Business Processes Modelling

MPB (6 cfu, 295AA)

Roberto Bruni

http://www.di.unipi.it/~bruni

* - P and NP problems
Computational Complexity Theory

Computability theory studies the existence of algorithms that can solve a class of problems

For example, no algorithm exists that can be used to decide in a finite amount of time if any C (or Java) program terminates or diverges (on a given input)

Computational complexity theory deals with the resources needed to solve a solvable problem

For example, how many steps (time) or memory (space) it takes to solve a problem
Decision problem

A **problem** defines a set of related questions, each of finite length.

A **problem instance** is one such question.

For example, the factorization problem is:
“given an integer n, return all its prime factors”

An instance of the factorization problem is:
“return all prime factors of 18”

A **decision problem** requires just a **boolean answer**.
For example: “given a number n, is n prime?”
And an instance: “is 18 prime?”
The complexity class \mathbf{P} is the set of decision problems that can be solved by a deterministic (Turing) machine in a Polynomial number of steps (time) w.r.t. input size.

Problems in \mathbf{P} can be (checked and) solved effectively.
The complexity class **NP** is the set of decision problems that can be **solved** by a **Non-deterministic** (Turing) machine in a **Polynomial** number of steps (time)

Equivalently **NP** is the set of decision problems whose solutions can be **checked** by a deterministic (Turing) machine in a polynomial number of steps (time)

Solutions of problems in **NP** can be **checked effectively**
P vs NP

The question of whether P is the same set as NP is the most important open question in computer science.

Intuitively, it is much harder to solve a problem than to check the correctness of a solution, which is supported by our daily experience and leads us to conjecture $P \neq NP$.

What if “solving” is not really harder than “checking”? What if $P = NP$?
NP-completeness

A problem Q in \(\text{NP} \) is **NP-complete** if every other problem in \(\text{NP} \) can be reduced to Q (in polynomial time).

(finding an effective way to solve such a problem Q would allow to solve effectively any other problem in \(\text{NP} \))
Eulerian circuit problem (P)

Given a graph G, is it possible to draw an Eulerian circuit over it? (i.e. a circuit that traverses each edge exactly once)

We have seen that it is the same problem as:

Given a graph G, is the degree of each vertex even?

The problem can be solved effectively!
Hamiltonian circuit problem (NP-complete)

Given a graph G, is it possible to draw an Hamiltonian circuit over it? (i.e. a circuit that visits each vertex exactly once)

The problem can be checked effectively!
Hamiltonian circuit problem (NP-complete)

Given a graph G, is it possible to draw an Hamiltonian circuit over it? (i.e. a circuit that visits each vertex exactly once)

The problem looks difficult to solve
Hamiltonian circuit problem (NP-complete)

Given a graph G, is it possible to draw an Hamiltonian circuit over it? (i.e. a circuit that visits each vertex exactly once)

The problem looks difficult to solve.
Hamiltonian circuit problem (NP-complete)

Given a graph G, is it possible to draw an Hamiltonian circuit over it? (i.e. a circuit that visits each vertex exactly once)

The problem looks difficult to solve
Hamiltonian circuit problem (NP-complete)

Given a graph G, is it possible to draw an Hamiltonian circuit over it? (i.e. a circuit that visits each vertex exactly once)

The problem looks difficult to solve.
Hamiltonian circuit problem (NP-complete)

Given a graph G, is it possible to draw an Hamiltonian circuit over it? (i.e. a circuit that visits each vertex exactly once)

The problem looks difficult to solve
Hamiltonian circuit problem (NP-complete)

Given a graph G, is it possible to draw an Hamiltonian circuit over it? (i.e. a circuit that visits each vertex exactly once)

The problem looks difficult to solve
Hamiltonian circuit problem (NP-complete)

Given a graph G, is it possible to draw an Hamiltonian circuit over it? (i.e. a circuit that visits each vertex exactly once)

The problem looks difficult to solve
Hamiltonian circuit problem (NP-complete)

Given a graph \(G \), is it possible to draw an Hamiltonian circuit over it? (i.e. a circuit that visits each vertex exactly once)

The problem looks difficult to solve
Hamiltonian circuit problem (NP-complete)

Given a graph G, is it possible to draw an Hamiltonian circuit over it? (i.e. a circuit that visits each vertex exactly once)

The problem looks difficult to solve
Hamiltonian circuit problem (NP-complete)

Given a graph G, is it possible to draw an Hamiltonian circuit over it? (i.e. a circuit that visits each vertex exactly once)

The problem looks difficult to solve