(as a consequence remove all adjacent edges
and all states that become unreachable)

At some point TSj+1 = TSj
and we terminate

Notation

79

We can compose T Si with N , written T Si � N

States are pairs [q, m] with q ! Qi and m ! q

if m t!" m! in N then [q, m]
! (t)
!!" [q, m!]

if q !!" q! # Ei then [q, m] !!" [q!, m]

if q x!" q! # Ei with x # PO and m(x) > 0
then [q, m] x!" [q!, m ! x]

if q x!" q

0 # Ei with x # P

I then [q,m] x!" [q0,m + x]

DF,1-controllability
example: TS 1 $ N

80

TSi+1

81

T Si = (Qi , Ei , q0, Qf i)

remove the stateq if q !!" q is the only edge with sourceq
remove the stateq if ! m " q such that inT Si # N

if [q0, m0] is reachable from[q, m] then m0 !" M f

and only sequences of⌧ -steps are possible from[q, m]

DF,1-controllability
example: TS 2

82

DF,1-controllability
example: TS 2

83
X

DF,1-controllability
example: TS 2

84
X

X

DF,1-controllability
example: TS 2

85
X

X

X

DF,1-controllability
example: TS 2

86
X

X

X

X

DF,1-controllability
example: TS 2

87

DF,1-controllability
example: TS 2 $ N

88

DF,1-controllability
example: TS 2 $ N

89

X

DF,1-controllability
example: TS 2 $ N

90

X

X

DF,1-controllability
example: TS 2 $ N

91

X

X

X

X

DF,1-controllability
example: TS 2 $ N

92

X

X

X

X

X

DF,1-controllability
example: TS 2 $ N

93

X

X

X
X

X

X

DF,1-controllability
example: TS 2 $ N

94

X

X

X
X

X

X X

X

DF,1-controllability
example: TS 3

95

DF,1-controllability
example: TS 3 $ N

96

Note

97

Note the presence of a state associated with
the empty set of markings

it can appear in a strategy,
but is actually unreachable in the composition with N

for DF,k-controllability it makes no harm

DF,k-controllability
theorem

98

Let TS = (Q,E,q0,Qf) be the automaton produced
by applying the above procedure to the open net N

Theorem
N is DF,k-controllable

iff
Q " "

(proof omitted)

Behavioural properties:
LF

99

A closed net N = (P,T,F,m0," ," ,Mf)

is LF (livelock-free)
if from any reachable marking a final marking is reachable

8m 2 [m0i. [mi \Mf 6= ;

LF,k-controllable nets

100

A bounded and responsive open net
N = (P,T,F,m0,PI,PO,Mf)
 is LF,k-controllable

if there is a (bounded and responsive) partner NÕ
such that

N $ NÕ is LF
and any place p % (PI#PO) is k-bounded in N $ NÕ

such an NÕ is called a LF,k-strategy of N

Approach

101

We construct TS0 and TS1 as before.
We change only the iterative step

Iterative step
Define a strategy TSi+1

that removes from TSi all states q
that can invalidate the property of interest

(as a consequence remove all adjacent edges
and all states that become unreachable)

At some point TSj+1 = TSj
and we terminate

TSi+1

102

T Si = (Qi , Ei , q0, Qf i)

remove the stateq if ! m " q such that inT Si # N
no [q!, m!] with q! ! Qf i " m! ! M f is reachable from[q, m]

LF,k-controllability
theorem

103

Let TS = (Q,E,q0,Qf) be the automaton produced
by applying the above procedure to the open net N

Theorem
N is LF,k-controllable

iff
Q " "

(proof omitted)

