Methods for the specification and verification of business processes

MPB (6 cfu, 295AA)

Roberto Bruni

http://www.di.unipi.it/~bruni

20 - Workflow modules
Object

We study Workflow modules to model interaction between workflows

Ch.6 of Business Process Management: Concepts, Languages, Architectures
Problem

Not all tasks of a workflow net are automatic:

they can be triggered manually or by a message

they can be used to trigger other tasks

How do we represent this?
Implicit interaction

Separately developed workflow

Some activities can input messages

Some activities can output messages
Implicit interaction

Seller can receive (symbol ?) recommendations

Seller can send (symbol !) decisions
Interface

Seller has an interface for interaction

It consists of some input places and some output places
Interface
Problem

Assume the original workflow net has been validated:

it is a sound (and maybe safe) workflow net

When we add the (places in the) interface it is no longer a workflow net!
Workflow Modules

Definition: A workflow module consists of

- a workflow net \((P,T,F)\)
- plus a set \(P^l\) of incoming places
 - plus a set of incoming arcs \(F^l \subseteq (P^l \times T)\)
- plus a set \(P^o\) of outgoing places
 - plus a set of outgoing arcs \(F^o \subseteq (T \times P^o)\)

such that each transition has at most one connection to places in the interface
Workflow modules must be capable to interact
How do we check that their interfaces match?
How do we combine them together?
Strong structural compatibility

A set of workflow modules is called **strongly structural compatible** if
for every message that can be sent there is a module who can receive it, and
for every message that can be received there is a module who can send it

(formats of message data are assumed to match)
Weak structural compatibility

A set of workflow modules is called weakly structural compatible if all messages sent by modules can be received by other modules more likely than a complete structural match (workflow modules are developed separately)
Interaction
Interaction
Interaction
Interaction

Auctioning Service

Seller

sending
!

receiving
?

!rec_accept
!rec_reject

?accept
?reject

!reject
!accept

ra
rr

sa
sr
Problem

We have added places and arcs to single nets
We have joined places of different nets
We have joined their initial markings

How do we check that the system behaves well?

What has this check to do with WF net soundness?
Workflow systems
Workflow system
Workflow system
Workflow system

Definition: A workflow system consists of

a set of n structurally compatible workflow modules
(initial places i_1,\ldots,i_n, final places o_1,\ldots,o_n)

plus an initial place i
and a transition t_i from i to i_1,\ldots,i_n

plus a final place o
and a transition t_o from o_1,\ldots,o_n to o
Exercise

Can the system deadlock?
Exercise

Can the system deadlock?
Exercise

Complete with missing arcs the following behavioural interfaces and check their compatibility.
Exercise

Check compatibility of WF modules below

(a)

(b)

(c)
Weak soundness
Problem

When checking behavioural compatibility
the soundness of the overall net
is a too restrictive requirement

Workflow modules are designed separately,
possibly reused in several systems
It is unlikely that every functionality they offer is
involved in each system
Problem

Definition: A workflow net is *weak sound* if it satisfies “option to complete” and “proper completion” (dead tasks are allowed).

Weak soundness can be checked on the RG.

It guarantees deadlock freedom and proper termination of all modules.
Sound + Sound = ?
Sound + Sound = not sound

Weak Sound!
Exercise: Preliminaries

N_0^{part}

- contractor
- specification
- order
- cost_statement

N_1^{part}

- subcontractor
- product
Exercise: Check Weak Soundness of The Assembly

order

specification

cost_statement

product
Exercise: Check Again After Refactoring Contractor

order
specification
cost_statement
product
Exercise: Check Again After Refactoring Both
(Contractor zoom-in)
(Subcontractor zoom-in)
Partner existence (aka controllability)
Problem

Processes are designed in isolation
(loose coupling)
We would like their composition to be well-behaved

Given a process:

Can we guarantee that at least one partner exists?

If so, can we synthesize the most permissive partner?
Controllability

Assume a notion of well-behaving is defined

We say that a process N is **controllable** if it has at least one partner N' such that the composition of N with N' is well-behaving
Controllability: idea

Given a process N we aim to construct an automaton that over-approximates the behaviour of any partner, then we iteratively remove states and arcs that invalidate the behavioural property we are after:

- if we end up with the empty automaton, then the process N is **uncontrollable**
- otherwise, the automaton defines the most general strategy to collaborate with N (guaranteeing the behavioural property we are after)
Open nets

Definition: An open net consists of a net \((P,T,F,m_0)\) plus incoming places \(P^I \subseteq P\) plus outgoing places \(P^O \subseteq P\) plus a finite set \(M_f\) of final markings such that each transition has at most one connection to places in the interface any initial or final marking does not mark any place in the interface.
Notation

Definition: The label of a transition t is the interface place connected to t, if any, or the special silent action tau otherwise.

$$\ell(t) = \begin{cases} x & \text{if } x \in (P^I \cup P^O) \text{ and } (t, x) \in F \lor (x, t) \in F \\ \tau & \text{otherwise} \end{cases}$$
Closed nets

An open net

\[N = (P,T,F,m_0,P^I,P^O,M_f) \]

is called \textbf{closed} if

\[P^I = P^O = \emptyset \]
Let $N = (P, T, F, m_0, P^I, P^O, M_f)$ be an open net and let $IO = (P^I \cup P^O)$ be its interface.

Its inner net $In(N)$ is the closed net:

$$In(N) = (P \setminus IO, T, F \setminus ((IO \times T) \cup (T \times IO)), m_0, \emptyset, \emptyset, M_f)$$
Bounded and responsive nets

We focus on open nets \(N \) such that their inner nets \(\text{In}(N) \) are

bounded
(in the usual sense, they have finite occurrence graphs)

responsive
from any marking \(m \)
either a final marking is reachable
or \(m \) enables a transition \(t \) connected to the interface
Composition of open nets

Given two open nets
\[N_1 = (P_1, T_1, F_1, m_{01}, P^I_1, P^O_1, M_{f1}) \]
\[N_2 = (P_2, T_2, F_2, m_{02}, P^I_2, P^O_2, M_{f2}) \]

such that \(P^I_1 = P^O_2 \) and \(P^O_1 = P^I_2 \)

\[
\ldots
\]
Composition of open nets

Given two open nets
\[N_1 = (P_1, T_1, F_1, m_{01}, P^I, P^O, M_{f1}) \]
\[N_2 = (P_2, T_2, F_2, m_{02}, P^O, P^I, M_{f2}) \]

their composition \(N = N_1 \oplus N_2 \) is the closed net
\[N = (P_1 \cup P_2, T_1 \cup T_2, F_1 \cup F_2, m_{01} + m_{02}, \emptyset, \emptyset, M_{f1} \times M_{f2}) \]

note that even if \(N_1 \) and \(N_2 \) are bounded and responsive, their composition \(N_1 \oplus N_2 \) is not necessarily so
Behavioural properties: DF

A closed net $N = (P, T, F, m_0, \emptyset, \emptyset, M_f)$ is DF (deadlock-free) if any non-final reachable marking enables a transition

$$\forall m \in ([m_0] \setminus M_f). \exists t. M \xrightarrow{t}$$
DF\(_k\)-controllable nets

A bounded and responsive open net
\[N = (P,T,F,m_0,P^I,P^O,M_f) \]
is DF\(_k\)-controllable

if there is a (bounded and responsive) partner \(N’ \)
such that

\[N \oplus N’ \text{ is DF} \]
and any place \(p \in (P^I \cup P^O) \) is \(k \)-bounded in \(N \oplus N’ \)

such an \(N’ \) is called a DF\(_k\)-strategy of \(N \)
Approach

Start with a bounded and responsive open net
\[N = (P,T,F,m_0,P^I,P^O,M_f) \]

1st step
Define a strategy \(TS_0 \) which is an automaton
such that a state \(q \) of \(TS_0 \)
represents the set of markings \(N \) can be in
while \(TS_0 \) is in \(q \)

i.e. \(q \) is the view of \(N \)
according to the interactions observed so far

Note that \(TS_0 \) can be infinite
Notation

A special symbol # represents final states.

Given a set of markings M of N, we denote by $cl(M)_N$ the closure of M

i.e., the set of markings reachable in N from any of the markings in M.

$$cl(M)_N = \{ m' \mid \exists m \in M. m' \in \overline{\{M\}}_N \}$$
\[\text{TS}_0 = (Q, E, q_0, Q_f) \]

\[q_0 = cl(\{ m_0 \})_N \quad q_0 \in Q \]

if \(q \in Q \)

if \(\# \notin q \)

then \(q' = q \cup \# \in Q, q \xrightarrow{\tau} q \in E, q \xrightarrow{\tau} q' \in E \)

if \(x \in P^I \land \# \notin q \)

then \(q' = cl(\{ m + x \mid m \in q \}) \in Q, q \xrightarrow{x} q' \in E \)

if \(x \in P^O \)

then \(q' = \{ m - x \mid m \in q, m(x) > 0 \} \setminus \{ \# \} \in Q, q \xrightarrow{x} q' \)

\[Q_f = \{ q \in Q \mid \# \notin q \} \]
Approach

Starting from the strategy TS\(_0\)

2nd step
Define a strategy TS\(_1\)
that removes from TS\(_0\) all states q
that contains a marking m that exceeds the capacity bound k for some place in the interface

(as a consequence remove all adjacent edges and all states that become unreachable)

TS\(_1\) is always a finite automaton
(actually it can be constructed directly from N)
\(TS_1 \)

\[TS_0 = (Q, E, q_0, Q_f) \]

\[Q_1 = Q \setminus \{ q \in Q \mid \exists m \in q. \exists x \in (P^I \cup P^O). m(x) > k \} \]

\[E_1 = \{ q \xrightarrow{\alpha} q' \in E \mid q, q' \in Q_1 \} \]

\[Q_{f1} = Q_f \cap Q_1 \]

\[TS_1 = (Q_1, E_1, q_0, Q_{f1}) \]
Approach

Starting from the strategy TS_i

iterative step
Define a strategy TS_{i+1} that removes from TS_i all states q that can invalidate the property of interest

(as a consequence remove all adjacent edges and all states that become unreachable)

At some point $TS_{j+1} = TS_j$ and we terminate
Notation

We can compose TS_i with N, written $TS_i \oplus N$

States are pairs $[q, m]$ with $q \in Q_i$ and $m \in q$

if $m \xrightarrow{t} m'$ in N then $[q, m] \xrightarrow{\ell(t)} [q, m']$

if $q \xrightarrow{\tau} q' \in E_i$ then $[q, m] \xrightarrow{\tau} [q', m]$

if $q \xrightarrow{x} q' \in E_i$ with $x \in P^I$ then $[q, m] \xrightarrow{x} [q', m + x]$

if $q \xrightarrow{x} q' \in E_i$ with $x \in P^O$ and $m(x) > 0$
then $[q, m] \xrightarrow{x} [q', m - x]$
\[TS_{i+1} \]

\[TS_i = (Q_i, E_i, q_0, Q_{fi}) \]

remove the state \(q \) if \(q \xrightarrow{\tau} q \) is the only edge with source \(q \)

remove the state \(q \) if \(\exists m \in q \) such that in \(TS_i \oplus N \)

\[
\text{if } [q', m'] \text{ is reachable from } [q, m] \text{ then } m' \notin M_f
\]

and only sequences of \(\tau \)-steps are possible from \([q, m] \)
DF,k-controllability theorem

Let $TS = (Q,E,q_0,Q_f)$ be the automaton produced by applying the above procedure to the open net N

Theorem

N is DF,k-controllable iff

$Q \neq \emptyset$

(proof omitted)
DF,1-controllability example: N
DF, 1-controllability example: TS₁
DF,1-controllability example: TS₁
DF, 1-controllability example: TS₁
DF,1-controllability example: TS_2
Note

Note the presence of a state associated with the empty set of markings

it can appear in a strategy, but is actually unreachable in the composition with N

for DF,k-controllability it makes no harm
Behavioural properties:

LF

A closed net $N = (P, T, F, m_0, \emptyset, \emptyset, M_f)$ is LF (livelock-free) if from any reachable marking a final marking is reachable

$\forall m \in [m_0]. [m] \cap M_f \neq \emptyset$
LF,k-controllable nets

A bounded and responsive open net

\[N = (P,T,F,m_0,P^I,P^O,M_f) \]

is LF,k-controllable

if there is a (bounded and responsive) partner N' such that

\[N \oplus N' \text{ is LF} \]

and any place $p \in (P^I \cup P^O)$ is k-bounded in $N \oplus N'$

such an N' is called a LF,k-strategy of N
Approach

We construct TS_0 and TS_1 as before. We change only the iterative step.

iterative step

Define a strategy TS_{i+1} that removes from TS_i all states q that can invalidate the property of interest.

(as a consequence remove all adjacent edges and all states that become unreachable)

At some point $TS_{j+1} = TS_j$ and we terminate.
\[\text{TS}_{i+1} \]

\[TS_i = (Q_i, E_i, q_0, Q_{fi}) \]

remove the state \(q \) if \(\exists m \in q \) such that in \(TS_i \oplus N \)

no \([q', m']\) with \(q' \in Q_{fi} \land m' \in M_f \) is reachable from \([q, m]\)
LF,k-controllability theorem

Let TS = (Q,E,q_0,Q_f) be the automaton produced by applying the above procedure to the open net N

Theorem
N is LF,k-controllable iff
Q \neq \emptyset

(proof omitted)