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Object
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We study suitable diagnosis techniques  
for unsound Workflow nets 

Diagnosing workflow processes using Woflan (article, optional reading) 
http://wwwis.win.tue.nl/~wvdaalst/publications/p135.pdf

http://wwwis.win.tue.nl/~wvdaalst/publications/p135.pdf


Some Pragmatic 
Considerations
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We know that, for free-choice nets,  
liveness and boundedness can be decided efficiently  

(in polynomial time) 

but we want to check soundness for a wider range of nets 

Moreover, when a process is not sound, some diagnostic 
can be generated that indicates why it is flawed



Woflan  
(now a ProM plugin)
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WOrkFLow ANalyzer (Windows only) 
http://www.win.tue.nl/woflan/ 

Woflan tells us if N is a sound workflow net 
(Is N a workflow net?    Is N* bounded?    Is N* live?) 

if not, provides some diagnostic information

http://www.win.tue.nl/woflan/


Running example
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Running example
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FIGURE 6. S-components of net N

2.2.3. Occurrence graph

The set of occurrence sequences of a system can be embed-

ded into a graph. Every occurrence sequence corresponds to

some path in that graph and vice versa.

NOTATION 2.2. (Reachability) Let N = (P, T, F) be

a P/T net. Marking M1 is reachable from marking M0, de-

noted M0 �⇧ M1, iff system (N ,M0) has an occurrence

sequence ending in M1.

In system S of Figure 2, marking [c4,c5,c8] is reachable

from the initial marking [i], while from [c4,c5,c8] both

[c4,c5] and [o] are reachable.

DEFINITION 2.15. (Occurrence graph) Let S = ((P, T,

F),M0) be a system; let H ⌅ B(P) be a set of markings,

let A ⌅ (H ⇥ T ⇥ H) be a set of T -labeled arcs, and let

G = (H, A) be a graph which satisfies the following re-

quirements:

(i). H = {M ⌃ B(P)|M0 �⇧ M};
(ii). A = {(M, t,M1) ⌃ (H ⇥ T ⇥ H)|M t�⇧ M1}.

Graph G is called the occurrence (or reachability) graph

(OG) of S.

The OG of system S of Figure 2 is given in Figure 7.

The OG embeds precisely all occurrence sequences of the

system. The construction of this graph is straightforward,

although termination is not guaranteed, because it might

be infinite. For example, the OG of system S of Figure 3

has infinitely many nodes. In this system, firing the tran-

sitions register send rec dont archive short-

circuit over and over again, leads to infinitely many

markings [i,c8n], for arbitrary n > 0. After one firing of

these transitions, there is one token in c8, after two firings

there are two, and so on. There is no limit to the number of

tokens in c8. Place c8 is said to be unbounded. As a result,

the number of markings in the OG is infinite.

FIGURE 7. The OG of system S

2.2.4. Coverability graph

A solution to cope with unbounded places is the notion of a

so-called coverability graph. A coverability graph is a finite

variant of an OG. However, we have to pay a price: First, we

must allow markings to be infinite to deal with unbounded

behavior. Second, a P/T system may have a number of pos-

sible coverability graphs, whereas it always has one unique

OG.

An extended bag over some alphabet A is a function from

A to the natural numbers plus � (denoting infinity). The set

of all extended bags over A is denoted B�(A). All opera-

tions on bags can be defined for extended bags in a straight-

forward way. An extended bag M ⌃ B�(P) is called an

extended marking of a P/T net (P, T, F). The set of ex-

tended markings can be partitioned into a set of finite mark-

ings B(P) and a set of infinite markings B�(P) \ B(P).

A coverability graph of a system is a variant of the OG,

where paths in the OG with infinitely many different (fi-

nite) markings are represented by a finite number of infinite

markings. An infinite marking is introduced in a coverabil-

ity graph if we encounter a marking M1 on an occurrence

sequence that has a smaller marking M0 as one of its pre-

decessors: The places in M1 � M0 are unbounded and are

marked with �. It is known that a coverability graph is al-

ways finite ([33], p. 70).

DEFINITION 2.16. (Coverability graph) Let S = ((P, T,

F),M0) be a system, let H ⌅ B�(P) be a set of extended

markings, let A ⌅ (H ⇥ T ⇥ H) be a set of T -labeled arcs,

and let G = (H, A) be a graph which can be constructed as

follows:

(i). Initially, H = {M0} and A = ⌥.
(ii). Take an M from H and a t from T such that M

enables t and such that no M1 exists with (M, t,M1) ⌃
A. Let M2 = M�•t+t•. Add M3 to H and (M, t,M3)

to A, where for every p ⌃ P:

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????



Running example:  
short-circuited

 7



8 H. VERBEEK, T. BASTEN AND W. VAN DER AALST

FIGURE 8. The CG for the short-circuited system S

workflow processes. Cases are often generated by an exter-

nal customer. However, it is also possible that a case is gen-

erated by another department within the same organization

(internal customer). A typical example of a process that is

not case-based, and hence not a workflow process, is a pro-

duction process such as the assembly of bicycles. The task

of putting a tire on a wheel is (generally) independent of the

specific bicycle for which the wheel will be used. Note that

the production of bicycles to order, i.e., procurement, pro-

duction, and assembly are driven by individual orders, can

be considered as a workflow process.

The goal of workflow management is to handle cases as

efficient and effective as possible. A workflow process is

designed to handle large numbers of similar cases. Handling

one customer complaint usually does not differ much from

handling another customer complaint. The basis of a work-

flow process is the workflow process definition. This process

definition specifies which tasks need to be executed in what

order. Alternative terms for workflow process definition are:

‘procedure’, ‘workflow schema’, ‘flow diagram’, and ‘rout-

ing definition’. Tasks are ordered by specifying for each task

the conditions that need to be fulfilled before it may be ex-

ecuted. In addition, it is specified which conditions are ful-

filled by executing a specific task. Thus, a partial ordering of

tasks is obtained. In a workflow process definition, standard

routing elements are used to describe sequential, alternative,

parallel, and iterative routing thus specifying the appropri-

ate route of a case. The workflow management coalition

(WfMC) has standardized a few basic building blocks for

constructing workflow process definitions [29]. A so-called

OR-split is used to specify a choice between several alter-

natives; an OR-join specifies that several alternatives in the

workflow process definition come together. An AND-split

and an AND-join can be used to specify the beginning and

the end of parallel branches in the workflow process defini-

tion. The routing decisions in OR-splits are often based on

data such as the age of a customer, the department responsi-

ble, or the contents of a letter from the customer.

Many cases can be handled by following the same work-

flow process definition. As a result, the same task has to

be executed for many cases. A task that needs to be exe-

cuted for a specific case is called a work item. An example

of a work item is the order to execute task ‘send refund form

to customer’ for case ‘complaint of customer Baker’. Most

work items need a resource in order to be executed. A re-

source is either a machine (e.g., a printer or a fax) or a per-

son (participant, worker, or employee). Besides a resource,

a work item often needs a trigger. A trigger specifies who

or what initiates the execution of a work item. Often, the

trigger for a work item is the resource that must execute the

work item. Other common triggers are external triggers and

time triggers. An example of an external trigger is an incom-

ing phone call of a customer; an example of a time trigger is

the expiration of a deadline. A work item that is being ex-

ecuted is called an activity. If we take a photograph of the

state of a workflow, we see cases, work items, and activities.

Work items link cases and tasks. Activities link cases, tasks,

triggers, and resources.

A thorough investigation of the business processes in a

company that results in a complete set of efficient and ef-

fective workflow processes is the basis of the successful in-

troduction of a workflow system. Formal (qualitative and

quantitative) verification can be a useful aid in obtaining the

desired effectiveness and efficiency.

3.2. Workflow perspectives and abstraction

In the previous subsection, we introduced the workflow con-

cepts used in the remainder of this paper. Workflow man-

agement has many aspects and typically involves many dis-

ciplines. The verification tool presented in this paper fo-
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Running example:  
short-circuited
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S-coverability diagnosis
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Quick reminder
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In a S-component,
the total number of tokens in its places is constant

Any S-component
induces a uniform invariant (weights 0 and 1)

A net is S-coverable i�
any p � P belongs to some S-component

S-coverability implies boundedness
(because it induces a positive S-invariant)



S-Invariant analysis
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If every place of N* is covered by a semi-positive S-invariant  
then N* is bounded 

Places not covered by semi-positive S-invariants  
are potential sources of problems



S-Coverability vs 
Soundness
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S-coverability is one of the basic requirements  
any workflow process definition should satisfy 

Still: 
S-coverability is not a sufficient requirement for soundness 

N* can be S-coverable even if N is not sound 

N can be sound even if N* is not S-coverable



Example: N sound but  
N* not S-coverable
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Example: N sound but  
N* not S-coverable
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Exercises
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Find all (maximal) S-components using WoPeD



Exercises
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Draw a workflow net N that is S-coverable  
but such that N* is not live and bounded 

(i.e. N is not sound)



S-Coverability diagnosis
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If N* is free-choice, live and bounded 
it must be S-coverable (S-coverability theorem) 

(note that any S-component of N* includes i, o, reset,  
by strong-connectedness) 

Corollary: If N is sound and free-choice, 
then N* must be S-coverable 

N free-choice + N* not S-coverable => N not sound



Running example:  
S-cover for N* ?
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Running example:  
S-cover for N* ?
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Running example:  
S-cover for N*
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Running example:  
S-cover for N*
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not an S-component!



Running example:  
S-cover for N* ? No
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N* is free-choice 
but not S-coverable 

thus 
N is not sound



Running Example: 
WoPeD Diagnosis
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Split / Join Balancing
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A good workflow design is characterized by a balance 
between AND/XOR-split and AND/XOR-joins 

Any mismatch is a potential source of errors
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Two parallel flows initiated by an AND-split  
should not be joined by a XOR-join  

(multiple tokens appear in the same place)

TP-handles

T PAND-split XOR-join
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Two alternative flows created via a XOR-split  
should not be synchronized by an AND-join 

(the net could deadlock)

PT-handles

TP XOR-split AND-join



TP- and PT-handles
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Definition: A transition t and a place p  
form a TP-handle if there are 

two distinct elementary paths c1 and c2 from t to p 
such that the only nodes they have in common are t,p 

Definition: A place p and a transition t  
form a PT-handle if there are 

two distinct elementary paths c1 and c2 from p to t 
such that the only nodes they have in common are p,t



Well-Structured Nets
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Definition: A net is well-handled iff  
for any pair of nodes x and y of different kinds 

(one place and one transition) 
any two elementary paths c1 and c2 from x to y 

coincide or have some other nodes in common apart x,y 

well-handled = no PT-handles and no TP-handles 

Definition: A workflow net N is well-structured  
if N* is well-handled



S-coverability diagnosis
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Theorem: 
If N is sound and well-structured, then N* is S-coverable 

(proof omitted) 

N well-structured + N* not S-coverable => N not sound 

Note that 
If N is not well-structured, N can still be sound 

especially if reset is involved in the handle 
(it is a symptom, not a disease)



Running example:  
Well-structured? No
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PT-handle



Running example:  
Well-structured? No
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TP-handle



Be careful

 32

N well-structured = N* well-handled 

WoPeD marks PT/TP-handles over N* 
(not over N)



Running Example: 
WoPeD Diagnosis
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Liveness and boundedness 
vs 

Soundness requirements
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Improper completion
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Suppose N completes improperly: 
from i we can reach o+L 

We can do the same on N* 
then we fire reset and reach i+L 

we can repeat the same run and reach i+2L 
and then i+3L and then i+4L and then ... i+kL 

then N* has some unbounded places 
(all p such that L(p)>0)



Unsoundness 
from unboundedness
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Improper completion of N implies unboundeness of N* 

Symptom: N* has some unbounded places 

Disease: maybe proper completion does not hold for N



Consequences 
of boundedness
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If N* is bounded, then: 
if o+L is reachable from i in N, then L=0 

If N* is bounded, then 
either N satisfies  

both option to complete and proper completion 
or N does not satisfy option to complete



Completion option 
failure
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Suppose N does not satisfy the “option to complete”: 
then from i we can reach M 

from which we cannot mark o 

We can do the same on N* 
then reset is dead from M 
i.e. reset is non-live in N* 

N* has non-live transitions (including reset)



Unsoundness 
from non-liveness
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Option to complete fail for N implies non-liveness of N* 

Symptom: reset transition is non-live in N* 

Disease: maybe option to complete does not hold for N



Unsoundness from  
Non-Liveness
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If N* is bounded and has dead transitions, then  

if reset is dead  
N and N* have the same finite reachability graph 

hence N has the same dead tasks as N* 
(except reset) 

if reset is not dead 
the reachability graphs of N and N* differ only for 

(because N* is bounded) 
hence N has the same dead tasks as N*

o
reset�⇥ i



Unsoundness from  
Non-Liveness
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Symptom: N* is bounded and has dead transitions 

Disease: N has the same dead tasks as N*

Symptom: N* has non-live transitions 

Disease: N could have dead tasks



Error sequences
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Diagnostic information
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The sets of: 
unbounded places of N* 
dead transitions of N* 

non-live transitions of N* 

may provide useful information for  
the diagnosis of behavioural errors 
(pointing to different types of errors) 

Unfortunately, this information is not always sufficient  
to determine the exact cause of the error 

Behavioural error sequences can overcome this problem



Error sequences
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Rationale: 
We want to find firing sequences such that: 

1. every continuation of such sequences will lead to an error 

2. they have minimal length 
(none of their prefixes satisfies the above property) 

Informally: 
error sequences are scenarios that capture  

the essence of errors made in the workflow design 
(violate “option to complete” or “proper completion”) 



Non-Live sequences: 
informally
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A non-live sequence is a  
firing sequence of minimal length  

such that completion of the case is no longer possible 

i.e. a witness for transition reset being non-live in N*



Non-Live sequences: 
fundamental property
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Let N be such that: 
N* is bounded 

N (or equivalently N*) has no dead task 

Then, N* is live 
iff 

N has no non-live sequences 



Non-Live sequences: 
graphically
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The analysis is possible in bounded systems only 

Compute the RG of N* 
Color in red all nodes from which there is no path to o 

Color in green all nodes from which all paths lead to o 

Color in yellow all remaining nodes 
(some but not all paths lead to o)



Non-Live sequences: 
remarks
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No red node implies no yellow node 

No green node implies no yellow node 



Non-Live sequences: 
formally

 49

Definition:
An occurrence sequence

i
t1�⇥ M1 ...Mk�1

tk�⇥ Mk is non-live if

• all markings are distinct

• Mk�1 is yellow

• Mk is red

Then, the firing sequence t1...tk is also called non-live

Firing tk removes 
the option to complete!



Running example: 
slight variant
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Running example variant: 
colored RG
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iff Mn ⇥ HR and Mn�1 ⇥ HY . A firing sequence of a WF

system is called non-live iff it is derived from a non-live oc-

currence sequence.

The most valuable information in a non-live sequence is

the combination of its last two markings (Mn�1 ⇥ HY and

Mn ⇥ HR) and its last transition (tn�1). The only interest
we have in the sequence’s prefix ([i]t0M1 . . . tn�2) is that it
gives us a path which leads to the last-but-one marking. Note

that we have excluded firing sequences containing cycles (by

requiring that all markings in a non-live sequence must be

distinct); cycles do not provide any additional useful infor-

mation. Also note that it is possible that several non-live

sequences have the same suffix Mn�1tn�1Mn .

THEOREM 4.10. (Non-live sequences vs. liveness) Let S

be a WF system without dead transitions such that the short-

circuited system S is bounded. Then, S is live iff S has no

non-live sequences.

Proof. The theorem follows immediately from Theorem 4.9

(Liveness of bounded short-circuited WF systems) and Def-

inition 4.5 (Non-live sequences).

Note that, based on Theorem 4.1, Theorem 4.10 can alter-

natively be formulated as follows. If S = (N , [i]) is a WF

system without dead transitions such that the short-circuited

system S is bounded, then N is sound iff S has no non-live

sequences.

FIGURE 12. WF net N1

As an example, consider the WF net N1 of Figure 12. It

is a variant of WF net N of Figure 1 with an extra arc from

place c8 to transition archive. The OG of S1=(N1, [i])

is shown in Figure 13. The meaning of the thick arcs is ex-

plained in the next section. Clearly, S1 has no dead tran-

sitions. Since the OG of S1=(N1, [i]) is simply the graph

in Figure 13 extended with the arc ([o], shortcircuit,

[i]), where shortcircuit is the short-circuiting transi-

tion, we see that S1 is bounded. Figure 13 also shows the

partitioning of the OG of S1 according to Definition 4.4. We

FIGURE 13. The OG of S1 partitioned for non-live sequences

can deduce, among others, the following five non-live se-

quences:

(i). register send timeout,

(ii). register send dont timeout,

(iii). register send rec do,

(iv). register send do, and

(v). register do.

Since S1 has non-live sequences, we can deduce from The-

orem 4.10 that S1 is not live, which means that N1 is not

sound. It is also possible to arrive at this conclusion by in-

vestigating the OG of S1. Since it contains deadlock mark-

ing [c4,c5], it follows that all transitions of S1 are non-live.

Unfortunately, the information that all transitions are non-

live is not sufficiently specific to be useful. By examining

the above five non-live sequences, we can obtain more de-

tailed information. Note that non-live sequence (ii) provides

almost the same information as sequence (i). Together, they

show that the combination send and timeout is the pos-

sible cause of an error and that dont is not important. From

sequence (i), we conclude that, whatever happens, place c8

does not get a token. As a result, transitions process and

archive cannot fire. The sequences (iii), (iv), and (v) pro-

vide the information that firing transition do always results

in an error. We may conclude that the cycle to which do

leads might cause a problem. For now, we do not go into

details about possible solutions to correct the errors.

4.4.5. Unbounded sequences

Intuitively, an unbounded sequence is a firing sequence of a

WF system of minimal length such that every continuation

implies a violation of the proper-completion requirement of

Definition 4.2. Such a violation can have two causes. The

first one is the most straightforward one. Clearly, proper

completion is violated if a reachable marking is strictly

greater than the marking [o] that signals proper completion.

The second cause is more implicit. If a WF system is un-

bounded, then the proper-completion requirement is also vi-

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

Non-live sequences: 

register, do 

register, send, do 

register, send, timeout  

register, send, rec, do 

register, send, dont, timeout 

and also?
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iff Mn ⇥ HR and Mn�1 ⇥ HY . A firing sequence of a WF

system is called non-live iff it is derived from a non-live oc-

currence sequence.

The most valuable information in a non-live sequence is

the combination of its last two markings (Mn�1 ⇥ HY and

Mn ⇥ HR) and its last transition (tn�1). The only interest
we have in the sequence’s prefix ([i]t0M1 . . . tn�2) is that it
gives us a path which leads to the last-but-one marking. Note

that we have excluded firing sequences containing cycles (by

requiring that all markings in a non-live sequence must be

distinct); cycles do not provide any additional useful infor-

mation. Also note that it is possible that several non-live

sequences have the same suffix Mn�1tn�1Mn .

THEOREM 4.10. (Non-live sequences vs. liveness) Let S

be a WF system without dead transitions such that the short-

circuited system S is bounded. Then, S is live iff S has no

non-live sequences.

Proof. The theorem follows immediately from Theorem 4.9

(Liveness of bounded short-circuited WF systems) and Def-

inition 4.5 (Non-live sequences).

Note that, based on Theorem 4.1, Theorem 4.10 can alter-

natively be formulated as follows. If S = (N , [i]) is a WF

system without dead transitions such that the short-circuited

system S is bounded, then N is sound iff S has no non-live

sequences.

FIGURE 12. WF net N1

As an example, consider the WF net N1 of Figure 12. It

is a variant of WF net N of Figure 1 with an extra arc from

place c8 to transition archive. The OG of S1=(N1, [i])

is shown in Figure 13. The meaning of the thick arcs is ex-

plained in the next section. Clearly, S1 has no dead tran-

sitions. Since the OG of S1=(N1, [i]) is simply the graph

in Figure 13 extended with the arc ([o], shortcircuit,

[i]), where shortcircuit is the short-circuiting transi-

tion, we see that S1 is bounded. Figure 13 also shows the

partitioning of the OG of S1 according to Definition 4.4. We

FIGURE 13. The OG of S1 partitioned for non-live sequences

can deduce, among others, the following five non-live se-

quences:

(i). register send timeout,

(ii). register send dont timeout,

(iii). register send rec do,

(iv). register send do, and

(v). register do.

Since S1 has non-live sequences, we can deduce from The-

orem 4.10 that S1 is not live, which means that N1 is not

sound. It is also possible to arrive at this conclusion by in-

vestigating the OG of S1. Since it contains deadlock mark-

ing [c4,c5], it follows that all transitions of S1 are non-live.

Unfortunately, the information that all transitions are non-

live is not sufficiently specific to be useful. By examining

the above five non-live sequences, we can obtain more de-

tailed information. Note that non-live sequence (ii) provides

almost the same information as sequence (i). Together, they

show that the combination send and timeout is the pos-

sible cause of an error and that dont is not important. From

sequence (i), we conclude that, whatever happens, place c8

does not get a token. As a result, transitions process and

archive cannot fire. The sequences (iii), (iv), and (v) pro-

vide the information that firing transition do always results

in an error. We may conclude that the cycle to which do

leads might cause a problem. For now, we do not go into

details about possible solutions to correct the errors.

4.4.5. Unbounded sequences

Intuitively, an unbounded sequence is a firing sequence of a

WF system of minimal length such that every continuation

implies a violation of the proper-completion requirement of

Definition 4.2. Such a violation can have two causes. The

first one is the most straightforward one. Clearly, proper

completion is violated if a reachable marking is strictly

greater than the marking [o] that signals proper completion.

The second cause is more implicit. If a WF system is un-

bounded, then the proper-completion requirement is also vi-
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Non-live sequences: 

register, do 

register, send, do 

register, send, timeout  

register, send, rec, do 

register, send, dont, timeout 

register, dont, send, timeout

Running example variant: 
colored RG



Unbounded sequences: 
informally
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An unbounded sequence is a  
firing sequence of minimal length such that  

every continuation invalidates proper completion 

i.e. a witness for unboundedness



Unbounded sequences: 
fundamental property
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N* is bounded 
iff 

N has no unbounded sequences 

Undesired markings: 
infinite-weighted markings or markings greater than o



Unbounded sequences: 
graphically
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Compute the CG of N* 

Color in green all nodes from which  
undesired markings are not reachable 

Color in red all nodes from which  
no green marking is reachable 

(undesired markings are unavoidable) 

Color in yellow all remaining nodes 
(undesired markings are reachable but avoidable)



Unbounded sequences: 
remarks
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No red node implies no yellow node 

No green node implies no yellow node 



Restricted coverability 
graph (RCG)
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CG can become very large (intractable!) 

Basic observation: 
infinite-weighted markings leads to infinite-weighted markings 

and they will be all red 

We can just avoid computing them! 



Running example: 
RCG vs CG
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FIGURE 8. The CG for the short-circuited system S

workflow processes. Cases are often generated by an exter-

nal customer. However, it is also possible that a case is gen-

erated by another department within the same organization

(internal customer). A typical example of a process that is

not case-based, and hence not a workflow process, is a pro-

duction process such as the assembly of bicycles. The task

of putting a tire on a wheel is (generally) independent of the

specific bicycle for which the wheel will be used. Note that

the production of bicycles to order, i.e., procurement, pro-

duction, and assembly are driven by individual orders, can

be considered as a workflow process.

The goal of workflow management is to handle cases as

efficient and effective as possible. A workflow process is

designed to handle large numbers of similar cases. Handling

one customer complaint usually does not differ much from

handling another customer complaint. The basis of a work-

flow process is the workflow process definition. This process

definition specifies which tasks need to be executed in what

order. Alternative terms for workflow process definition are:

‘procedure’, ‘workflow schema’, ‘flow diagram’, and ‘rout-

ing definition’. Tasks are ordered by specifying for each task

the conditions that need to be fulfilled before it may be ex-

ecuted. In addition, it is specified which conditions are ful-

filled by executing a specific task. Thus, a partial ordering of

tasks is obtained. In a workflow process definition, standard

routing elements are used to describe sequential, alternative,

parallel, and iterative routing thus specifying the appropri-

ate route of a case. The workflow management coalition

(WfMC) has standardized a few basic building blocks for

constructing workflow process definitions [29]. A so-called

OR-split is used to specify a choice between several alter-

natives; an OR-join specifies that several alternatives in the

workflow process definition come together. An AND-split

and an AND-join can be used to specify the beginning and

the end of parallel branches in the workflow process defini-

tion. The routing decisions in OR-splits are often based on

data such as the age of a customer, the department responsi-

ble, or the contents of a letter from the customer.

Many cases can be handled by following the same work-

flow process definition. As a result, the same task has to

be executed for many cases. A task that needs to be exe-

cuted for a specific case is called a work item. An example

of a work item is the order to execute task ‘send refund form

to customer’ for case ‘complaint of customer Baker’. Most

work items need a resource in order to be executed. A re-

source is either a machine (e.g., a printer or a fax) or a per-

son (participant, worker, or employee). Besides a resource,

a work item often needs a trigger. A trigger specifies who

or what initiates the execution of a work item. Often, the

trigger for a work item is the resource that must execute the

work item. Other common triggers are external triggers and

time triggers. An example of an external trigger is an incom-

ing phone call of a customer; an example of a time trigger is

the expiration of a deadline. A work item that is being ex-

ecuted is called an activity. If we take a photograph of the

state of a workflow, we see cases, work items, and activities.

Work items link cases and tasks. Activities link cases, tasks,

triggers, and resources.

A thorough investigation of the business processes in a

company that results in a complete set of efficient and ef-

fective workflow processes is the basis of the successful in-

troduction of a workflow system. Formal (qualitative and

quantitative) verification can be a useful aid in obtaining the

desired effectiveness and efficiency.

3.2. Workflow perspectives and abstraction

In the previous subsection, we introduced the workflow con-

cepts used in the remainder of this paper. Workflow man-

agement has many aspects and typically involves many dis-

ciplines. The verification tool presented in this paper fo-
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Figure 3 depicted in Figure 8 with the RCG of Figure 14.

For this simple example, the RCG is approximately half the

size of the CG. Note that if a system is bounded the RCG-

generation algorithm and the CG-generation algorithm both

yield the OG of the system.

FIGURE 14. The RCG of the short-circuited example net

It is straightforward to see that an RCG can be used to

compute the unbounded sequences of a WF system. Con-

sider the partitioning of a CG given in Definition 4.6. Since

infinite markings are always red, it is clear that successors of

infinite markings are also red. Therefore, the part of a CG

that is omitted in an RCG is not used when constructing un-

bounded sequences. This means that unbounded sequences

can be computed by applying the partitioning of Definition

4.6 to an RCG.

The idea to restrict a CG of a system to an RCG is similar

to one of the ideas behind the notion of an MCG (minimal

CG) of [21]. In general, an RCG of a system is still larger

than its MCG. Unfortunately, the MCG of a WF system is

not suitable for computing unbounded sequences. For more

details, the interested reader is referred to [21].

Figure 15 shows the partitioned RCG of the example sys-

tem S of Figure 2. Note that this RCG is the OG of S, be-

cause S is bounded. S has among others the following un-

bounded sequences:

(i). register send rec dont and

(ii). register send dont rec.

These two sequences show that firing the combination of

rec and dont inevitably leads to unboundedness of the

short-circuited system. The reason is that rec puts a to-

ken in place c8, whereas firing dont removes the option to

remove this token via transition process.

5. WOFLAN

This section describes Woflan (WOrkFLow ANalyzer, see

http://www.tm.tue.nl/it/woflan) version 2.1. Woflan is a tool

FIGURE 15. The RCG partitioned for unboundedness

that analyzes workflow process definitions specified in terms

of Petri nets. It has been designed to verify process defi-

nitions that are downloaded from a workflow management

system, as explained in Section 3.3. As indicated in the in-

troduction, there is a clear need for such a verification tool.

Based on some of the results presented in the previous sec-

tion, the development of the tool Woflan started at the end of

1996 and the first version was released in 1997 [8]. Basi-

cally, Woflan takes a workflow process definition imported

from some workflow product, translates it into a P/T net, and

tells whether or not the net is a sound WF net. Furthermore,

using some standard P/T net-analysis techniques as well as

those tailored to WF nets presented in the previous section,

the tool provides diagnostic information about the net in case

it is not a soundWF net. Woflan implements a predefined di-

agnosis process illustrated in Figure 16. The diagnosis pro-

cess is in fact a workflow process modeled in Protos [31]. In

the next subsection, the diagnosis process of Figure 16 is ex-

plained in detail. In Section 5.2, the P/T net of Figure 1 is

analyzed by means ofWoflan. Version 2.1 ofWoflan extends

version 1.0 as described in [8] with some new analysis tech-

niques of which the technique of behavioral error sequences

is the most important one, with a predefined, detailed diag-

nosis process that uses a new, workflow-oriented nomencla-

ture, and with an import facility for COSA, Staffware, ME-

TEOR, and Protos. A brief overview of the material of this

section was presented at the 2000 International Conference

on Application and Theory of Petri nets [45].

5.1. Diagnosis process

In Sections 2 and 4, we have seen a wide range of analysis

techniques for P/T nets in general and WF nets in particu-

lar. The goal is to apply these techniques in the analysis of

workflow processes in a logical and meaningful order, and

to distill useful diagnostic information from the analysis re-

sults in case of errors in the workflow. The diagnosis process
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sider the partitioning of a CG given in Definition 4.6. Since

infinite markings are always red, it is clear that successors of

infinite markings are also red. Therefore, the part of a CG

that is omitted in an RCG is not used when constructing un-

bounded sequences. This means that unbounded sequences

can be computed by applying the partitioning of Definition

4.6 to an RCG.

The idea to restrict a CG of a system to an RCG is similar

to one of the ideas behind the notion of an MCG (minimal

CG) of [21]. In general, an RCG of a system is still larger

than its MCG. Unfortunately, the MCG of a WF system is

not suitable for computing unbounded sequences. For more

details, the interested reader is referred to [21].

Figure 15 shows the partitioned RCG of the example sys-

tem S of Figure 2. Note that this RCG is the OG of S, be-

cause S is bounded. S has among others the following un-

bounded sequences:

(i). register send rec dont and

(ii). register send dont rec.

These two sequences show that firing the combination of

rec and dont inevitably leads to unboundedness of the

short-circuited system. The reason is that rec puts a to-

ken in place c8, whereas firing dont removes the option to

remove this token via transition process.
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This section describes Woflan (WOrkFLow ANalyzer, see

http://www.tm.tue.nl/it/woflan) version 2.1. Woflan is a tool
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that analyzes workflow process definitions specified in terms

of Petri nets. It has been designed to verify process defi-

nitions that are downloaded from a workflow management

system, as explained in Section 3.3. As indicated in the in-

troduction, there is a clear need for such a verification tool.

Based on some of the results presented in the previous sec-

tion, the development of the tool Woflan started at the end of

1996 and the first version was released in 1997 [8]. Basi-

cally, Woflan takes a workflow process definition imported

from some workflow product, translates it into a P/T net, and

tells whether or not the net is a sound WF net. Furthermore,

using some standard P/T net-analysis techniques as well as

those tailored to WF nets presented in the previous section,

the tool provides diagnostic information about the net in case

it is not a soundWF net. Woflan implements a predefined di-

agnosis process illustrated in Figure 16. The diagnosis pro-

cess is in fact a workflow process modeled in Protos [31]. In

the next subsection, the diagnosis process of Figure 16 is ex-

plained in detail. In Section 5.2, the P/T net of Figure 1 is

analyzed by means ofWoflan. Version 2.1 ofWoflan extends

version 1.0 as described in [8] with some new analysis tech-

niques of which the technique of behavioral error sequences

is the most important one, with a predefined, detailed diag-

nosis process that uses a new, workflow-oriented nomencla-

ture, and with an import facility for COSA, Staffware, ME-

TEOR, and Protos. A brief overview of the material of this

section was presented at the 2000 International Conference

on Application and Theory of Petri nets [45].

5.1. Diagnosis process

In Sections 2 and 4, we have seen a wide range of analysis

techniques for P/T nets in general and WF nets in particu-

lar. The goal is to apply these techniques in the analysis of

workflow processes in a logical and meaningful order, and

to distill useful diagnostic information from the analysis re-

sults in case of errors in the workflow. The diagnosis process
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Design Example:  
Car Damage

• An insurance company uses the following procedure for the processing of the claims 
• Every claim, reported by a customer, is registered 
• After the registration, the claim is classified 
• There are two categories: simple and complex claims. 

• For simple claims two tasks need to be executed:  
check insurance and phone garage.  
These tasks are independent of each other.  

• The complex claims require three tasks:  
check insurance, check damage history and phone garage.  
These tasks need to be executed sequentially in the order specified.  

• After executing the two/three tasks a decision is taken with two possible outcomes: 
OK (positive) or NOK (negative). 

• If the decision is positive, then insurance company will pay.  
• In any event, the insurance company sends a letter to the customer.
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The workflow of a computer repair service (CRS) can be described as follows.  
A customer brings in a defective computer and the CRS checks the defect and hands out a 
repair cost calculation back.  
If the customer decides that the costs are acceptable, the process continues, otherwise 
she takes her computer home unrepaired.  
The ongoing repair consists of two activities, which are executed sequentially but in an 
arbitrary order.  
One activity is to check and repair the hardware,  
whereas the other activity is to check and configure the software.  
After both activities are completed, the proper system functionality is tested.  
If an error is detected the repair procedure is repeated,  
otherwise the repair is finished and the computer is returned. 

Model the described workflow as a sound workflow net.


