Business Processes Modelling
MPB (6 cfu, 295AA)

Roberto Bruni
O http://www.di.unipi.it/~bruni

oS

t 19 - Diagnosis for WF nets

http://www.di.unipi.it/~bruni

Object

We study suitable diagnosis technigues
for unsound Workflow nets

Diagnosing workflow processes using Woflan (article, optional reading)
http://wwwis.win.tue.nl/~wvdaalst/publications/pl35.pdf

2

http://wwwis.win.tue.nl/~wvdaalst/publications/p135.pdf

Some Pragmatic
Considerations

We know that, for free-choice nets,
liveness and boundedness can be decided efficiently
(in polynomial time)

but we want to check soundness for a wider range of nets

Moreover, when a process is not sound, some diagnostic
can be generated that indicates why it is flawed

Woflan
(now a ProM plugin)

- WOrkFLow ANalyzer (Windows only)
@ http://www.win.tue.nl/woflan/

Woflan tells us if N is a sound workflow net
(Is N a workflow net? Is N* bounded? Is N* live?)
if not, provides some diagnostic information

http://www.win.tue.nl/woflan/

Running example

cl send c3 l ttttttt cS
rec
reglster
ar
c2 do c4 ; process ;::6 done c7
redo
>

example

register(tl)

(01000... >(10010...
[i]
send(t2)
register . nt(t10)
i ©00010.°%©o0011.. (@o0000..
do dont
[c1,c4] «— [c1,c2] ————» [c1,c7]
isend isend isend imeout(t3)
end(t2) end(tZ) ec(t4)
(3.c4] €« [c2.c3] — 9N b [c3.c7] do(t5) ont(t10)
(00000O0... (O0001... (LOOOO... (LO0OOO...

\ic \ic wc

[c4,c5,c8] «\W [c2,c5,c8] — p—» [c5,c7,c8] rec(t4)
dont do({s)
timeout | process| timeout 00000...
\ d
%‘ prpcess(tp) archive(t9)
 / / A
[c2,c5] —dort ™ [c5,c7] (00000... (00 }¥0O..

timeout(t3
dont(t10)

archive(t9)

X
(0O00O01.. 4(00100...

Running example:
short-circuited

reset
cl send c3 I timeout cS
rec

' i
register
c8 archlve ‘
|
0

c2 ao c4 ; process ; cb aone c7
redo
3-
dont
7

~ Running example:

[y]%)

short-circuited
shortcircuit > [i] shortcircuit

shortcircuit

[c8°,0]
A
i register register
[c1,c4] €« [c1.c2] — 90N b peq67) [c1,c4,c8°] €30 [c1,c2,c8] archive
lsend isend isend archive W SN
do dont process
[c3,c4] «— [c2,c3] ———» [c3,c7] [c1,c6,c8°] — — [c1,c7,c89]
rec send done
rec rec send
\/ do \/
[c4,c5,c8] «\E [c2,c5,c8] — —» [c5,c7,c8] [c3,c4,c8°] «—— [c2,c3,c89] send
: . dont redo dont
timeout | process | timeout timeout
process& Y rec| timeout \
[c5,c6] [c3,c6,c8°] ——» [c3,c7,c89]
T~ done rec| timeout done
V\ v v rec| timeout
[c2,c5] W [c5,c7] [c4,c5,c87] 4—“& [c2,c5,c87] rec| timeout
W W
archive process M M

[c5,c6,c8°] d—> [c5,c7,c8%]
one

S-coverability diagnosis

Quick reminder

In a S-component,
the total number of tokens in its places is constant

Any S-component
induces a uniform invariant (weights 0 and 1)

A net is S-coverable iff
any p € P belongs to some S-component

S-coverability implies boundedness
(because it induces a positive S-invariant)

S-Invariant analysis

If every place of N* is covered by a semi-positive S-invariant
then N* is bounded

Places not covered by semi-positive S-invariants
are potential sources of problems

S-Coverability vs
Soundness

S-coverability is one of the basic requirements
any workflow process definition should satisfy

Still:
S-coverability is not a sufficient requirement for soundness
N* can be S-coverable even if N is not sound

N can be sound even if N* is not S-coverable

Example: N sound but
N* not S-coverable

0

/

Setuves
YA

Example: N sound but
N* not S-coverable

PR

A
v
I

/ p4 t4
ts
\ t3 pS
p3
p2 t2

Exercises

Find all (maximal) S-components using WoPeD

0

@—»

Exercises

Draw a workflow net N that is S-coverable
but such that N* is not live and bounded
(i.,e. N is not sound)

S-Coverability diagnosis
If N* Is free-choice, live and bounded

it must be S-coverable (S-coverability theorem)

(note that any S-component of N* includes i, 0, reset,
by strong-connectedness)

Corollary: If N is sound and free-choice,
then N* must be S-coverable

N free-choice + N* not S-coverable => N not sound

Running example:
S-cover for N* ?

reset
cl send c3 I timeout cS
rec

' i
register
c8 archlve ‘
|
0

c2 ao c4 ; process ; cb daone c7
redo

Running example:
S-cover for N* ?

do c4 ; process ; c6 done
redo

Running example:
S-cover for N*

c1’] send

Running example:
S-cover for N*

cl send

r
@—b register
|

c3
ec |
c2 do c4 process

GCP&I

not an S-component!

uuuuu v .
' 0

co daone c7

Running example:
S-cover for N* 2 No

eeeeee

N* Iis free-choice
but not S-coverable

thus
N Is not sound

doniz

Running Example:
WoPeD Diagnosis

e 00 _ wfnet-unsound.pnml

[Process Resources BPEL Preview |

> " Assistant Expert | B

v () Qualitative analysis
v () Structural analysis
» © Net statistics
& Wrongly used operators: 0
. @ Free-choice violations: 0
v () S-Components
cl send c3 timeout cs v © S-Components: 2

i }S-Component:13

rec » © S-Component:10

v () Places not covered by S-Compor
register
c8 archive —»O O 8

v) Wellstructuredness
» @ PT-Handles: 4
» @ TP-Handles: 5
v (0 Soundness
» & Workflow net property
c2 do c4 process c6 done c7 » @ Initial marking
v @ Boundedness
» @ Unbounded places: 1
v @ Liveness
@ Dead transitions: 0
» @ Non-live transitions: 10

redo

Y

dont

| - 4| »

@ Auto-refresh Analysis-Sidebar
! Show t* (editing disabled)

23

Places: 10 Transitions: 10 Subprocesses: 0 Modeling direction: horizontal Zoom: 100% . Not saved

Split / Join Balancing

A good workflow design is characterized by a balance
between AND/XOR-split and AND/XOR-joins

Any mismatch is a potential source of errors

24

TP-handles

Two parallel flows initiated by an AND-split
should not be joined by a XOR-join
(multiple tokens appear in the same place)

A0

T |AND-split XOR-join

25

PT-handles

Two alternative flows created via a XOR-split
should not be synchronized by an AND-join
(the net could deadlock)

SN
@XOR-split AND-join T
Ny

26

TP- and PT-handles

Definition: A transition t and a place p
form a TP-handle if there are
two distinct elementary paths c1 and c2 from t to p
such that the only nodes they have in common are t,p

Definition: A place p and a transition t
form a PT-handle if there are
two distinct elementary paths c1 and co fromp to t
such that the only nodes they have in common are p,t

27

Well-Structured Nets

Definition: A net is well-handled iff
for any pair of nodes x and y of different kinds
(one place and one transition)
any two elementary paths c1 and cz2 from xto y
coincide or have some other nodes in common apart x,y

well-handled = no PT-handles and no TP-handles

Definition: A workflow net N is well-structured
If N* Is well-handled

28

S-coverability diagnosis

Theorem:
If N iIs sound and well-structured, then N* is S-coverable
(proof omitted)

N well-structured + N* not S-coverable => N not sound
Note that
If N is not well-structured, N can still be sound
especially if reset is involved in the handle

(it is a symptom, not a disease)

29

Running example:
Well-structured? No

ttttttt

.

000§O

Running example:
Well-structured? No

Be careful

N well-structured = N* well-handled

WoPeD marks PT/TP-handles over N*
(not over N)

32

Running Example:
WoPeD Diagnosis

= wfnet-unsound.pnml

Resources BPEL preview

Horizontal

E

¥ Semantical analysis

v © Qualitative analysis
v © Structural analysis

» € Net statistics
@ Wrongly used operators: 0

send c3 timeout c5 9 Free-choice violations: 0

register

v

S-Components
Wellstructuredness
) PT-Handles: 4

© PT-Handle pair #1

8 hi
c archive 4”@ @ PT-Handle pair #2

E
E

0 » © PT-Handle pair #3
v

(i BPT-Handle pair #4

© 0
e _/l o/

rec

|
©

© c

© process

do c4 process c6 done c v () TP-Handles: 5
v © TP-Handle pair #1

© register

(i Ny
» © TP-Handle pair #2
» © TP-Handle pair #3
B

redo

© TP-Handle pair #4
» @ TP-Handle pair #5
» © Soundness

dont

Zoom: 100%

Liveness and boundedness
VS
Soundness requirements

Improper completion

Suppose N completes improperly:
from | we can reach o+L

We can do the same on N*
then we fire reset and reach I+L

we can repeat the same run and reach i+2L
and then i+3L and then i+4L and then ... i+kL

then N* has some unbounded places
(all p such that L(p)>0)

35

Unsoundness
from unboundedness

Improper completion of N implies unboundeness of N*
Symptom: N* has some unbounded places

Disease: maybe proper completion does not hold for N

36

Consequences
of boundedness

If N* is bounded, then:
If ot+L Is reachable from iin N, then L=0

If N* is bounded, then
either N satisfies
both option to complete and proper completion
or N does not satisfy option to complete

37

Completion option
failure

Suppose N does not satisfy the “option to complete”:
then from | we can reach M
from which we cannot mark o

We can do the same on N*
then reset is dead from M
l.e. reset is non-live in N*

N* has non-live transitions (including reset)

38

Unsoundness
from non-liveness

Option to complete fail for N implies non-liveness of N*
Symptom: reset transition is non-live in N*

Disease: maybe option to complete does not hold for N

39

Unsoundness from
Non-Livehess

If N* is bounded and has dead transitions, then

If reset is dead
N and N* have the same finite reachability graph
hence N has the same dead tasks as N*
(except reset)

If reset is not dead
the reachability graphs of N and N* differ only for o ek gy
(because N* is bounded)
hence N has the same dead tasks as N*

40

Unsoundness from
Non-Livehess

Symptom: N* has non-live transitions

Disease: N could have dead tasks

Symptom: N* is bounded and has dead transitions

Disease: N has the same dead tasks as N*

41

Error sequences

Diagnostic information

The sets of:
unbounded places of N*
dead transitions of N*
non-live transitions of N*

may provide useful information for
the diagnosis of behavioural errors
(pointing to different types of errors)

Unfortunately, this information is not always sufficient
to determine the exact cause of the error

Behavioural error sequences can overcome this problem

43

Error sequences

Rationale:
We want to find firing sequences such that:

1. every continuation of such sequences will lead to an error

2. they have minimal length
(none of their prefixes satisfies the above property)

Informally:
error sequences are scenarios that capture
the essence of errors made in the workflow design
(violate “option to complete” or “proper completion”)

44

Non-Live sequences:
informally

A non-live sequence is a
firing sequence of minimal length
such that completion of the case is no longer possible

I.e. a witness for transition reset being non-live in N*

45

Non-Live sequences:
fundamental property

Let N be such that:
N* is bounded
N (or equivalently N*) has no dead task

Then, N* is live
iff
N has no non-live sequences

46

Non-Live sequences:
graphically

The analysis is possible in bounded systems only

Compute the RG of N*
Color in red all nodes from which there is no path to o

Color in green all nodes from which all paths lead to o

Color in yellow all remaining nodes
(some but not all paths lead to o)

47

Non-Live sequences:
remarks

No red node implies no yellow node

No green node implies no yellow node

48

Non-Live sequences:
formally

Definition:

An occurrence sequence

ot t . .
i — My ... M._1 —=> M, is non-live if

e all markings are distinct

o M, 1 is yellow Firing tk removes
the option to complete!

o M Is red

Then, the firing sequence t;...t; is also called non-live

49

Running example:
slight variant

cl send c3 I tttttttt)
rec

®—> register
|

c2 ao c4 ; process ; co aone c7
redo
aont

Running example variant:
colored RG

N Yellow markings :
AN . . .
' register 8 Non-live sequences:
dont > IR |
g register, do
N send lsend,' =
\ : :
do - dont . ! g register, send, do

N |
rec \.\\ric \'\ric register, send, timeout
£ do . donk register, send, rec, do
- timeout process| timeout '\‘ timéout archive
3 N p register, send, dont, timeout
g N |
%; Y. and also?
« -
mEm _ms
do dont N

51

Running example variant:
colored RG

N Yellow markings :
AN . . .
' register 8 Non-live sequences:
dont > IR |
g register, do
N send send, =
\ : :
do - dont . ! g register, send, do

N |
rec \.\\ric \'\ric register, send, timeout
% do N donk register, send, rec, do
- timeout process| timeout '\‘ timéout archive
3 AN [register, send, dont, timeout
g N |
%A N register, dont, send, timeout
o -
- _ma
do dont ™ AN

52

Unbounded sequences:
informally

An unbounded sequence is a
firing sequence of minimal length such that
every continuation invalidates proper completion

l.e. a withess for unboundedness

53

Unbounded sequences:
fundamental property

N* is bounded
iff
N has no unbounded sequences

Undesired markings:
infinite-weighted markings or markings greater than o

54

Unbounded sequences:
graphically

Compute the CG of N*

Color in green all nodes from which
undesired markings are not reachable

Color in red all nodes from which
no green marking is reachable
(undesired markings are unavoidable)

Color in yellow all remaining nodes
(undesired markings are reachable but avoidable)

55

Unbounded sequences:
remarks

No red node implies no yellow node

No green node implies no yellow node

56

Restricted coverability
graph (RCG)

CG can become very large (intractable!)
Basic observation:
infinite-weighted markings leads to infinite-weighted markings
and they will be all red

We can just avoid computing them!

57

Running example:
RCG vs C6

- > i [c8,0] shortcircuit > [c8,i] <shortcwcurt
shortcircuit A
i register i register
do dont | do
[c1,c4] «— [c1,c2] ———» [c1,c7] [c1,c4,c8°] «—— [c1,c2,c89]
lsend isend isend archive W
do dont process
[c3,c4] 4— [c2,c3] ———» [c3,c7] [c1,c6,c8°] —
\ \\ \ send
rec
rec rec
\/

[c4,c5,c8] &]—— [c2,c5,c8] — —» [c5,c7,c8] [c3,c4,c8°] w—

do dont
timeout | process | timeout . dont
timeout .
timeout \
[c5,c6] ——» [c3,c7,c8°]
/ T done done
ti t
v redo v\ v ::Ir:)]eou v
[c4,c5] <T [c2,c5] W [c5,c7] —— [c2,c5,c8°] rec| timeout
W
\J

[0] = archive [c5,c6,c8%] W [c5,c7,c8%]

58

Running example:
colored RCG

RN

‘§< do

\0
N
lsend ~\’
do .
| |
\0
rec

e

timeout ¢ process

-«

%‘ \’
N .
redo v N

Yellow markings
register ,
dont ' 2
- 2
S
send lsend, CEU
dont I [e
:)
> e

I
rec rec
3 i

N\ _f_>
do
i don
timeout . archive

|
timeout

N\
‘ I
I

> ’\’
\0
archive

Green markings

59

Unbounded sequences:
register, dont, send, rec
register, send, dont, rec

and also?

Running example:
colored RCG

RN

‘§< do

\0
N
lsend ~\’
do .
| |
\0
rec

e

timeout ¢ process

-«

%‘ \’
N .
redo v N

Yellow markings
register ,
dont ' 2
- 2
S
send lsend, CEU
dont I [e
:)
> e

|
rec \\ric
3 i

N\ _f_>
do
i don
timeout . archive

|
timeout

N\
‘ I
I

> ’\’
\0
archive

Green markings

60

Unbounded sequences:
register, dont, send, rec
register, send, dont, rec

register, send, rec, dont

Practice with WoPeD
(and Woflan)

Analyse the running

rec

' ¥
reglister < >
c8 archive i
|
0

c2 do c4 ; process ; cb daone c7
redo
>
aont

Analyse the running
example variant

cl send c3 l timeout s
rec
eglster

e 3
7 archive
|
<|>‘ / .
c2 do c4 ; process ; c6 done c7
redo
3

Analyse this net

c3 send letkgr

cl check powcy

: :

reglister

cS

c2 check damag

pay damage

cb

64

Analyse this net

reglister

cl

c2

check poNcy

check damag

65

c3

c4

cS

co

send letker
t

t7

pay damage

Analyse this net

cancel order

charge credit card succes or fallure Pack comﬁ\'_,]% or Incomplete

Backorder

update bllling Info updated or canceled

66

Ship

send questionnaire

t1

register

Analyse this net

t2

p3

processing required

t8

!

t3

O

t4

]

t5

process questionnaire

time out

pS

A

t9

process complaint

t10

(9 —

t12 (=

check processing

t11

processing not ok

—()

evaluate

>

té

no processing

67

processing ok

archive

t7

—()

Analyse this net

t1

t3

t6

t4

tS

t7

68

Is this net free-choice?

69

Is this net S-coverable?

70

Is this net sound?

71

Desigh Example:
Car Damage

An insurance company uses the following procedure for the processing of the claims
Every claim, reported by a customer, is registered

After the registration, the claim is classified

There are two categories: simple and complex claims.

* For simple claims two tasks need to be executed:
check insurance and phone garage.
These tasks are independent of each other.

« The complex claims require three tasks:
check insurance, check damage history and phone garage.
These tasks need to be executed sequentially in the order specified.

After executing the two/three tasks a decision is taken with two possible outcomes:
OK (positive) or NOK (negative).

If the decision is positive, then insurance company will pay.
In any event, the insurance company sends a letter to the customer.

72

Desigh Example:
Car Damage

An insurance company uses the following procedure for the processing of the claims
Every claim, reported by a customer, is registered

After the registration, the claim is classified

There are two categories: simple and complex claims.

* For simple claims two tasks need to be executed:
check insurance and phone garage.
These tasks are independent of each other.

 The complex claims require three tasks:
check insurance, check damage history and phone garage.
These tasks need to be executed sequentially in the order specified.

After executing the two/three tasks a decision is taken with two possible outcomes:
OK (positive) or NOK (negative).

If the decision is positive, then insurance company will pay.
In any event, the insurance company sends a letter to the customer.

73

Desigh Example:
Car Damage

U

begjn
c2 phone garage c5
registpr simple AND spli G AND join
c3 check insurance c6
cl classify G O G
complex check insurance ¢4 check history c7 phone garage
0K pay cS
decide
) %
NOK send letter end

74

Design and analysis of
WF-nets

The workflow of a computer repair service (CRS) can be described as follows.

A customer brings in a defective computer and the CRS checks the defect and hands out a
repair cost calculation back.

If the customer decides that the costs are acceptable, the process continues, otherwise
she takes her computer home unrepaired.

The ongoing repair consists of two activities, which are executed sequentially but in an
arbitrary order.

One activity is to check and repair the hardware,

whereas the other activity is to check and configure the software.

After both activities are completed, the proper system functionality is tested.

If an error is detected the repair procedure is repeated,

otherwise the repair is finished and the computer is returned.

Model the described workflow as a sound workflow net.

75

