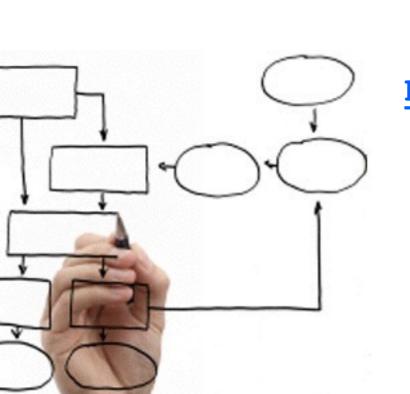
Methods for the specification and verification of business processes MPB (6 cfu, 295AA)

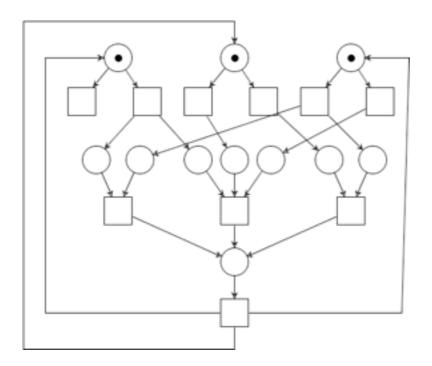


Roberto Bruni

http://www.di.unipi.it/~bruni

18 - Free-choice nets

Object



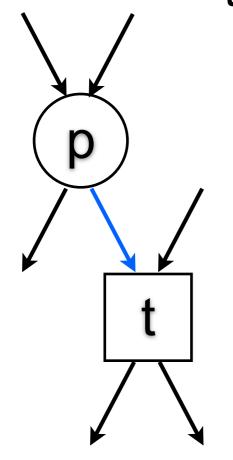
We study some "good" properties of free-choice nets

Free Choice Nets (book, optional reading)

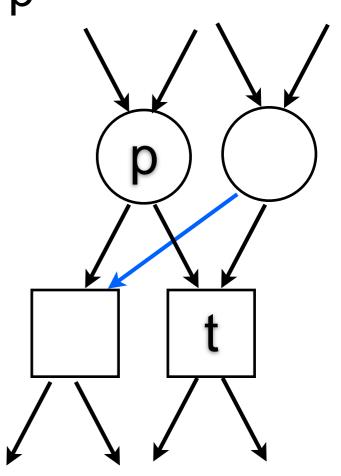
https://www7.in.tum.de/~esparza/bookfc.html

Free-choice net

Definition: We recall that a net N is **free-choice** if whenever there is an arc (p,t), then there is an arc from any input place of t to any output transition of p



implies



Free-choice net: alternative definitions

Proposition: All the following definitions of free-choice net are equivalent.

- 1) A net (P, T, F) is free-choice if: $\forall p \in P, \forall t \in T, (p, t) \in F \text{ implies } \bullet t \times p \bullet \subseteq F.$
- 2) A net (P, T, F) is free-choice if: $\forall p, q \in P, \forall t, u \in T, \{(p, t), (q, t), (p, u)\} \subseteq F$ implies $(q, u) \in F$.
- 3) A net (P, T, F) is free-choice if: $\forall p, q \in P$, either $p \bullet = q \bullet$ or $p \bullet \cap q \bullet = \emptyset$.
- 4) A net (P, T, F) is free-choice if: $\forall t, u \in T$, either $\bullet t = \bullet u$ or $\bullet t \cap \bullet u = \emptyset$.

Free-choice net: my favourite definition

4) A net (P, T, F) is free-choice if: $\forall t, u \in T$, either $\bullet t = \bullet u$ or $\bullet t \cap \bullet u = \emptyset$.

Free-choice system

Definition: A system (N,M₀) is **free-choice** if N is free-choice

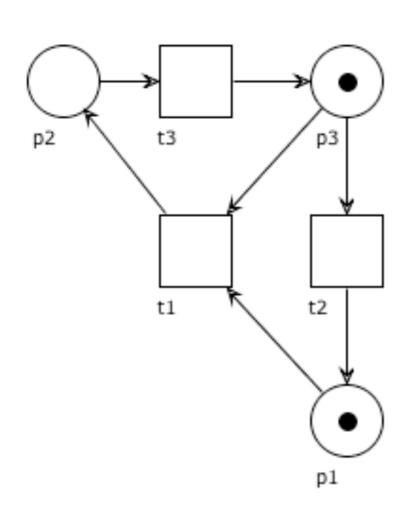
$$\begin{array}{lcl} \bullet t_1 & = & \{\,p_1,p_3\,\} \\ \bullet t_2 & = & \{\,p_3\,\} \\ \bullet t_4 & \neq & \bullet t_2 \end{array}$$

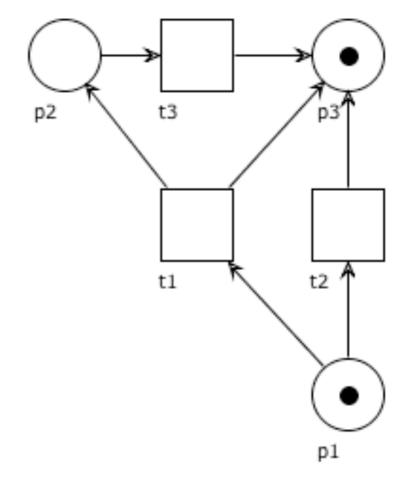
 $\bullet t_1 \cap \bullet t_2 = \{ p_3 \} \neq \emptyset$

$\begin{array}{lll} \bullet t_1 & = & \{p_1, p_3\} \\ \bullet t_2 & = & \{p_3\} \end{array}$ **Example**

$$\bullet t_1 = \bullet t_2$$

$$\bullet t_2 \cap \bullet t_3 = \emptyset$$





non free-choice

free-choice

Fundamental property of free-choice nets

Proposition: Let (P, T, F, M_0) be free-choice.

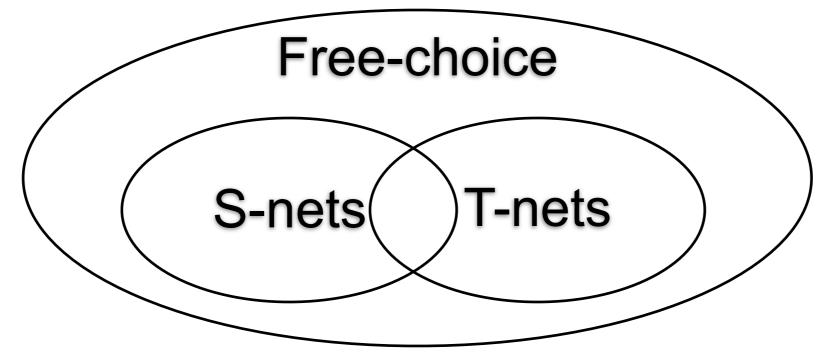
If $M \xrightarrow{t}$ and $t \in p \bullet$, then $M \xrightarrow{t'}$ for every $t' \in p \bullet$.

The proof is trivial, by definition of free-choice net

Prove that every S-net is free-choice

Prove that every T-net is free-choice

Show a free-choice net that is neither an S-net nor a T-net



Free-choice N*

Proposition: A workflow net N is free-choice iff N* is free-choice

N and N* differ only for the reset transition, whose pre-set (o) is disjoint from the pre-set of any other transition

Rank Theorem (main result)

Theorem:

A free-choice system (P,T,F,M0) is live and bounded iff

- 1. it has at least one place and one transition
- 2. it is connected
- 3. M₀ marks every proper siphon
- 4. it has a positive S-invariant
- 5. it has a positive T-invariant
- 6. $rank(N) = |C_N| 1$

(where C_N is the set of clusters)

Clusters

Cluster

Let x be the node of a net N=(P,T,F)(not necessarily free-choice)

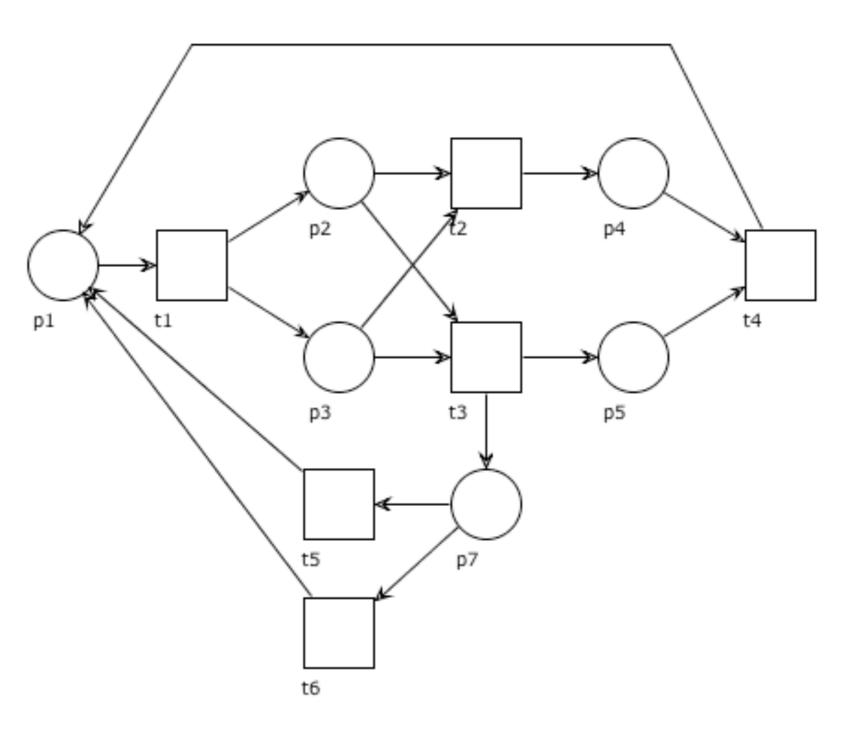
Definition:

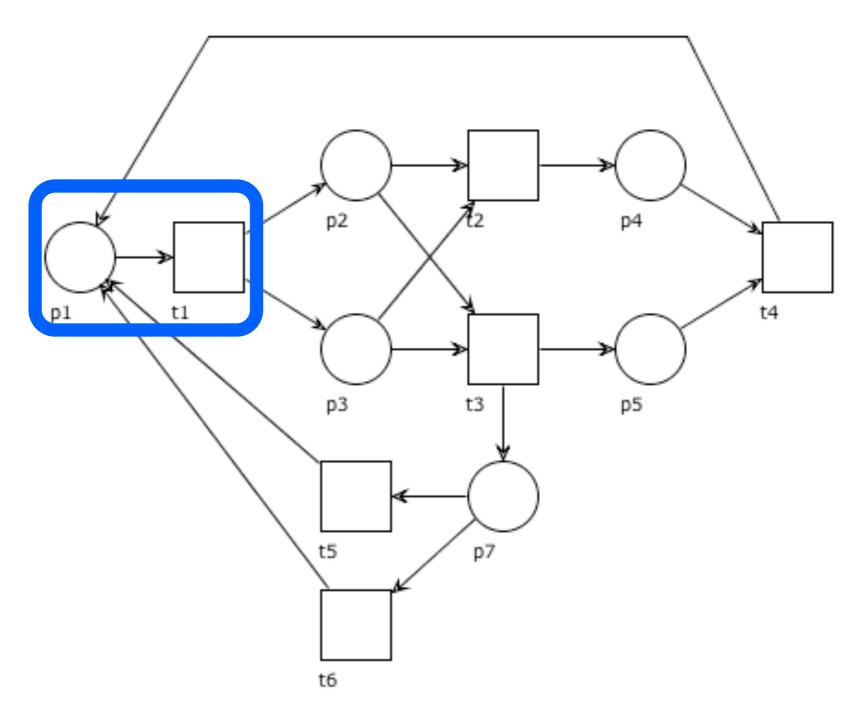
The **cluster** of x, written [x], is the least set s.t.

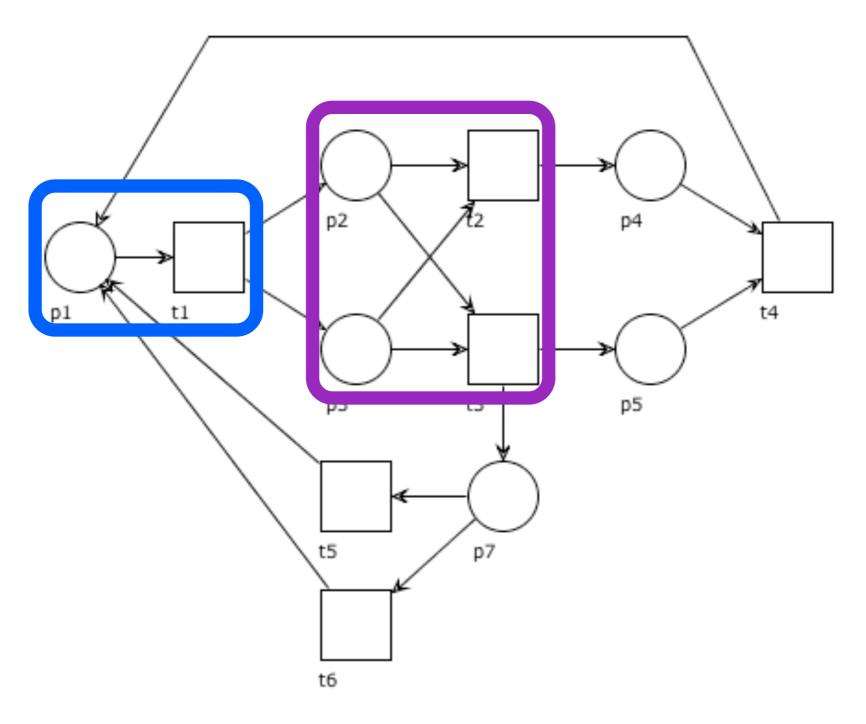
- 1. $x \in [x]$
- 2. if $p \in [x] \cap P$ then $p \bullet \subseteq [x]$
- 3. if $t \in [x] \cap T$ then $\bullet t \subseteq [x]$

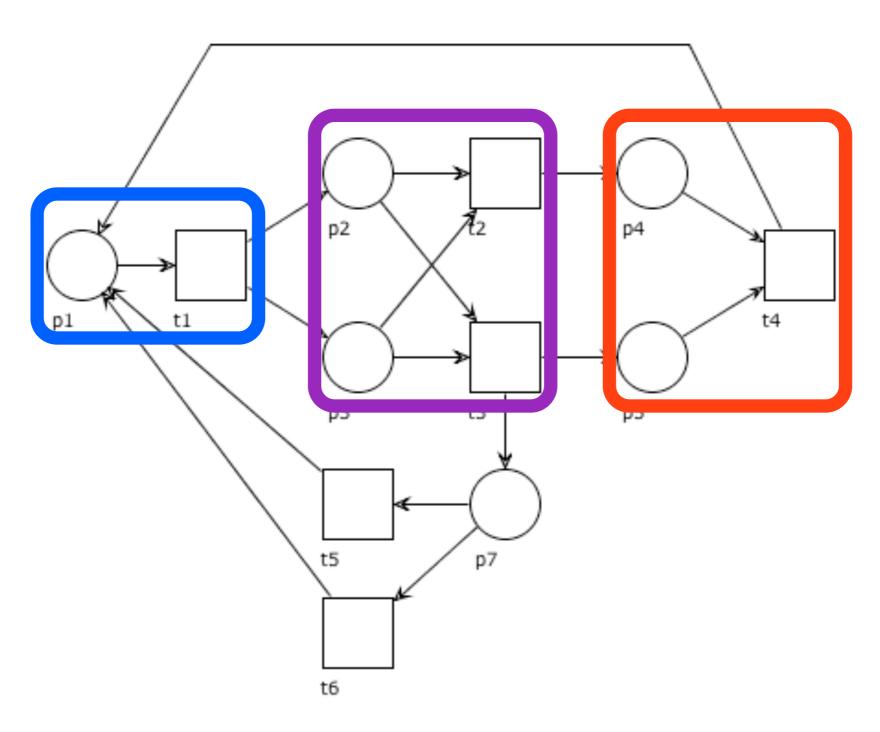
(if a place p is in the cluster, then all transitions in the post-set of p are in the cluster)

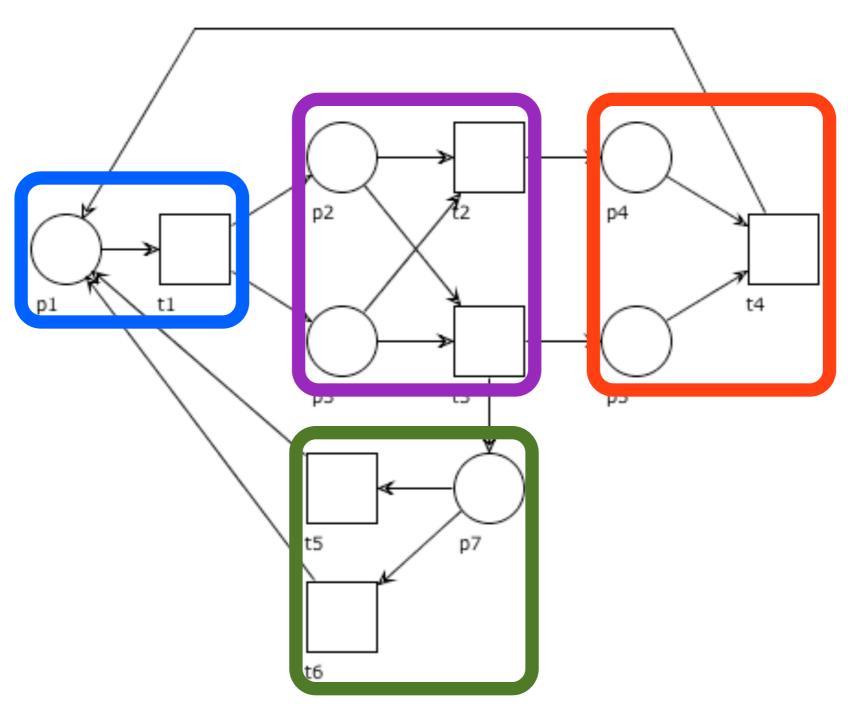
(if a transition t is in the cluster, then all places in the pre-set of t are in the cluster)











Clusters partition

Lemma: The set $\{[x] \mid x \in P \cup T\}$ is a partition of $P \cup T$

Take the reflexive, symmetric and transitive closure E of

$$F \cap (P \times T)$$

From the definition, it follows that

$$y \in [x]$$
 iff $(x,y) \in E$

Since E is an equivalence relation, its classes define a partition

Fundamental property of clusters in f.c. nets

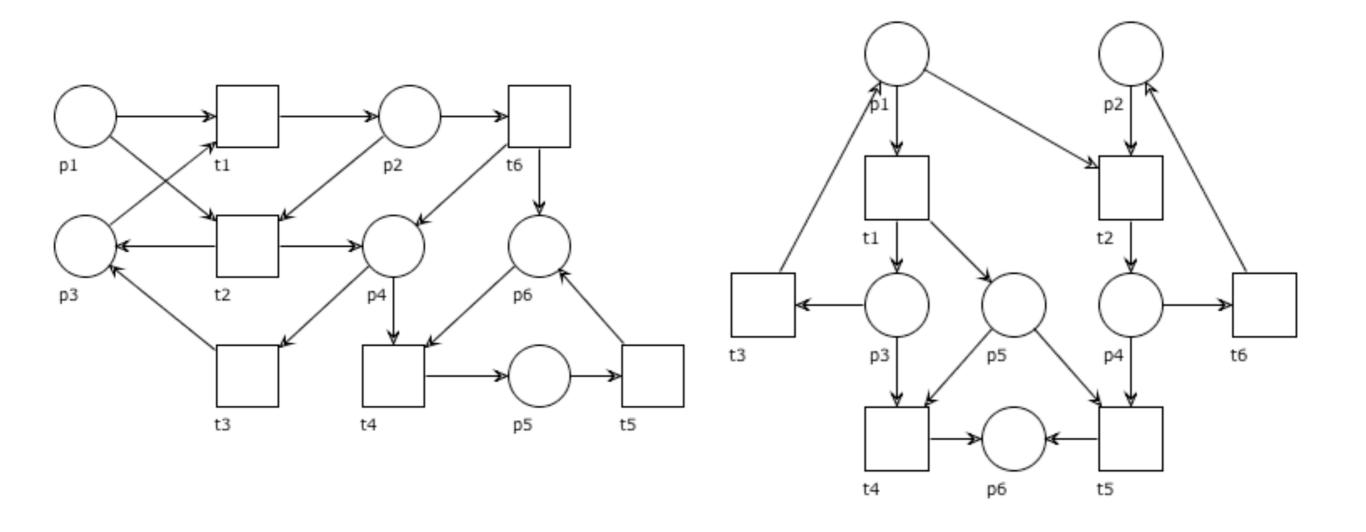
Proposition:

If $M \xrightarrow{t}$, then for any $t' \in [t]$ we have $M \xrightarrow{t'}$

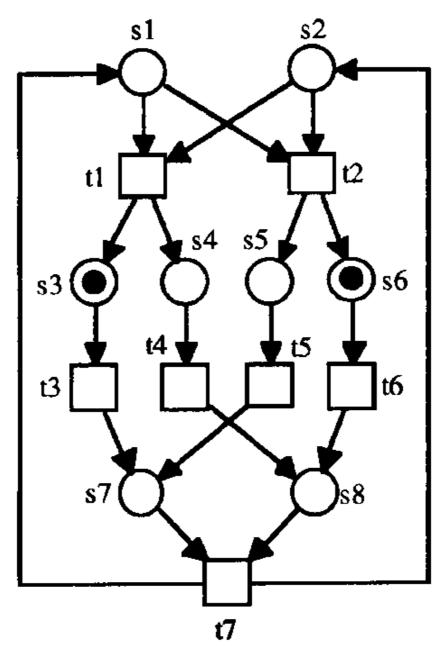
Immediate consequence of the fact that, for free-choice nets

$$t, t' \in [x]$$
 iff $\bullet t = \bullet t'$

Draw all clusters in the nets below



Draw all clusters in the free-choice net below



Stable markings

Stable set of markings

Definition: A set of markings M is called **stable** if

$$M \in \mathbf{M}$$
 implies $M \subseteq \mathbf{M}$

(starting from any marking in the stable set **M**, no marking outside **M** is reachable)

Question time

Given a net system:

Is the singleton set { 0 } a stable set?

Is the set of all markings a stable set?

Is the set of live markings a stable set?

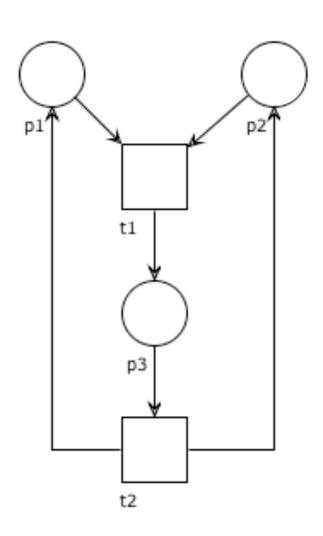
Is the set of deadlock markings a stable set?

Stability check

M is stable iff $\forall M, t, M'. (M \in \mathbf{M} \land M \xrightarrow{t} M' \text{ implies } M' \in \mathbf{M})$

Example

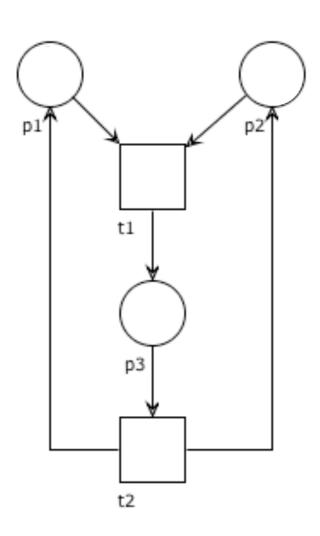
Which of the following is a stable set of markings?



$$\left\{ \begin{array}{l} 2p_1 + p_2 \\ 2p_1 + p_2 \\ p_1 + 2p_3 \end{array} \right\}$$

$$\left\{ \begin{array}{l} p_1 \\ p_2 \end{array} \right\}$$

Which of the following is a stable set of markings?



```
\left\{\begin{array}{l}p_{1}\,,\;p_{3}\,\right\}\\ \left\{\begin{array}{l}2p_{1}+2p_{2}\,,\;2p_{3}\,\right\}\\ \left\{\begin{array}{l}2p_{1}+2p_{2}\,,\;p_{1}+p_{2}+p_{3}\,,\;2p_{3}\,\right\}\\ \left\{\begin{array}{l}p_{1},\;2p_{1}+2p_{2}\,,\;p_{1}+p_{2}+p_{3}\,,\;2p_{3}\,\right\}\end{array}\right.
```

Given a net system:

Is the set { M | M(P)=1 } a stable set?

Is the set of markings reachable from M₀ a stable set?

Is the set { M | M(P)<k } a stable set?

Let I be an S-invariant

Is the set $\{ M \mid I \cdot M = I \cdot M_0 \}$ a stable set?

Is the set $\{ M \mid I \cdot M \neq I \cdot M_0 \}$ a stable set?

Is the set $\{ M \mid I \cdot M = 1 \}$ a stable set?

Is the set $\{ M \mid I \cdot M = 0 \}$ a stable set?

Let **M** and **M**' be stable sets
Is their union a stable set?
Is their intersection a stable set?
Is their difference a stable set?

What is the least stable set that includes a marking M₀?

What is the largest stable set of a net?

Siphons

Proper siphon

Definition:

A set of places R is a **siphon** if $\bullet R \subseteq R \bullet$

It is a **proper siphon** if $R \neq \emptyset$

Siphons, intuitively

A set of places R is a siphon if

all transitions that can produce tokens in the places of R

require some place in R to be marked

Therefore:

if no token is present in R, then no token will ever be produced in R

Siphon check

Let R be a set of places of a net

mark with √ all transitions that consume tokens from R

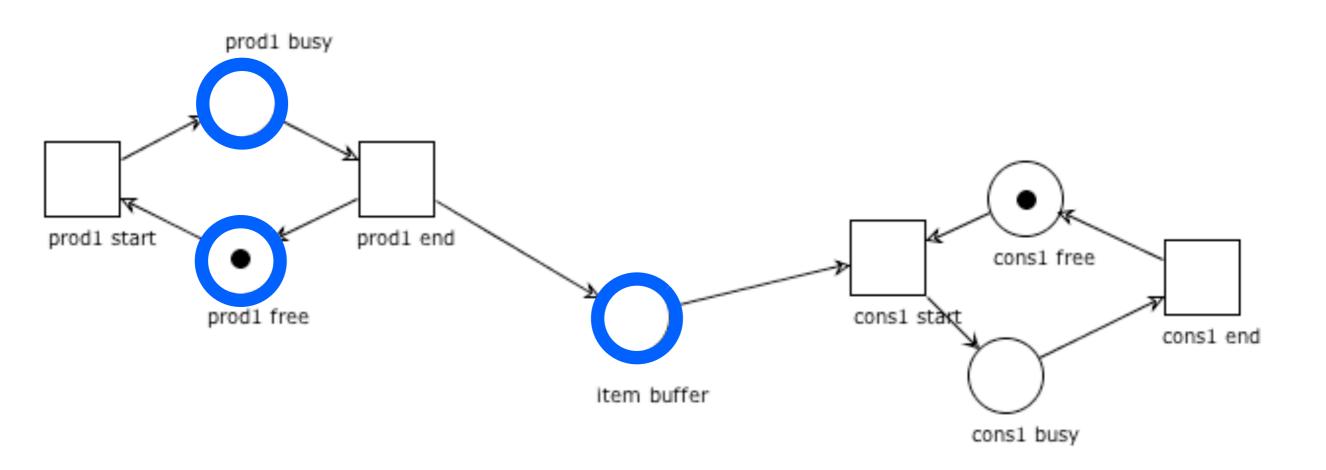
if there is a transition producing tokens in some place of R that is not marked by $\sqrt{\ }$, then R is not a siphon

Otherwise R is a siphon

 $\bullet R \subseteq R \bullet$

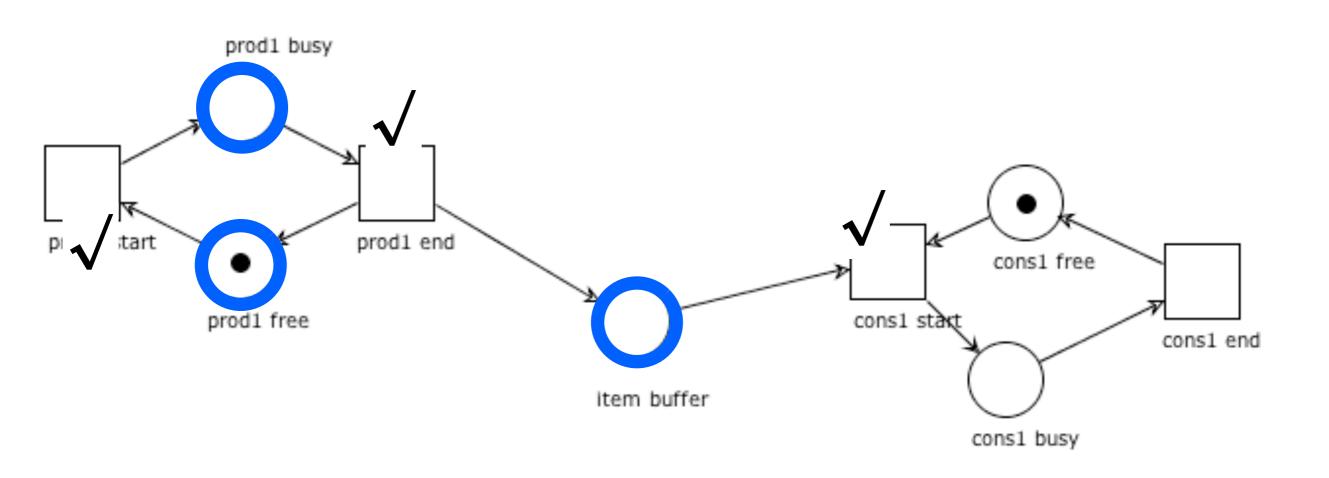
Siphon check: example

Is R = { prod1busy, prod1free, itembuffer} a siphon?



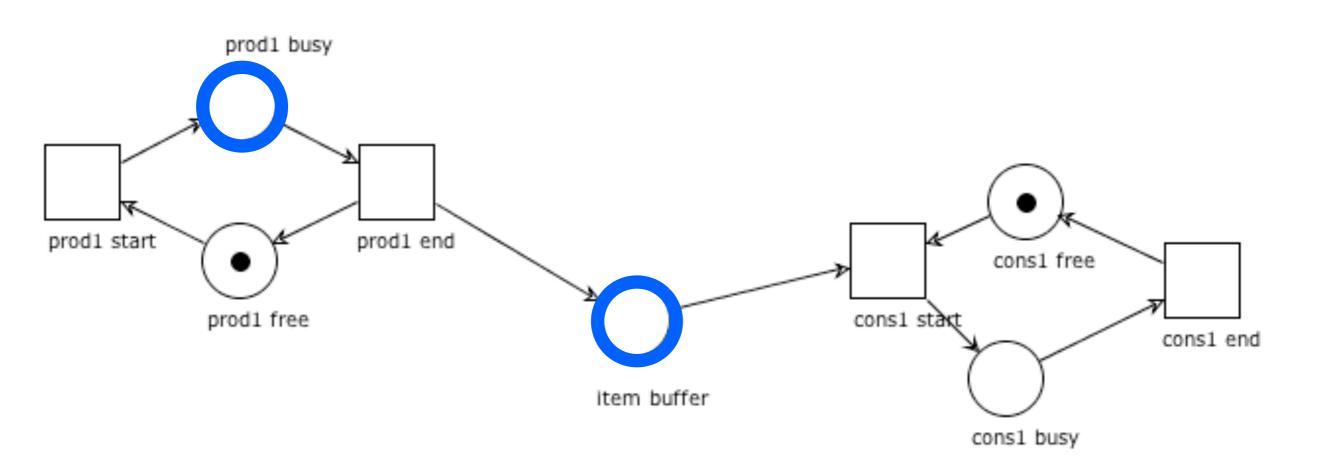
Siphon check: example

Is R = { prod1busy, prod1free, itembuffer} a siphon?



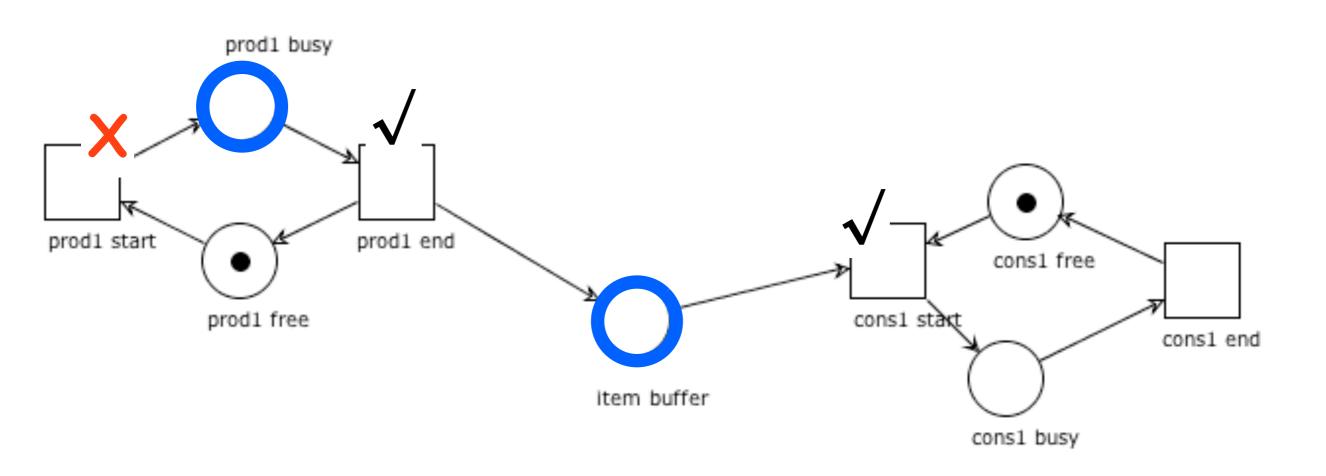
Siphon check: example

Is R = { prod1busy, itembuffer} a siphon?



Siphon check: example

Is R = { prod1busy, itembuffer} a siphon?



Fundamental property of siphons

Proposition: Unmarked siphons remain unmarked

Take a siphon R.

We just need to prove that the set of markings $\mathbf{M} = \{ M \mid M(R)=0 \}$ is stable, which is immediate by definition of siphon

Consequence of the fundamental property

Corollary:

If a siphon R is marked at some reachable marking M, then it was initially marked at M₀

By hypothesis: M(R)>0

By contradiction: assume M₀(R)=0 Then by the fundamental property of siphons: M(R)=0 which is absurd

Siphons and liveness

Prop.: Live systems have no unmarked proper siphons (We show that every proper siphon R of a live system is initially marked)

Take $p \in R$ and let $t \in \bullet p \cup p \bullet$

Since the system is live, then there are $M,M'\in [\,M_0\,
angle$ such that

$$M \xrightarrow{t} M'$$

Therefore p is marked at either M or M'Therefore R is marked at either M or M'Therefore R was initially marked (at M_0)

Siphons and deadlock

Proposition:

Deadlocked systems have an unmarked proper siphon

Let M be a deadlocked marking

Let
$$R = \{ p \mid M(p) = 0 \}$$

Since M is deadlock: $R \bullet = T$

Therefore $\bullet R \subseteq T = R \bullet$ and R is a siphon. Since T cannot be empty, R is proper

A key observation

If we can guarantee that

all proper siphons are marked at every reachable marking,

then the system is deadlock free

Exercise

Prove that the union of siphons is a siphon

Traps

Proper trap

Definition:

A set of places R is a **trap** if $\bullet R \supseteq R \bullet$

It is a **proper trap** if $R \neq \emptyset$

Traps, intuitively

A set of places R is a trap if

all transitions that can consume tokens from R

produce some token in some place of R

Therefore:

if some token is present in R, then it is never possible for R to become empty

Trap check

Let R be a set of places of a net

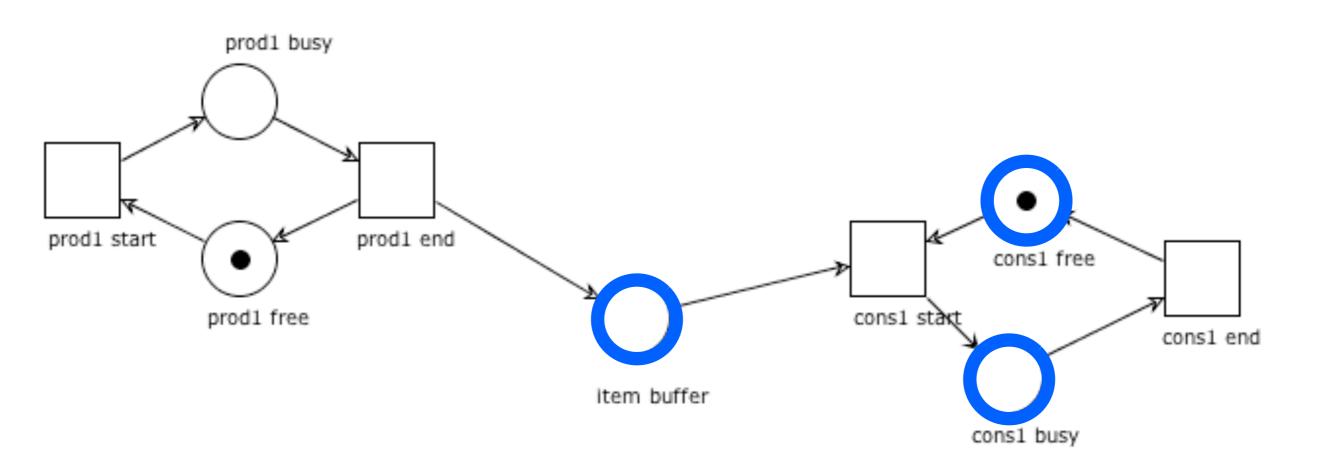
mark with √ all transitions that produce tokens in R

if there is a transition consuming tokens from some place in R that is not marked by $\sqrt{\ }$, then R is not a trap

Otherwise R is a trap

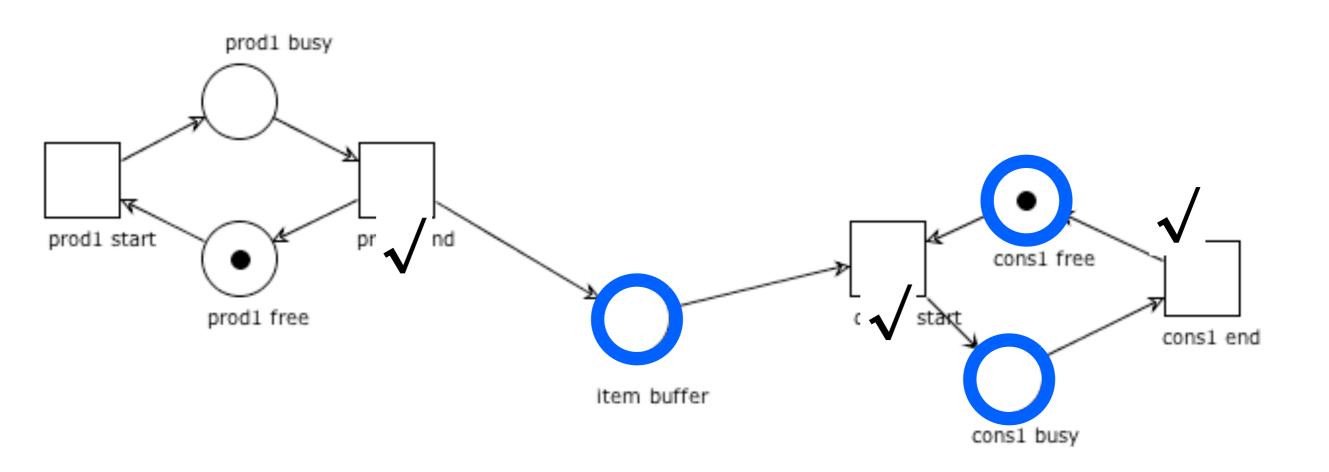
Trap check: example

Is R = { itembuffer, cons1busy, cons1free} a trap?



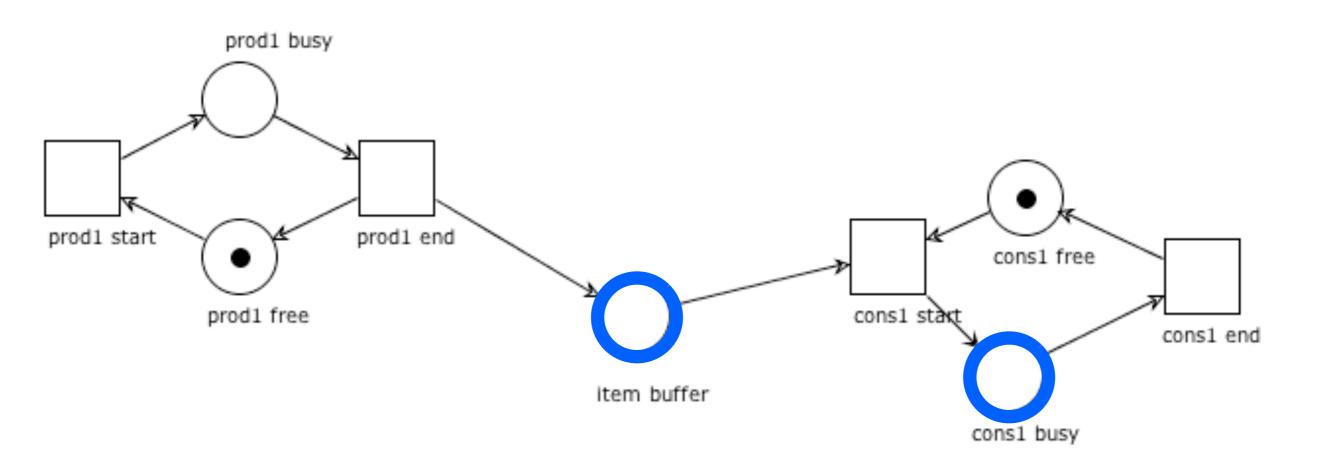
Trap check: example

Is R = { itembuffer, cons1busy, cons1free} a trap?



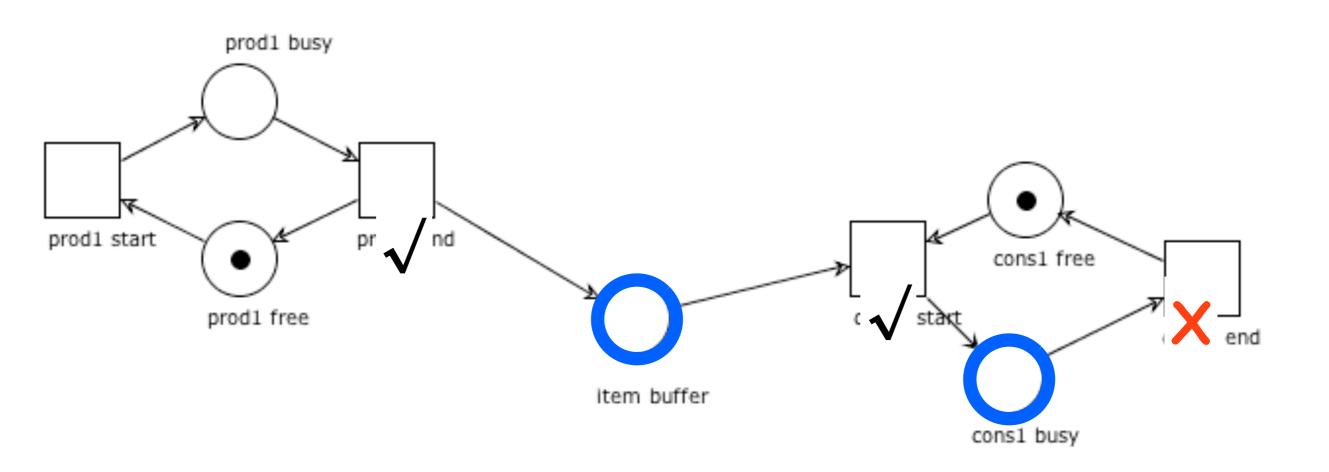
Trap check: example

Is R = { itembuffer, cons1busy} a trap?



Trap check: example

Is R = { itembuffer, cons1busy} a trap?



Fundamental property of traps

Proposition: Marked traps remain marked

Take a trap R.

We just need to prove that the set of markings $\mathbf{M} = \{ M \mid M(R) > 0 \}$ is stable, which is immediate by definition of trap

Consequence of the fundamental property

Corollary:

If a trap R is unmarked at some reachable marking M, then it was initially unmarked at M₀

By hypothesis: M(R)=0

By contradiction: assume $M_0(R)>0$

Then by the fundamental property of traps: M(R)>0 which is absurd

Exercise

Prove that the union of traps is a trap

Putting pieces together

unmarked siphons stay unmarked (marked siphons can become unmarked)

if a siphon is marked at M, it was marked at M₀

if all proper siphons always stay marked => deadlock-free

Putting pieces together

if all proper siphons always stay marked => deadlock-free

marked traps stay marked (unmarked traps can become marked)

if a trap is unmarked at M, it was unmarked at M₀

if a siphon contains a marked trap, it stays marked

if all siphons contain marked traps, they stay marked => deadlock-free

A sufficient condition for deadlock-freedom

Proposition:

If every proper siphon of a system includes an initially marked trap, then the system is deadlock-free

We show that if the system is not deadlock free, then there is a siphon that does not include any marked trap.

Assume some reachable M is dead.

Let R be the set of unmarked places at M.

Then, we have seen that R is a proper siphon.

Since M(R)=0, then R includes no trap marked at M.

Therefore, R includes no trap marked at M₀

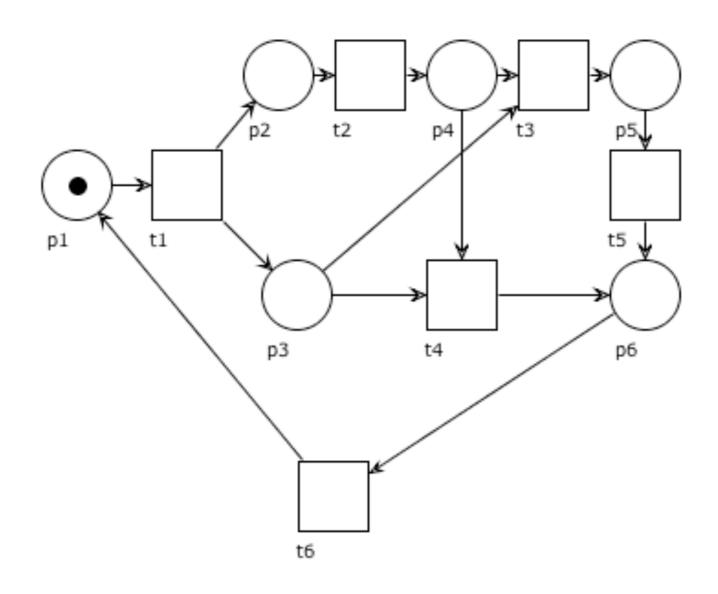
Note

It is easy to observe that every siphon includes a (possibly empty) unique maximal trap with respect to set inclusion

Moreover, a siphon includes a marked trap iff its maximal trap is marked

Exercise

Find all siphons and traps in the net below



Live and dead places (recall)

Place liveness

Definition: Let (P, T, F, M_0) be a net system.

A place $p \in P$ is **live** if $\forall M \in [M_0)$. $\exists M' \in [M)$. M'(p) > 0

A place p is live
if every time it becomes unmarked
there is still the possibility to be marked in the future
(or if it is always marked)

Definition:

A net system (P, T, F, M_0) is **place-live** if every place $p \in P$ is live

liveness implies place-liveness

Dead nodes

Definition: Let (P, T, F) be a net system.

A transition $t \in T$ is **dead** at M if $\forall M' \in [M] \cdot M' \xrightarrow{t}$

A place $p \in P$ is **dead** at M if $\forall M' \in [M] . M'(p) = 0$

Some obvious facts

If a system is not live, it has a transition dead at some reachable marking

If a system is not place-live, it has a place dead at some reachable marking

If a place / transition is dead at M, then it remains dead at any marking reachable from M (the set of dead nodes can only increase during a run)

Every transition in the pre- or post-set of a dead place is also dead

An obvious facts in free-choice nets

In a free-choice net:

if an output transition t of a place p is dead at M

then any output transition t' of p is dead at M

(because t and t' must have the same pre-set)

Dead t, dead p

Lemma: If the transition t is dead at M in a free-choice net, then there is a non-live place p in the pre-set of t (i.e., p is dead at some marking reachable from M)

By contraposition, we prove: if all input places of t are live then t is not dead Let $\bullet t = [t] \cap P = \{p_1, ..., p_n\}$

Since all places $p_1, ..., p_n$ are live at M, there exists $M \xrightarrow{\sigma_1} M_1 \xrightarrow{\sigma_2} ... \xrightarrow{\sigma_n} M_n$ such that $M_i(p_i) > 0$ for all i

If the sequence contains $u \in [t]$ then t is not dead at M

If no transition in [t] appears in the sequence, then no token in $\bullet t$ is consumed Hence $M_n(p_i)>0$ for all i, and $M_n\stackrel{t}{\longrightarrow}$ and t is not dead at M

Place-liveness implies liveness in f.c. nets

Proposition: If a free-choice system is place-live, then it is live

If a free-choice system is not live then there is a transition t dead at some reachable marking M

But then some input place of t must be dead at M, so the system is not place-live

Consequence in f.c. nets: place-liveness = liveness

If a free-choice system is place-live, then it is live

In any system, liveness implies place-liveness

Therefore:

A free-choice system is live iff it is place-live

Non-liveness and unmarked siphons

Lemma: Every non-live free-choice system has a proper siphon R and a reachable marking M such that M(R)=0

By non-liveness: the system is not place-live, i.e., some p is dead at some L

Take $M\in [L]$ such that every place not dead at M is not dead at any marking of [M] of i.e. all markings in [M] have the same set R dead places (dead places remain dead)

Next we prove that R is a proper siphon and ${\cal M}(R)=0$

Non-liveness and unmarked siphons

Lemma: Every non-live free-choice system has a proper siphon R and a reachable marking M such that M(R)=0

- 1. R is a siphon
 - any $t \in \bullet R$ is dead at M (if not any $q \in t \bullet \cap R$ would not be dead)
 - every t dead at M has an input place in R (t has some input place dead at some marking reachable from M)
- 2. R is proper p is dead at L, hence it is dead at M, hence $p \in R$, hence $R \neq \emptyset$
- 3. M(R) = 0 because it contains dead places

Commoner's theorem

Commoner's theorem

Theorem:

A free-choice system is live

iff

every proper siphon includes an initially marked trap

(we show just the "if" direction, which is simpler)

Commoner's theorem: "if" direction

(Non-live free-choice implies that a proper siphon exists whose traps are all unmarked)

We know that a non-live free-choice system contains a proper siphon R such that M(R)=0

So every trap included in R is unmarked at M

Since marked traps remain marked, every trap included in R must have been initially unmarked

Complexity of the non-liveness problem in free-choice systems

A non-deterministic algorithm for non-liveness

- 1. guess a set of places R
- 2. check if R is a siphon (•R ⊆ R•)(polynomial time)
- 3. if R is a siphon, compute the maximal trap Q ⊆ R
- 4. if $M_0(Q)=0$, then answer "non-live" (polynomial time)

A polynomial algorithm for maximal trap in a siphon

3. if R is a siphon, compute the maximal trap Q ⊆ R

 $\bullet R \subseteq R \bullet$

Input: A net N=(P,T,F) and $R\subseteq P$ Output: $Q\subseteq R$

$$Q:=R$$
 while $(\exists p\in Q,\ \exists t\in p\bullet,\ t\not\in \bullet Q)$
$$Q:=Q\setminus \{p\}$$
 return Q

Main consequence

The non-liveness problem for free-choice systems is in NP

Is the same problem in P?

The corresponding deterministic algorithm cannot make the guess in step 1

It has to explore all possible subsets of places $2^{|P|}$ cases!

NP-completeness

We next sketch the proof of the reduction to non-liveness in a free-choice net of the CNF-SAT problem

(Satisfiability problem for propositional formulas in conjunctive normal form)

CNF-SAT formulas

Variables: $x_1, x_2, ..., x_n$

Literals: $x_1, \bar{x}_1, x_2, \bar{x}_2, ..., x_n, \bar{x}_n$

Clause: disjunction of literals

Formula: conjunction of clauses

Example: $\phi = (x_1 \vee \bar{x_3}) \wedge (x_1 \vee \bar{x_2} \vee x_3) \wedge (x_2 \vee \bar{x_3})$

Is there an assignment of boolean values to the variables such that $\phi = true$?

The free-choice net of a formula

The idea is to construct a free-choice system (P,T,F,M₀) and show that

the formula is satisfiable iff (P,T,F,M₀) is not live

CNF-SAT formulas

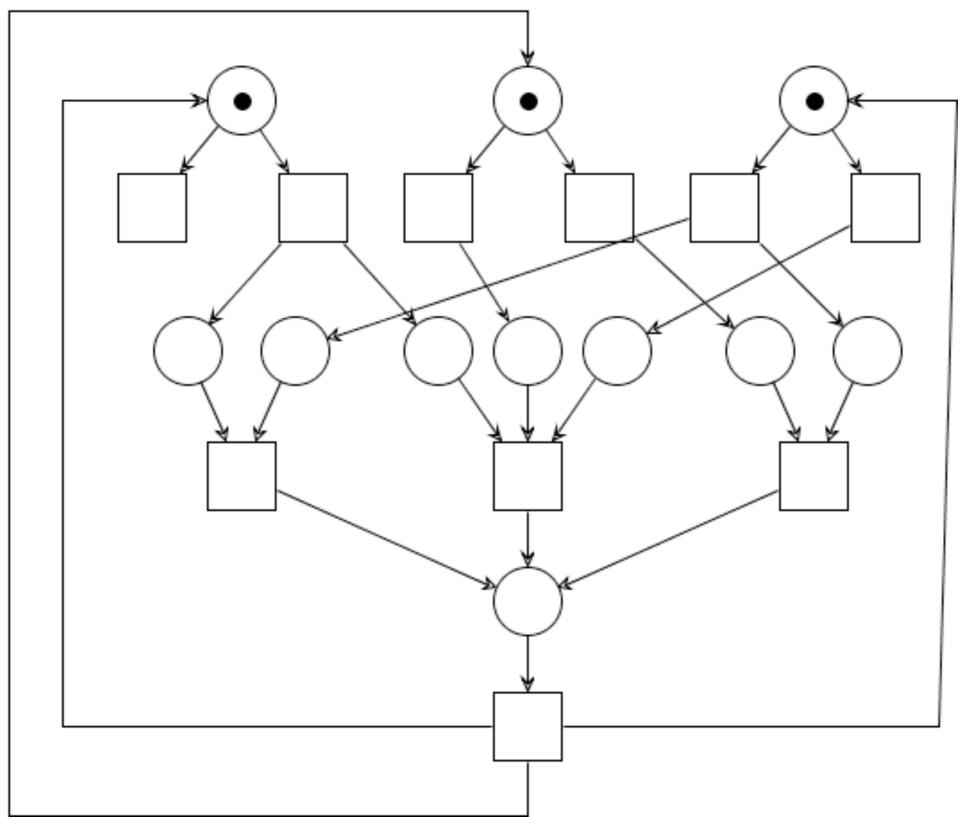
Is there an assignment of boolean values to the variables such that $\phi = true$?

Is there an assignment of boolean values to the variables such that $\neg \phi = false$?

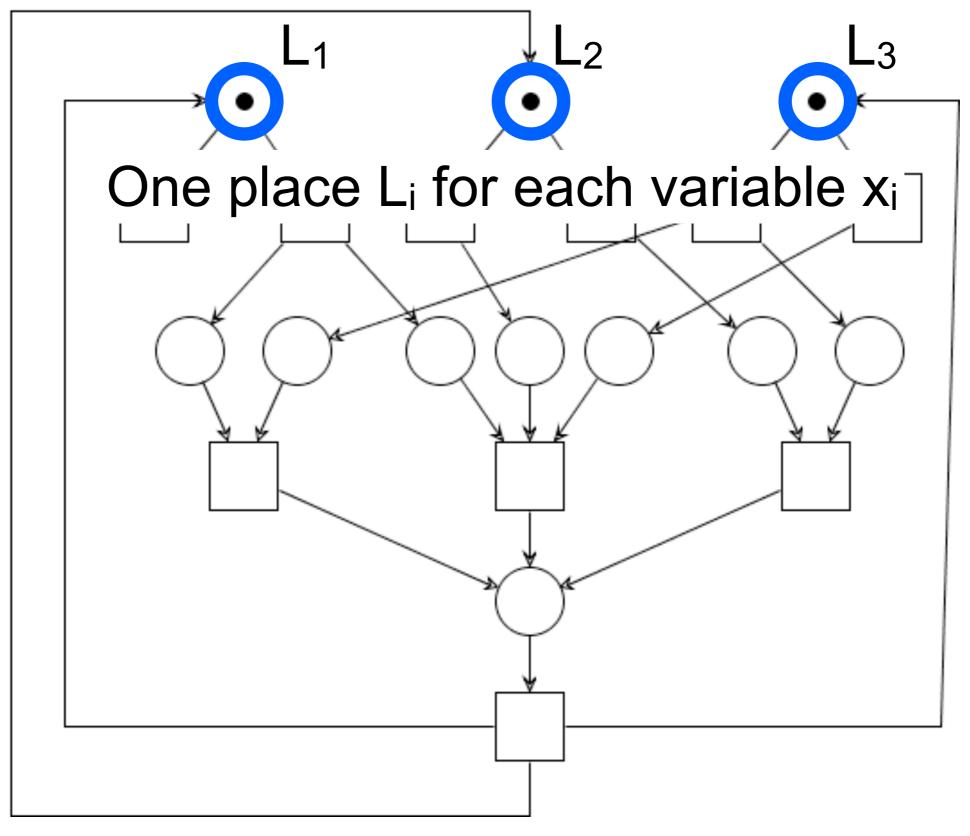
$$\phi = (x_1 \vee \overline{x}_3) \wedge (x_1 \vee \overline{x}_2 \vee x_3) \wedge (x_2 \vee \overline{x}_3)$$

$$\neg \phi = (\overline{x}_1 \land x_3) \lor (\overline{x}_1 \land x_2 \land \overline{x}_3) \lor (\overline{x}_2 \land x_3)$$

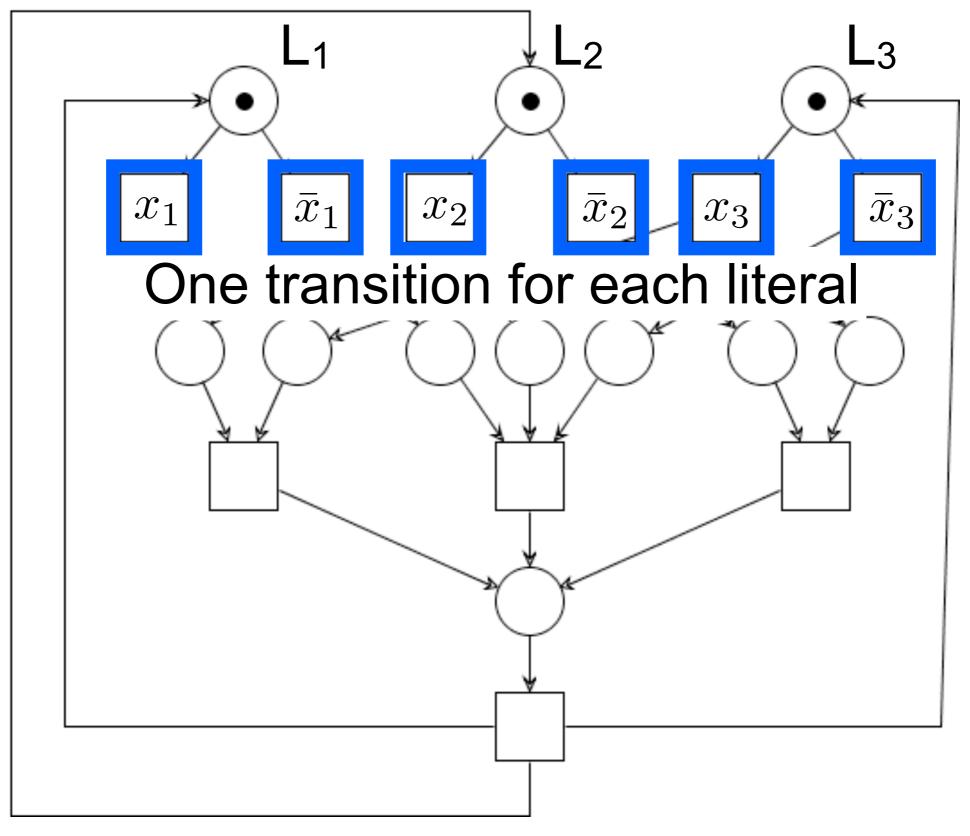
$$\neg \phi = (\overline{x}_1 \land x_3) \lor (\overline{x}_1 \land x_2 \land \overline{x}_3) \lor (\overline{x}_2 \land x_3)$$



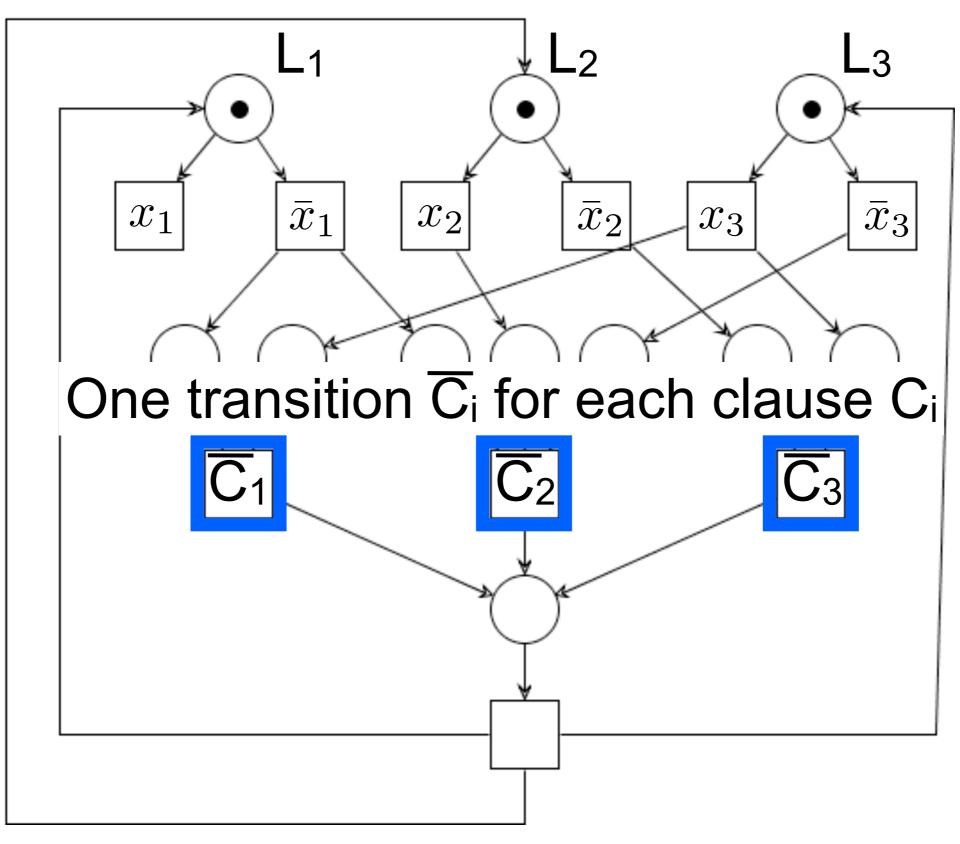
$$\neg \phi = (\overline{x}_1 \land x_3) \lor (\overline{x}_1 \land x_2 \land \overline{x}_3) \lor (\overline{x}_2 \land x_3)$$



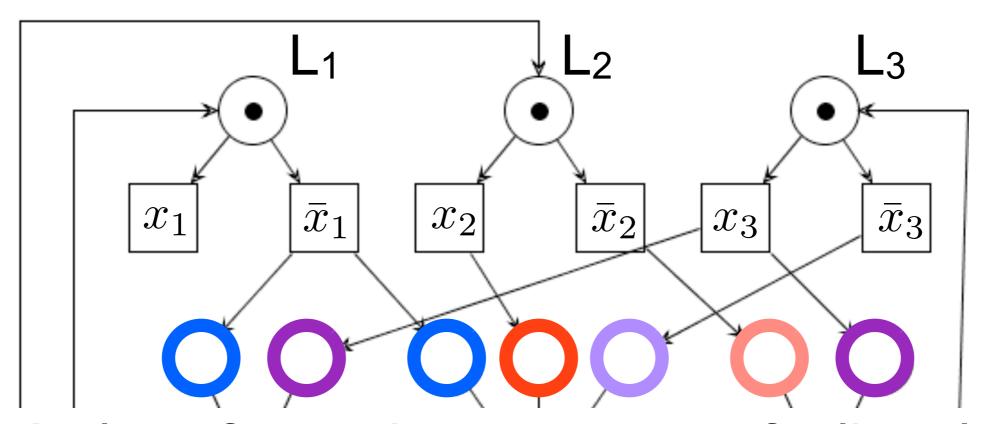
$$\neg \phi = (\overline{x}_1 \land x_3) \lor (\overline{x}_1 \land x_2 \land \overline{x}_3) \lor (\overline{x}_2 \land x_3)$$



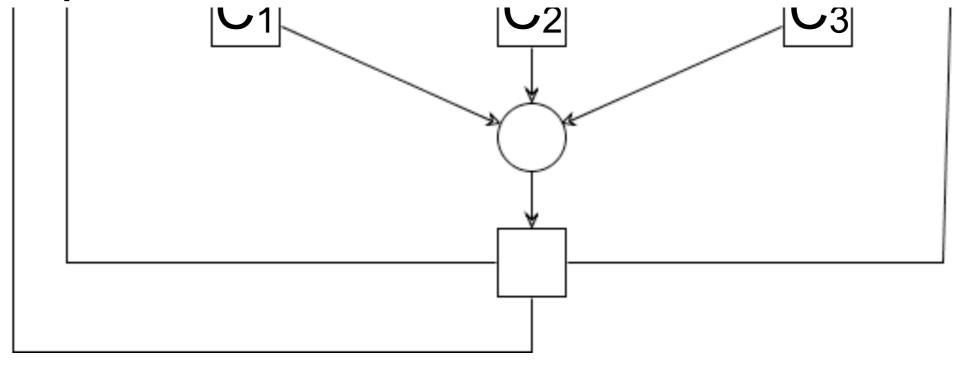
$$\neg \phi = (\overline{x}_1 \land x_3) \lor (\overline{x}_1 \land x_2 \land \overline{x}_3) \lor (\overline{x}_2 \land x_3)$$



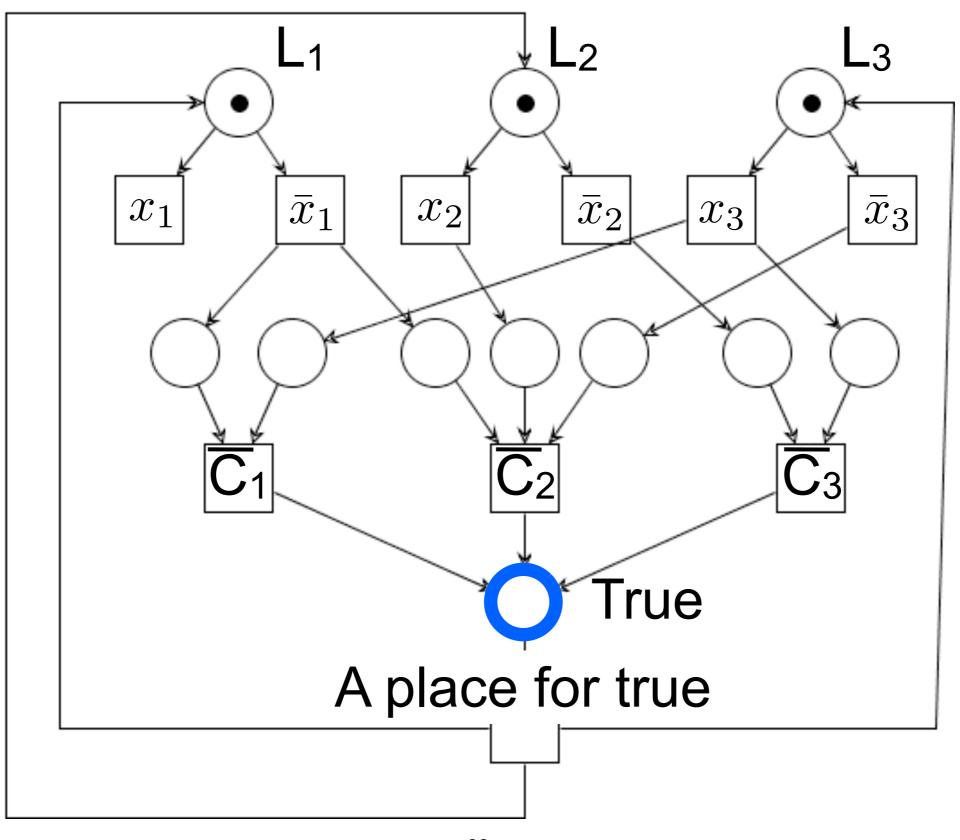
$$\neg \phi = (\overline{x}_1 \land x_3) \lor (\overline{x}_1 \land x_2 \land \overline{x}_3) \lor (\overline{x}_2 \land x_3)$$



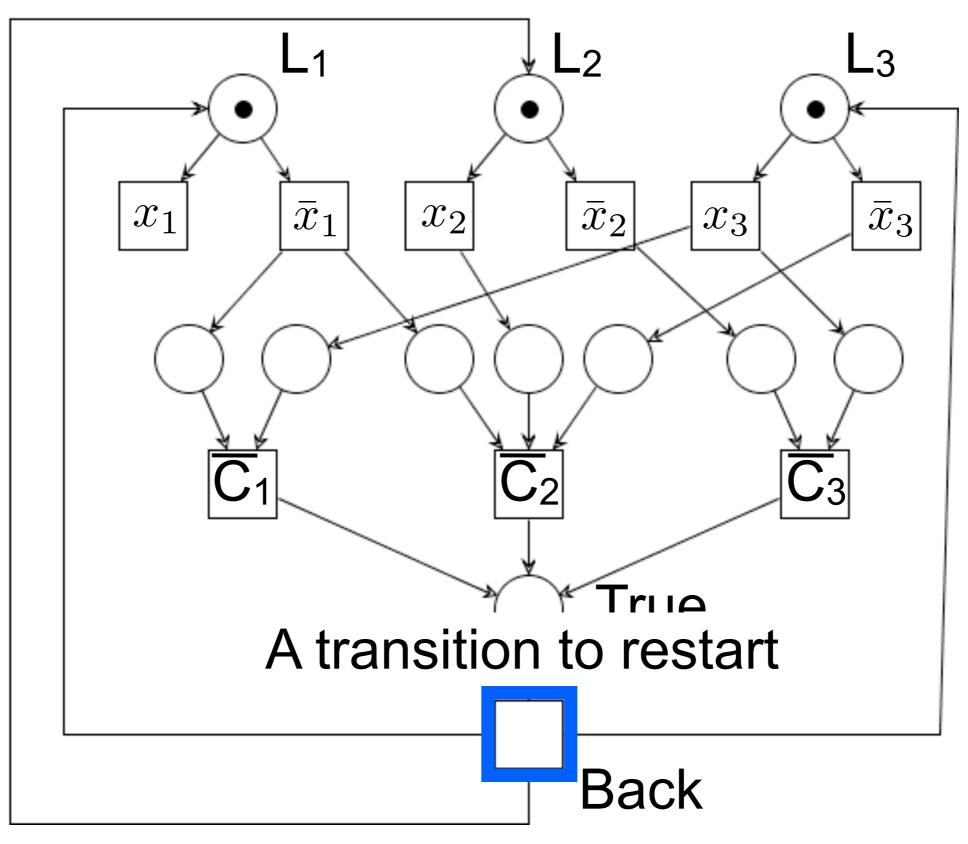
A place for each occurrence of a literal



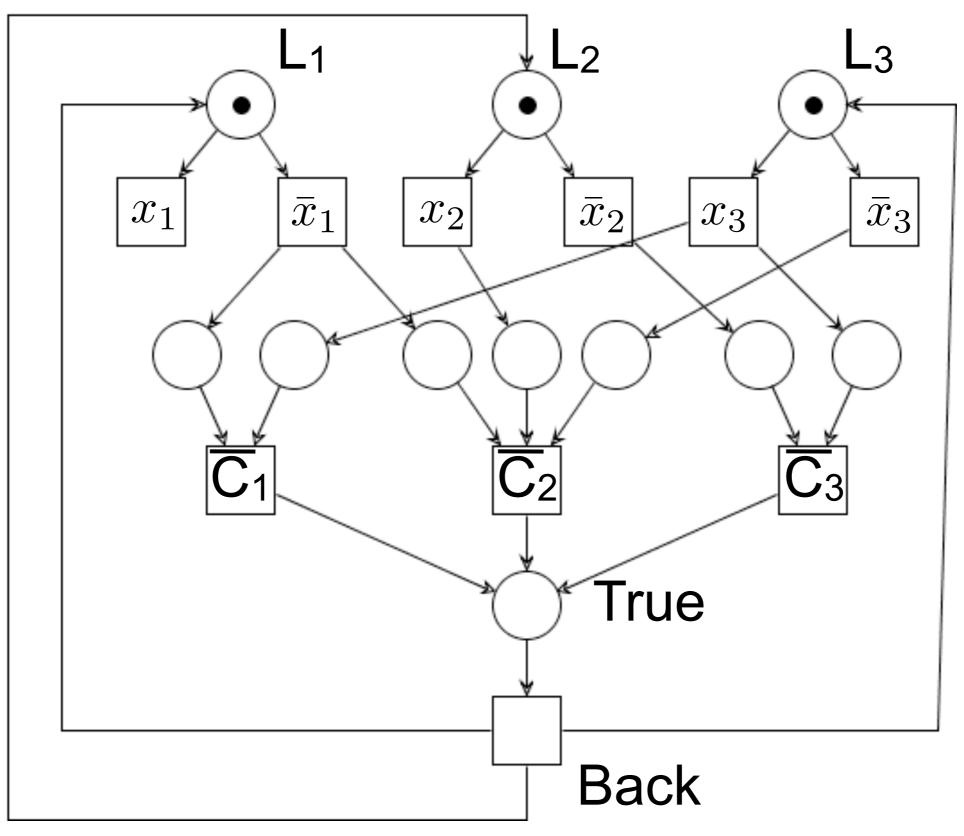
$$\neg \phi = (\overline{x}_1 \land x_3) \lor (\overline{x}_1 \land x_2 \land \overline{x}_3) \lor (\overline{x}_2 \land x_3)$$



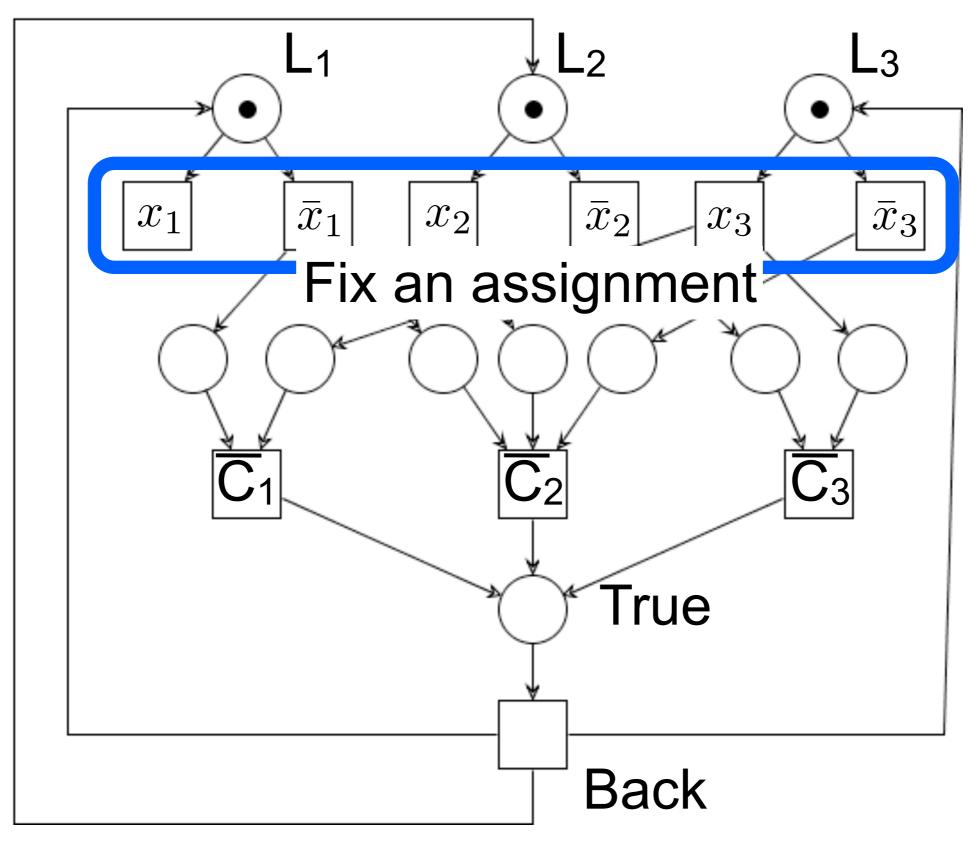
$$\neg \phi = (\overline{x}_1 \land x_3) \lor (\overline{x}_1 \land x_2 \land \overline{x}_3) \lor (\overline{x}_2 \land x_3)$$



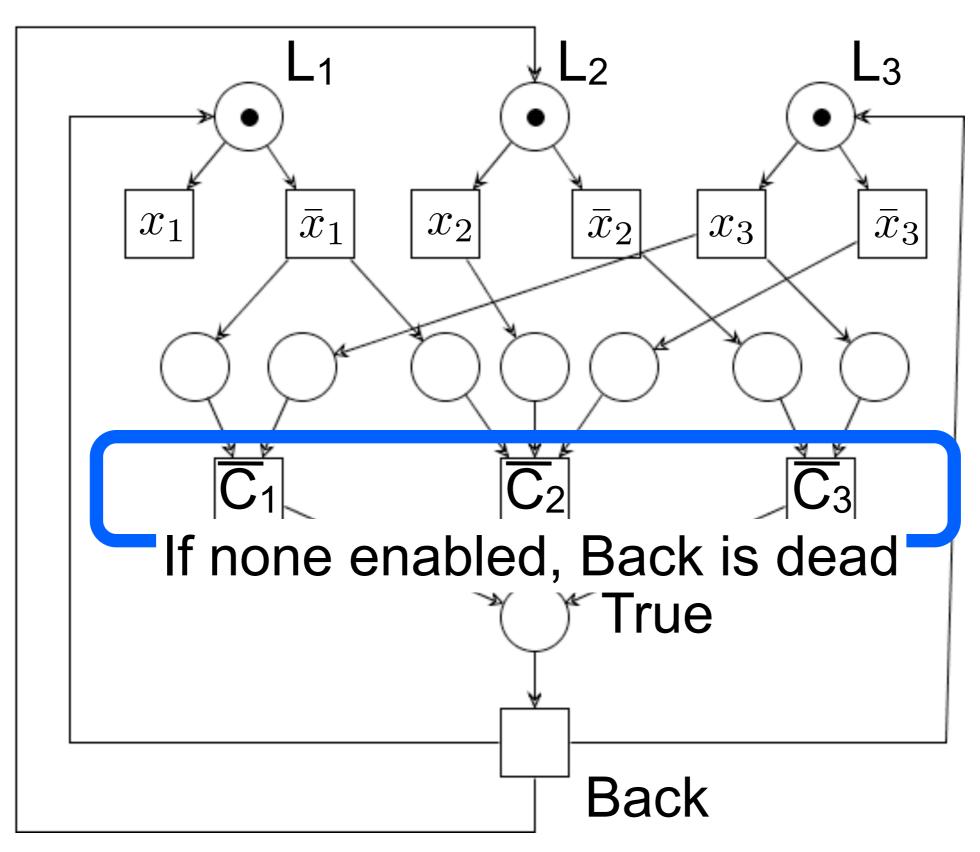
$$\neg \phi = (\overline{x}_1 \land x_3) \lor (\overline{x}_1 \land x_2 \land \overline{x}_3) \lor (\overline{x}_2 \land x_3)$$



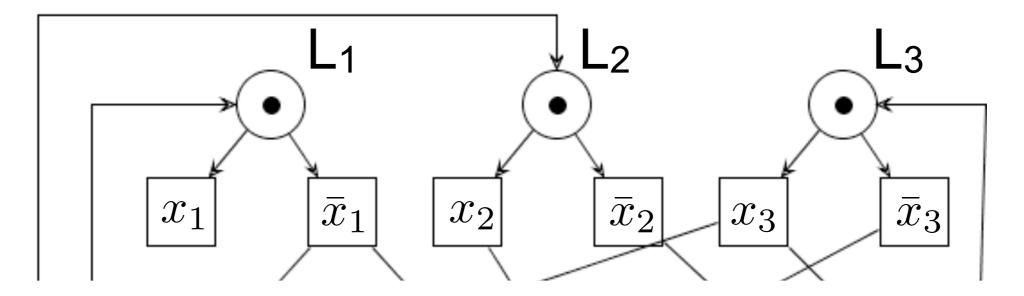
$$\neg \phi = (\overline{x}_1 \land x_3) \lor (\overline{x}_1 \land x_2 \land \overline{x}_3) \lor (\overline{x}_2 \land x_3)$$



$$\neg \phi = (\overline{x}_1 \land x_3) \lor (\overline{x}_1 \land x_2 \land \overline{x}_3) \lor (\overline{x}_2 \land x_3)$$

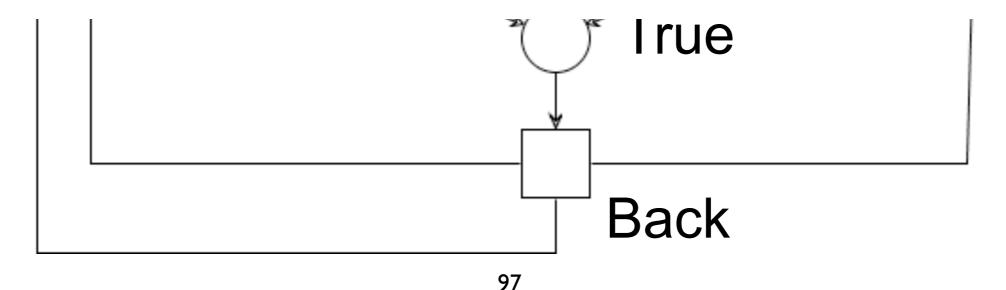


$$\neg \phi = (\overline{x}_1 \land x_3) \lor (\overline{x}_1 \land x_2 \land \overline{x}_3) \lor (\overline{x}_2 \land x_3)$$

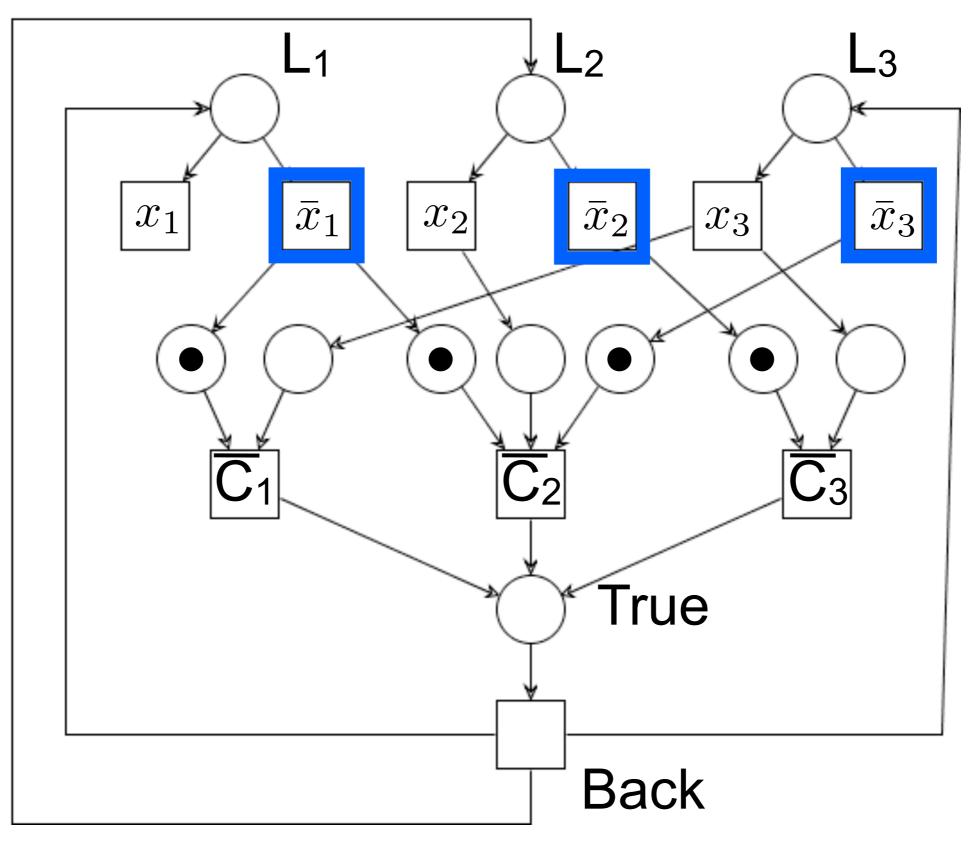


If ϕ is satisfiable, then the net is not live

If the net is not live, then ϕ is satisfiable



$$\neg \phi = (\overline{x}_1 \land x_3) \lor (\overline{x}_1 \land x_2 \land \overline{x}_3) \lor (\overline{x}_2 \land x_3)$$



No polynomial algorithm to decide liveness of a free-choice system exists

(unless P=NP)

Exercise

Draw the net corresponding to the formula

$$x_2 \wedge (x_1 \vee \overline{x}_3 \vee \overline{x}_4) \wedge (x_1 \vee \overline{x}_2) \wedge (\overline{x}_1 \vee x_4) \wedge (\overline{x}_2 \vee \overline{x}_4)$$

Is it satisfiable?

Live and bounded free-choice nets

Rank Theorem

Theorem:

A free-choice system (P,T,F,M0) is live and bounded iff

- 1. it has at least one place and one transition
- 2. it is connected
- 3. M₀ marks every proper siphon
- 4. it has a positive S-invariant
- 5. it has a positive T-invariant
- 6. $rank(N) = |C_N| 1$

(where C_N is the set of clusters)

A polynomial algorithm for maximal siphon

A polynomial algorithm for computing maximal siphon in R

Input: A net
$$N=(P,T,F,M_0)$$
, $R\subseteq P$
Output: $Q\subseteq R$

$$Q:=R$$
 while $(\exists p\in Q,\ \exists t\in \bullet p,\ t\not\in Q\bullet)$
$$Q:=Q\setminus \{p\}$$
 return Q

A polynomial algorithm for maximal unmarked siphon

3. M₀ marks every proper siphon

Input: A net $N=(P,T,F,M_0)$, $R=\{\,p\mid M_0(p)=0\,\}$ **Output:** $Q\subseteq R$ maximal unmarked siphon

$$Q:=R$$
 while $(\exists p\in Q,\ \exists t\in ullet p,\ t\not\in Qullet)$ $Q:=Q\setminus \{p\}$ return Q

If Q is empty then M₀ marks every proper siphon

Main consequence

Given a free-choice system, the problem to decide if it is live and bounded can be solved in polynomial time

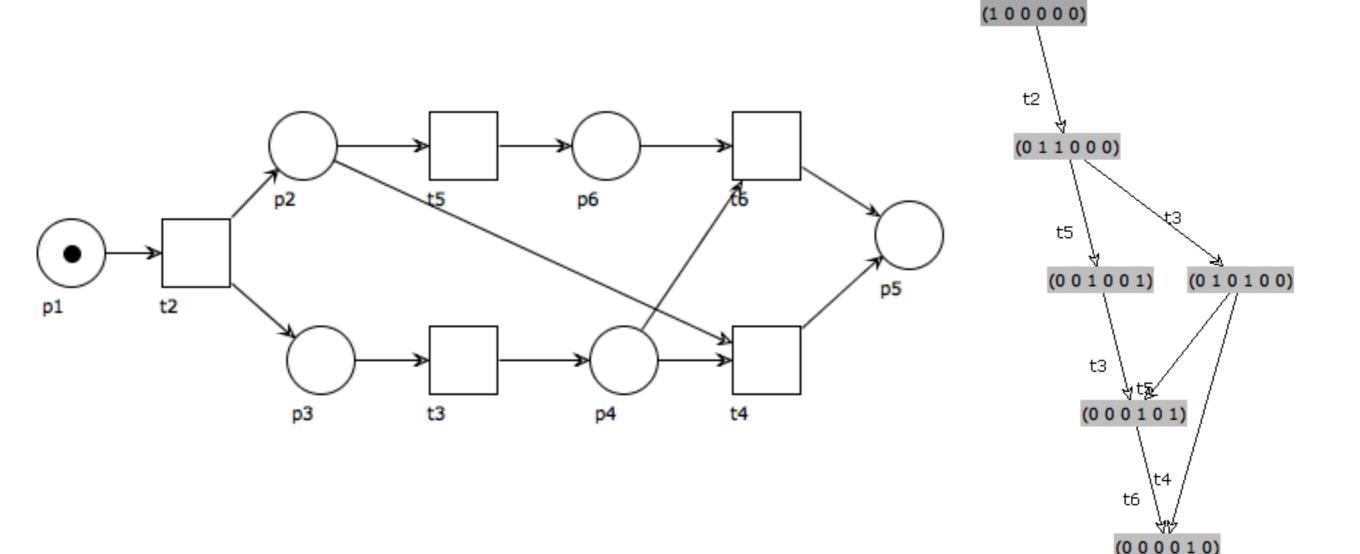
Free-Choice vs Soundness

Note that free-choice is orthogonal to soundness:

there exists WF-nets that are free-choice but not sound

there exists WF-nets that are sound but not free-choice

Example: sound but not free-choice



Exercise

Draw a workflow net that is free-choice but not sound

Coverability

S-Coverability analysis

A case is often composed by parallel threads of control (each thread imposing some order over its tasks)

The notion of S-coverability allows to reveal such threads

A technique to find a positive S-invariant

Decompose the free-choice net N in suitable S-nets so that any place of N belongs to an S-net (the same place can appear in more S-nets)

Each S-net provides a uniform S-invariant

A positive S-invariant is obtained as the sum of the S-invariants of each subnet

S-component

Definition: Let N=(P,T,F) and $\emptyset\subset X\subseteq P\cup T$ Let $N'=(P\cap X,T\cap X,F\cap (X\times X))$ be a subnet of N. N' is an **S-component** if

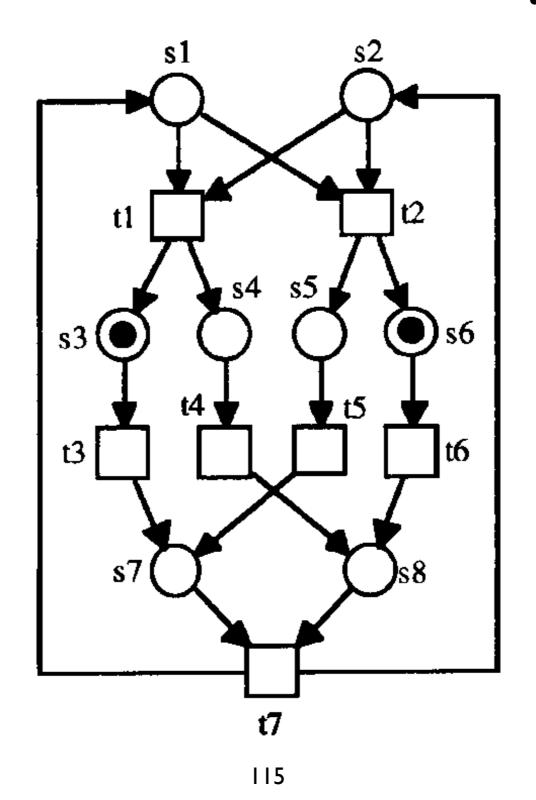
- 1. it is a strongly connected S-net
- 2. for every place $p \in X \cap P$, we have $\bullet p \cup p \bullet \subseteq X$

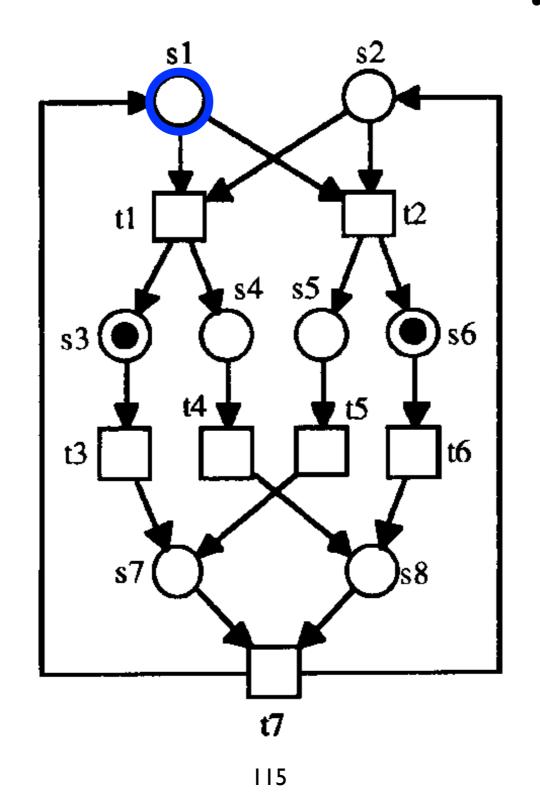
S-cover

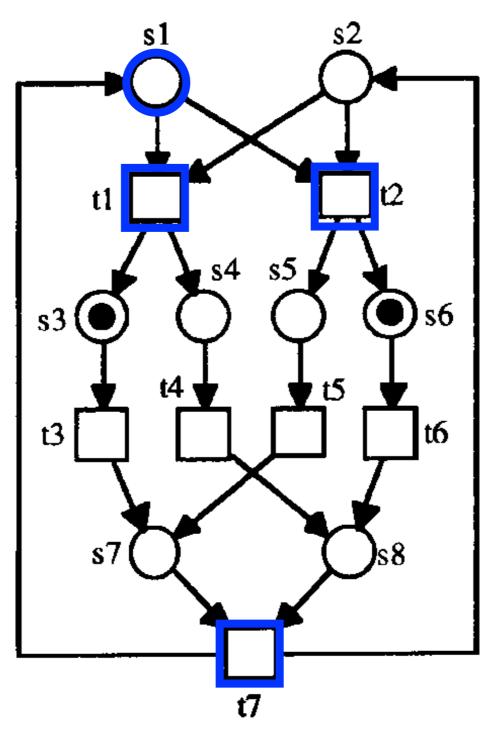
Definition: Let **C** be a set of S-components of a net N

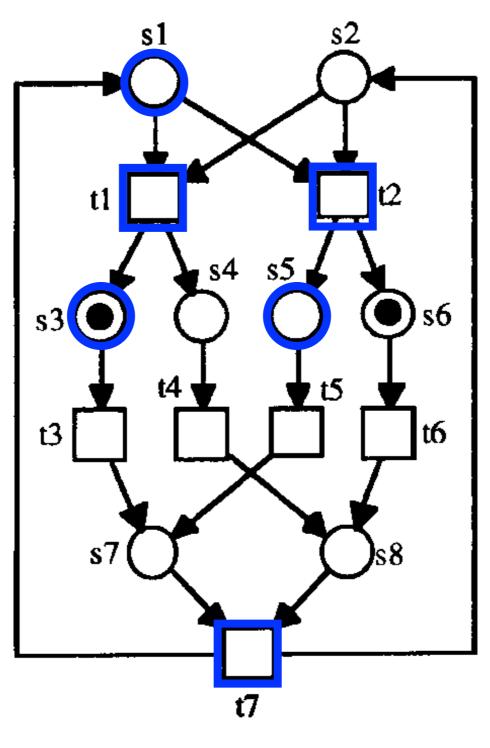
C is an S-cover if every place p of N belongs to one or more S-components in C

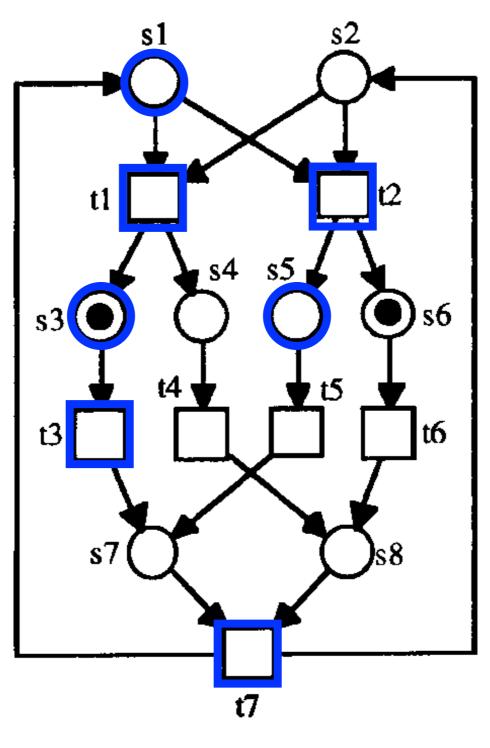
We say that N is **covered by S-components** if it has an S-cover

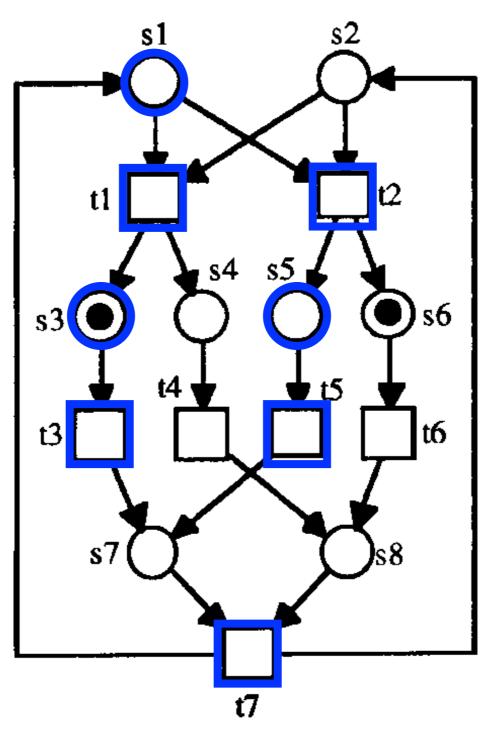


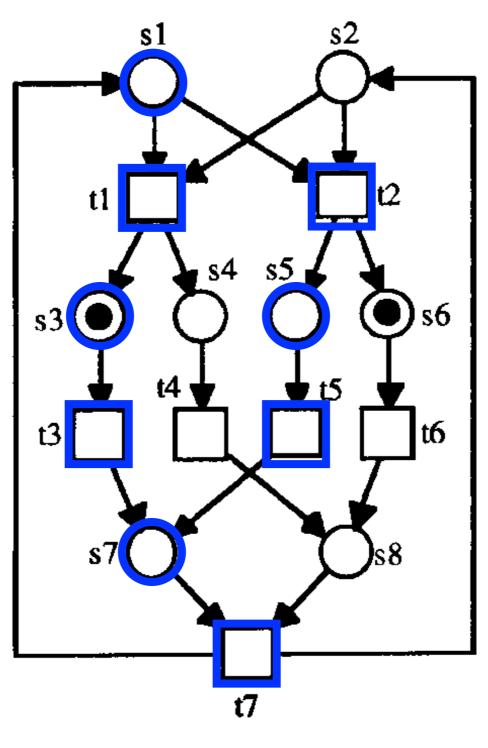


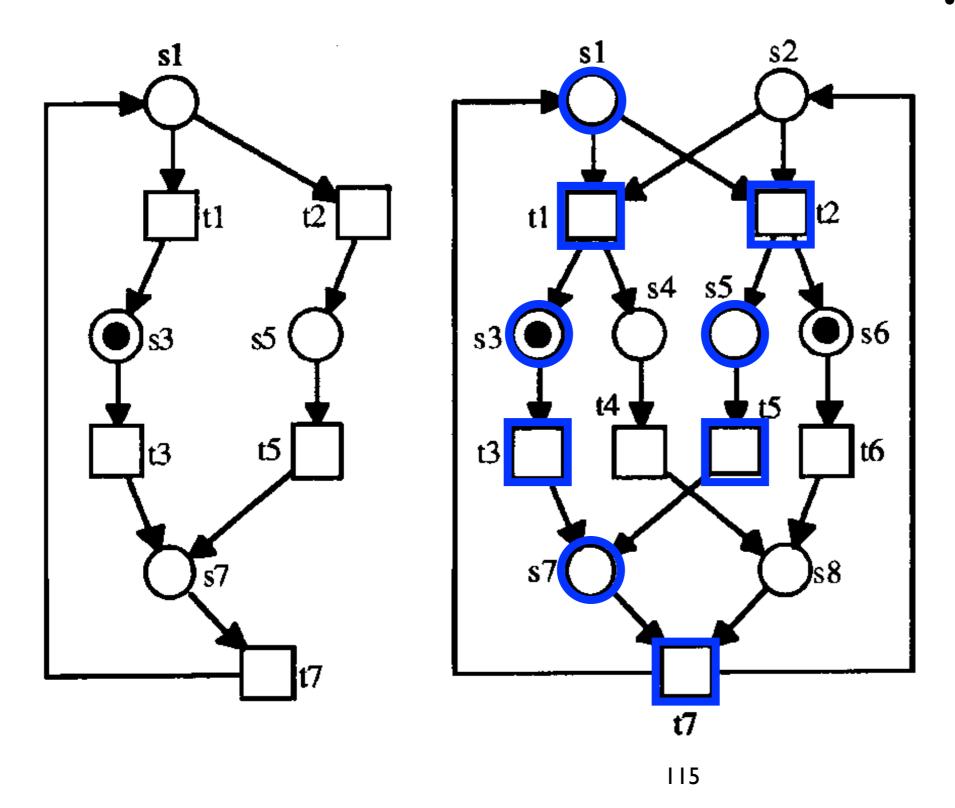


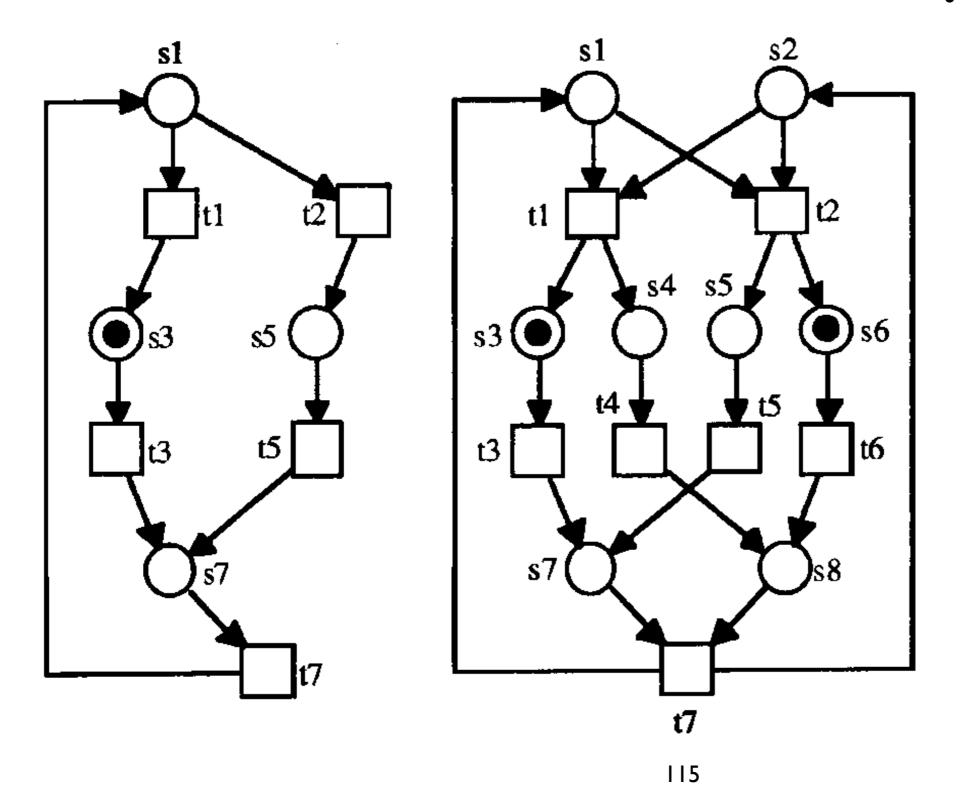


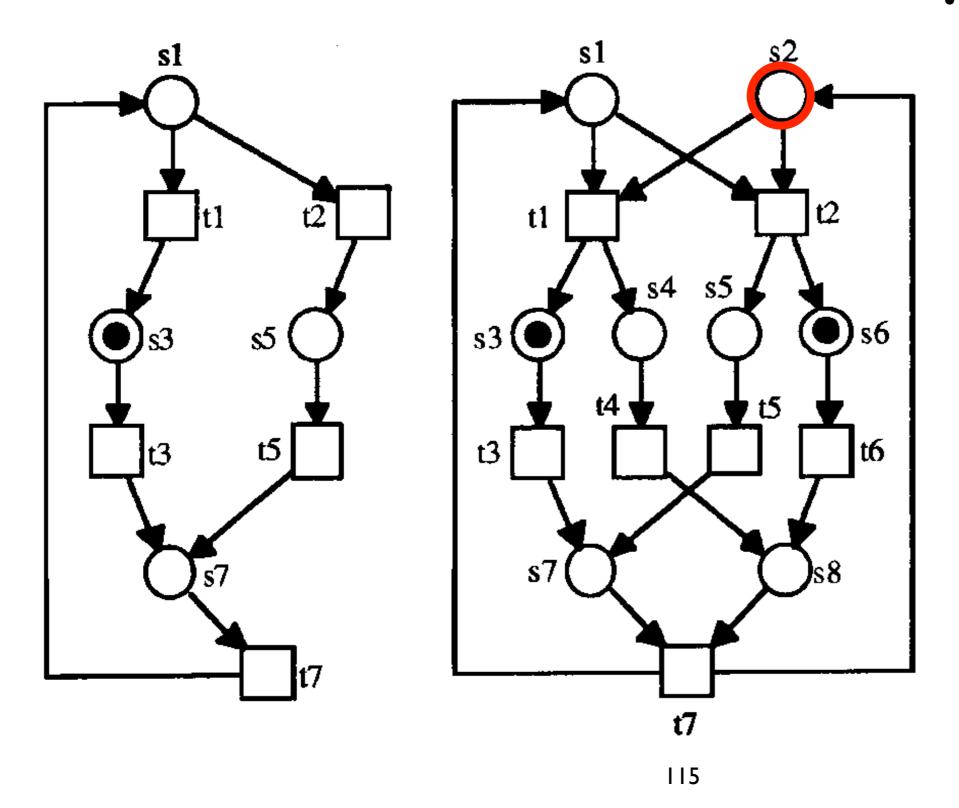


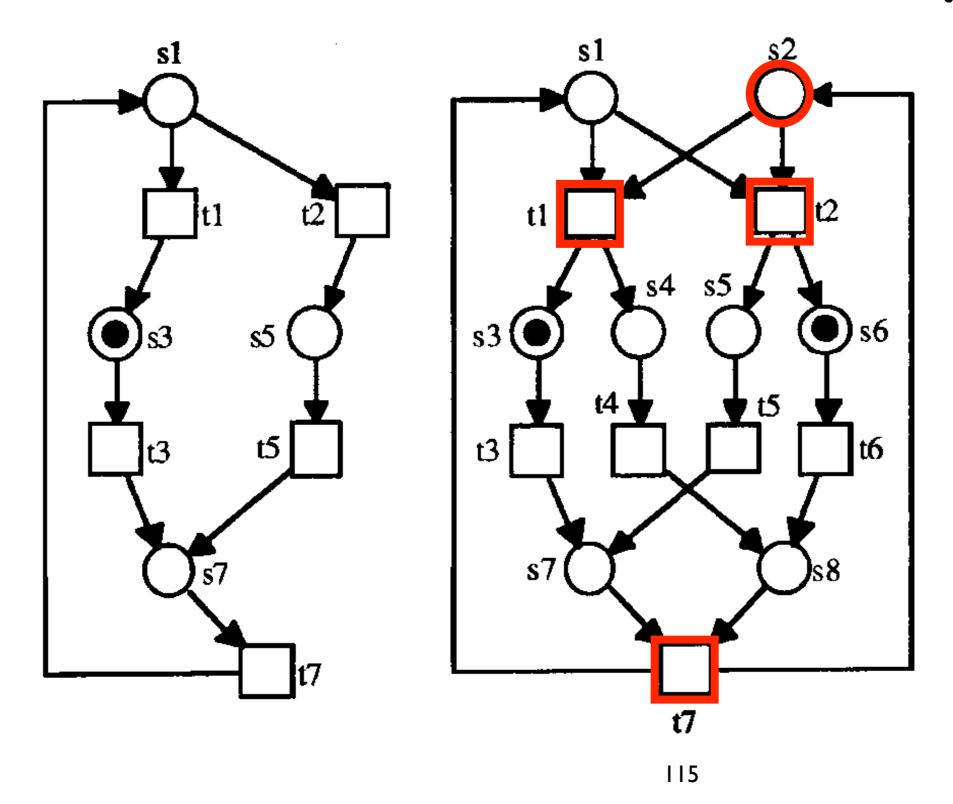


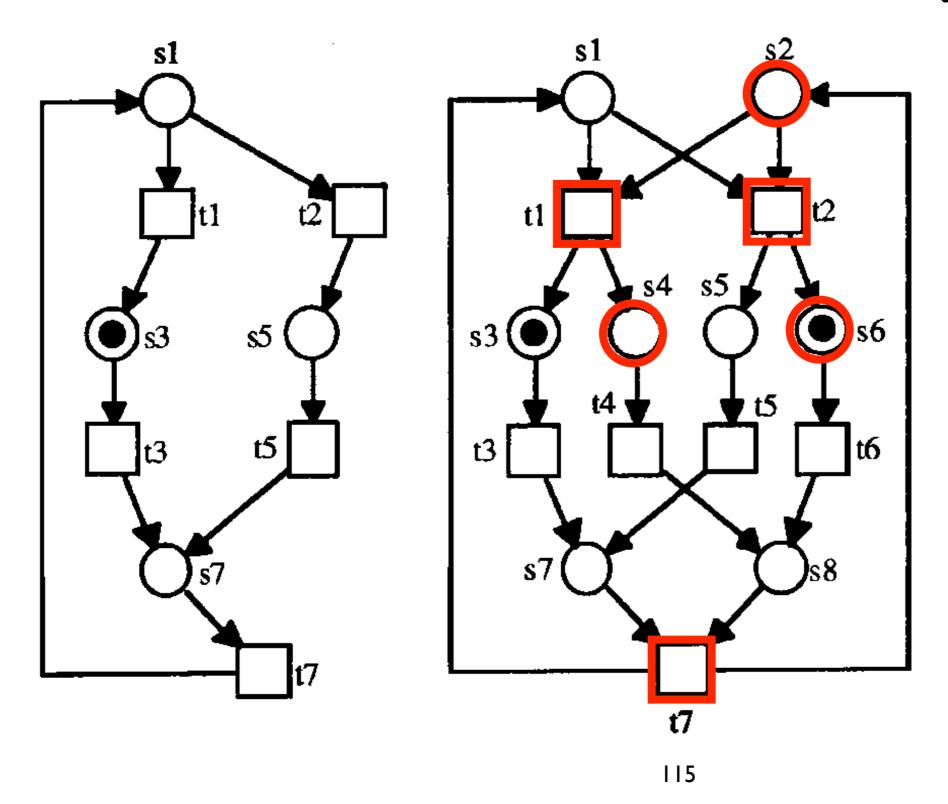


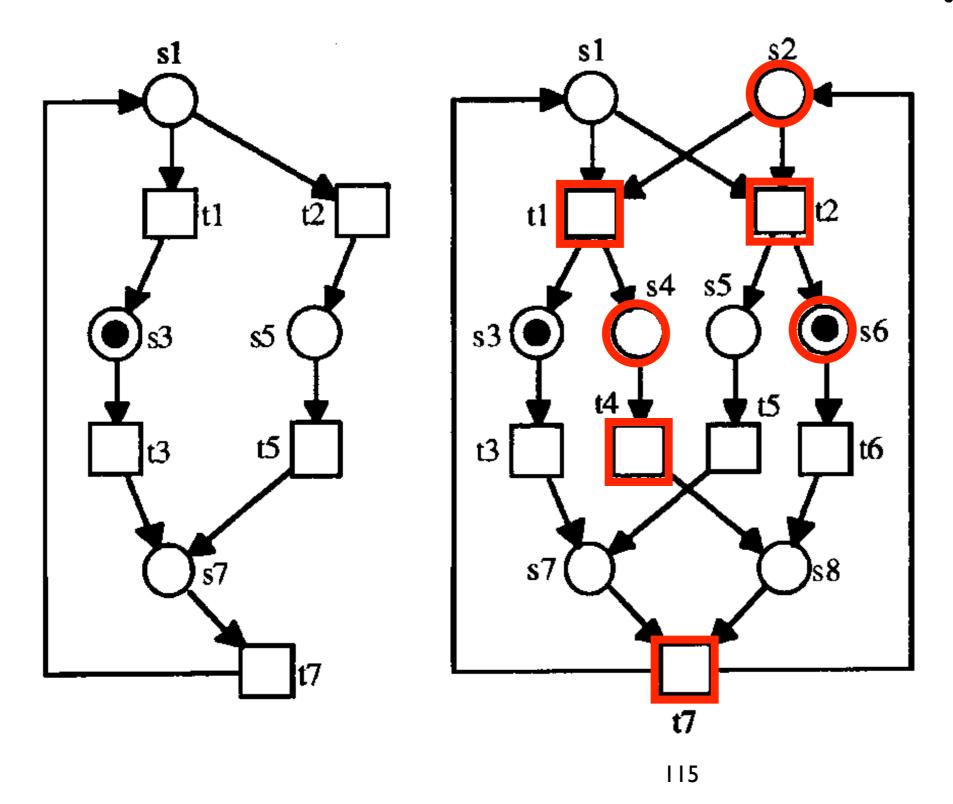


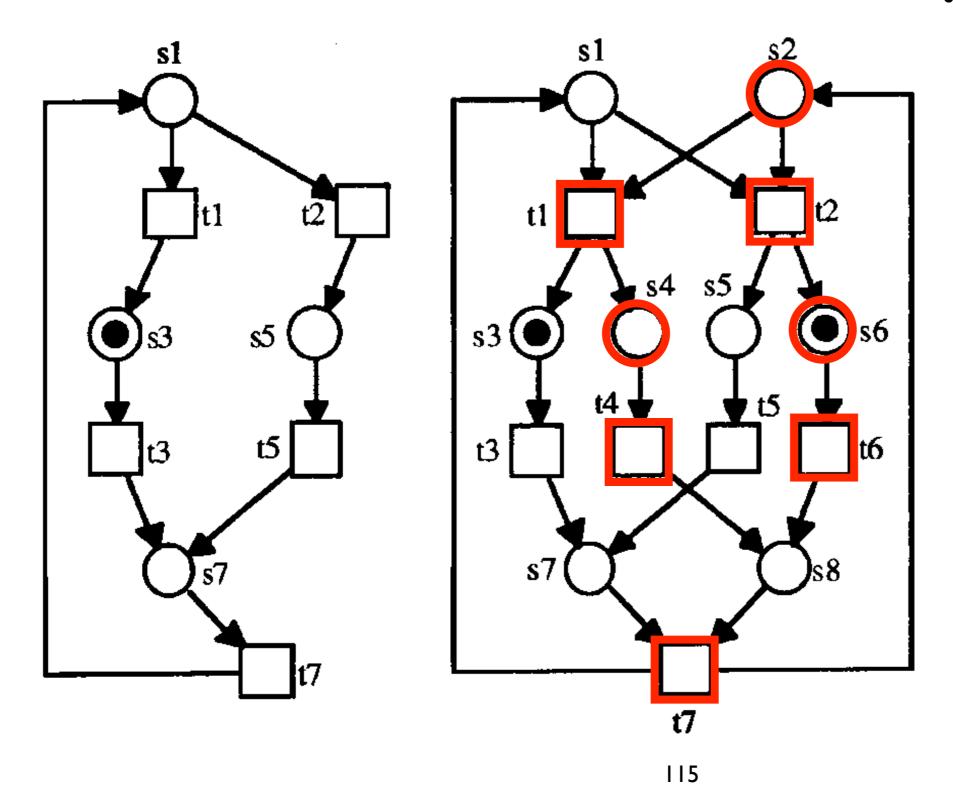


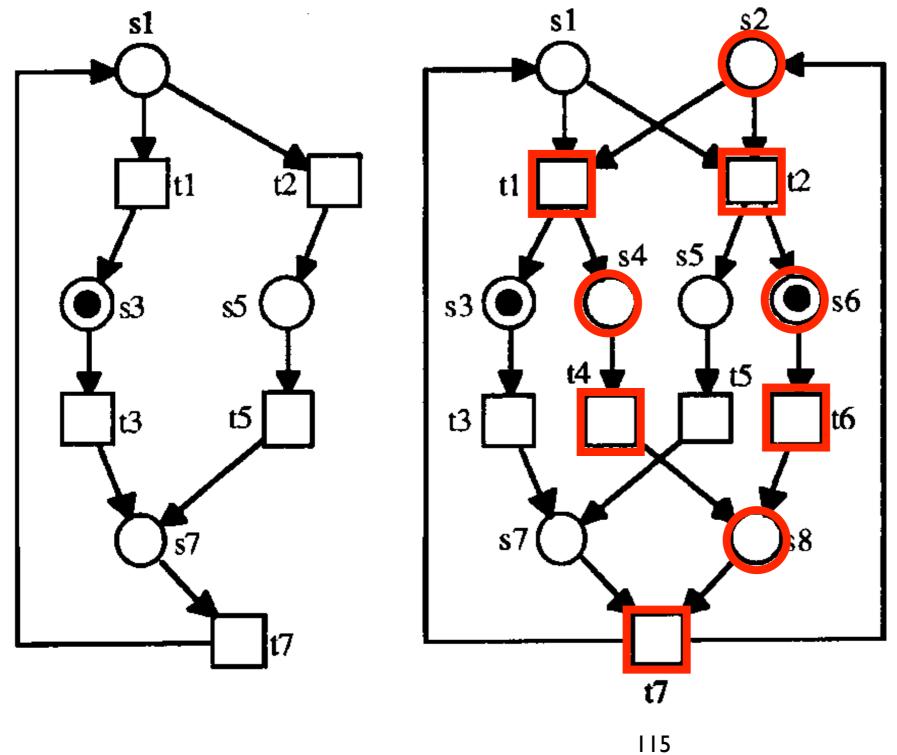


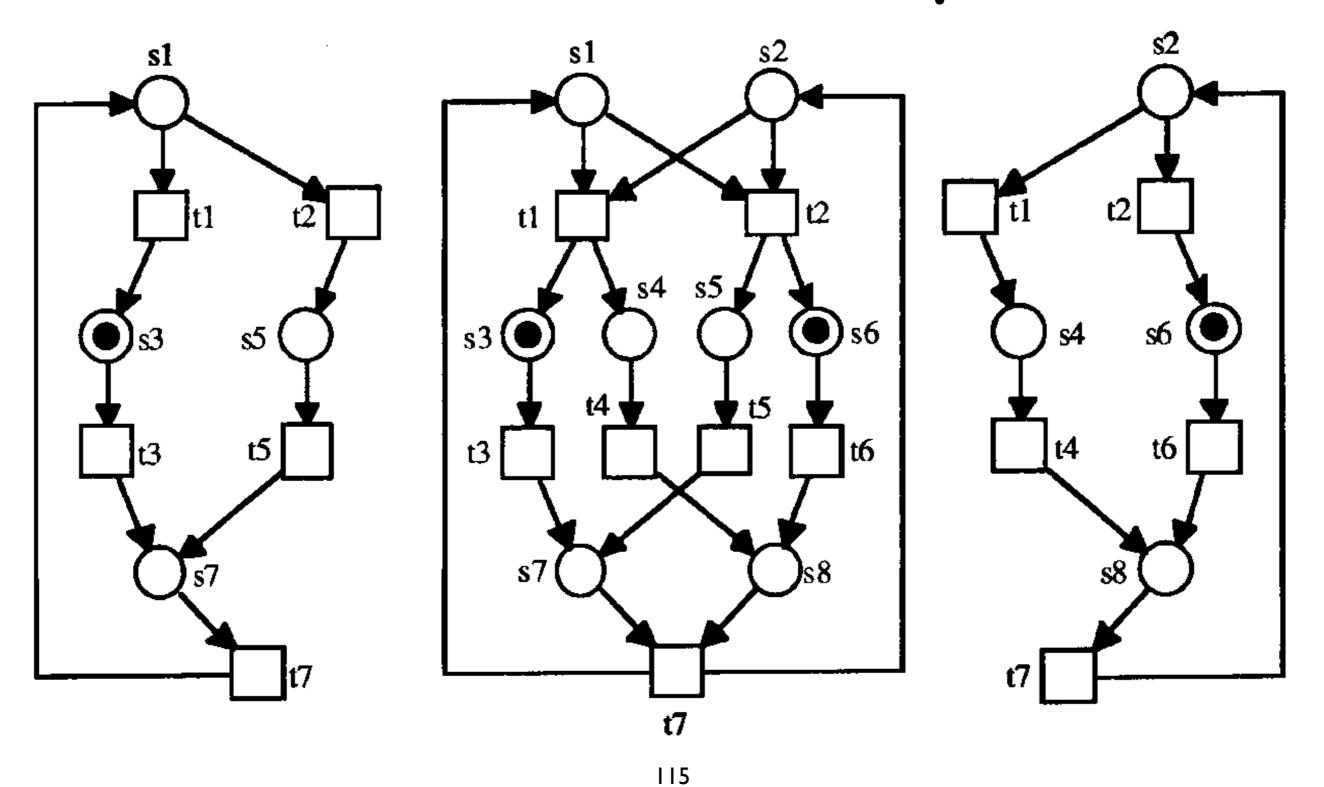












S-coverability theorem

Theorem: If a free-choice net N is live and bounded then N is S-coverable

(proof omitted)

Consequence:

free-choice + not S-coverable => not (live and bounded)

A technique to find a positive T-invariant

Decompose the free-choice net N in suitable T-nets so that any transition of N belongs to a T-net (the same transition can appear in more T-nets)

Each T-net provides a uniform T-invariant

A positive T-invariant is obtained as the sum of the T-invariants of each subnet

T-component

Definition: Let N=(P,T,F) and $\emptyset\subset X\subseteq P\cup T$ Let $N'=(P\cap X,T\cap X,F\cap (X\times X))$ be a subnet of N. N' is a **T-component** if

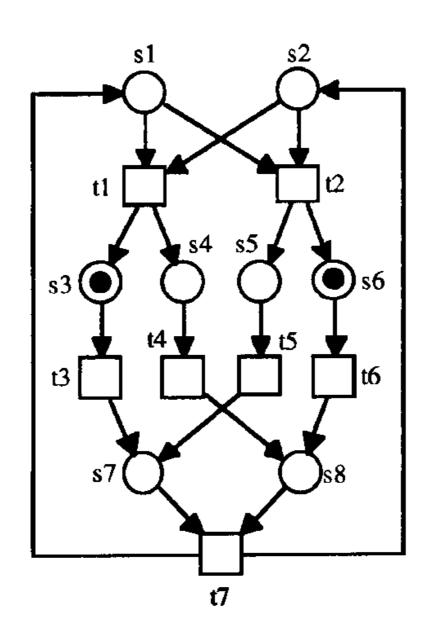
- 1. it is a strongly connected T-net
- 2. for every transition $t \in X \cap T$, we have $\bullet t \cup t \bullet \subseteq X$

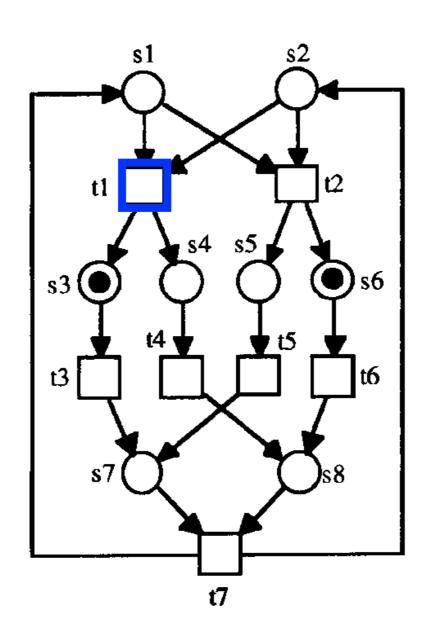
T-cover

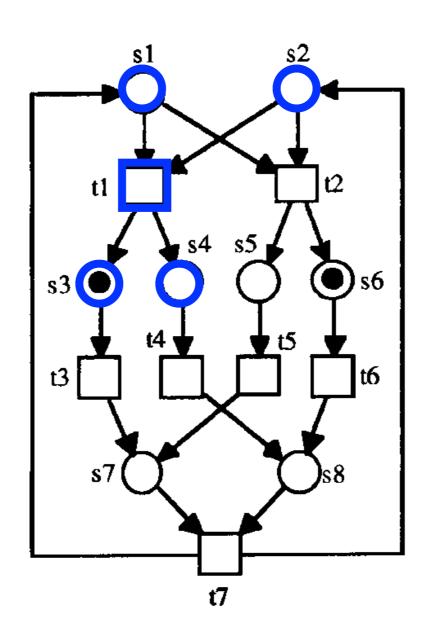
Definition: Let **C** be a set of T-components of a net N

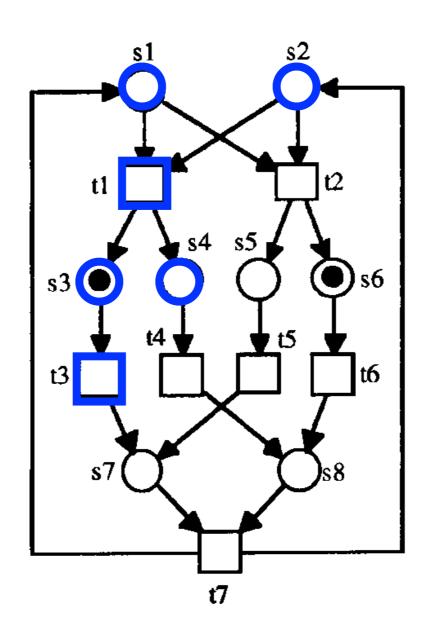
C is a T-cover if every transition t of N belongs to one or more T-components in C

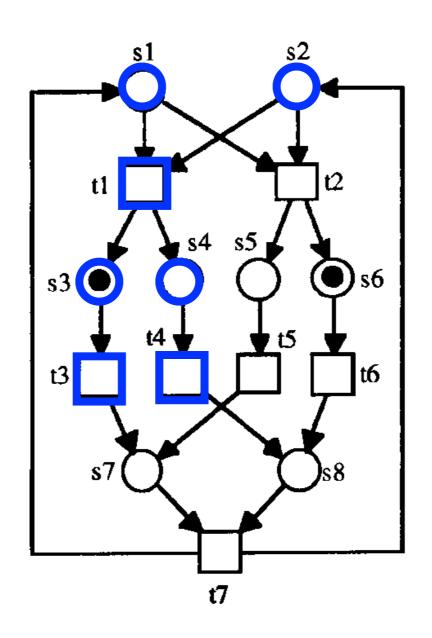
We say that N is **covered by T-components** if it has a T-cover

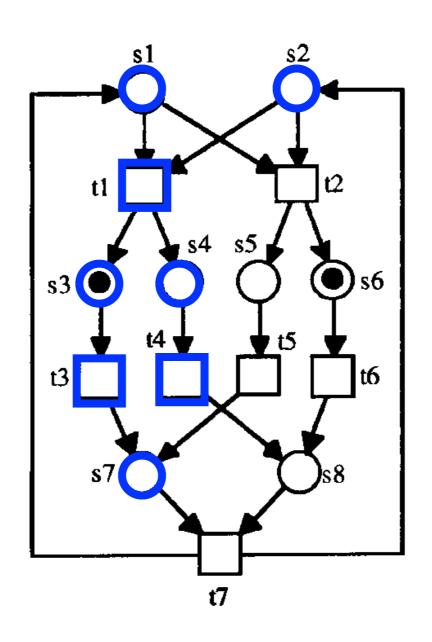


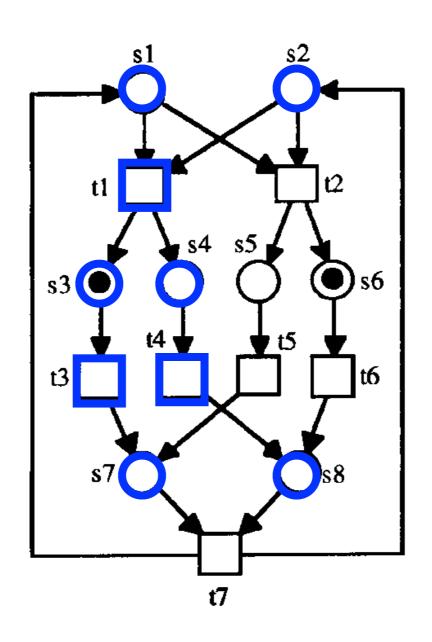


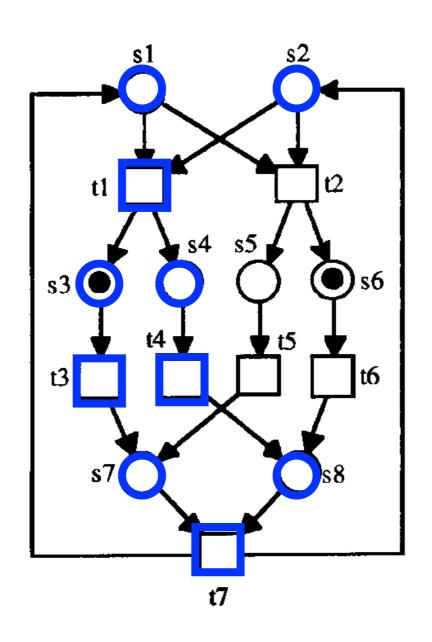


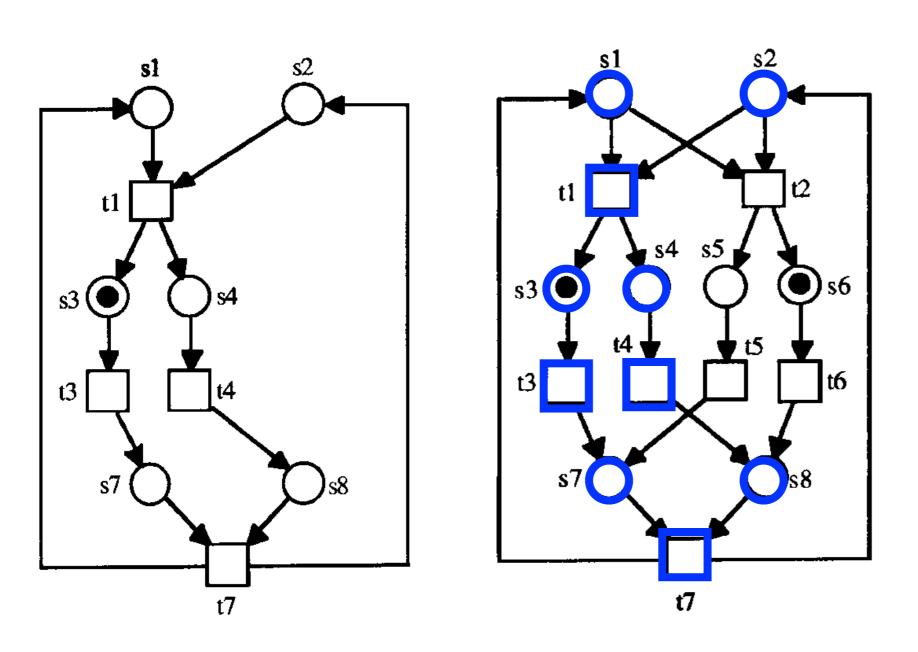


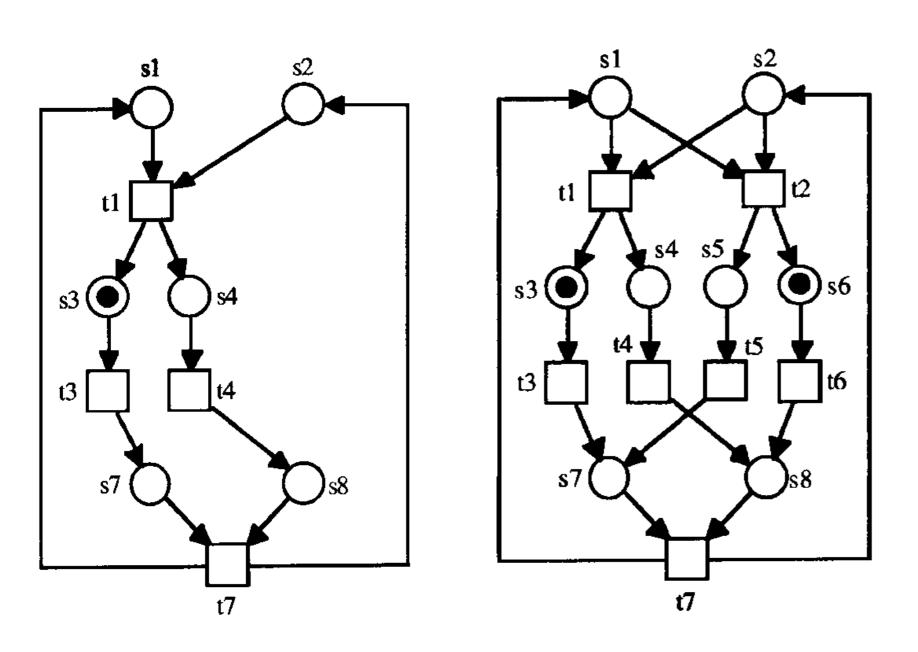


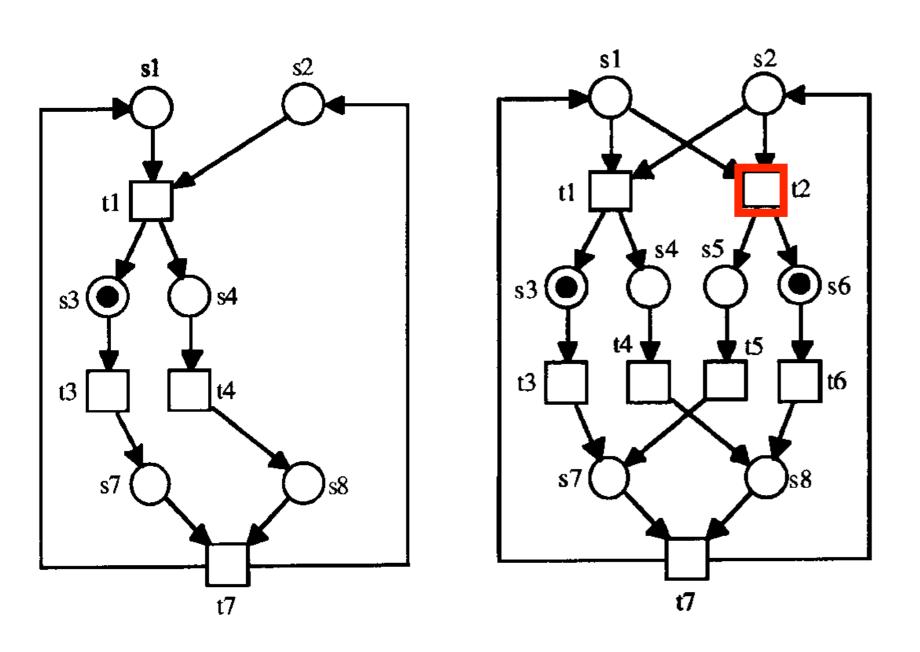


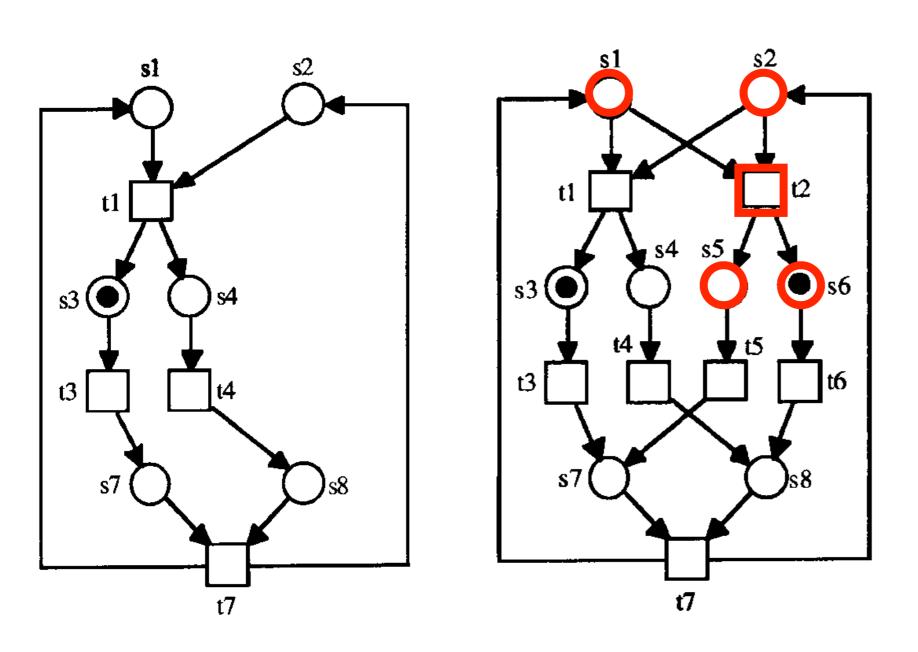


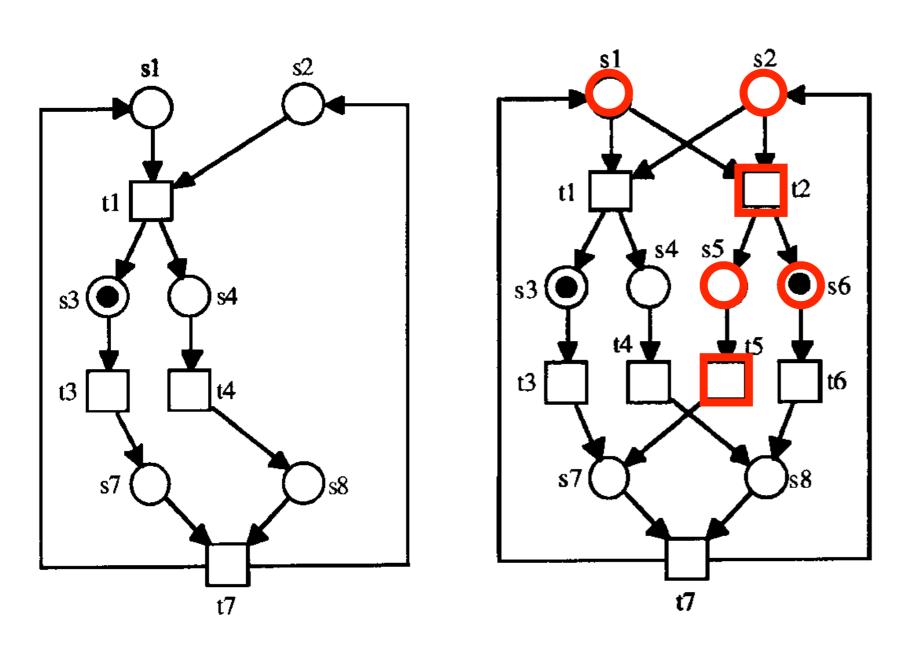


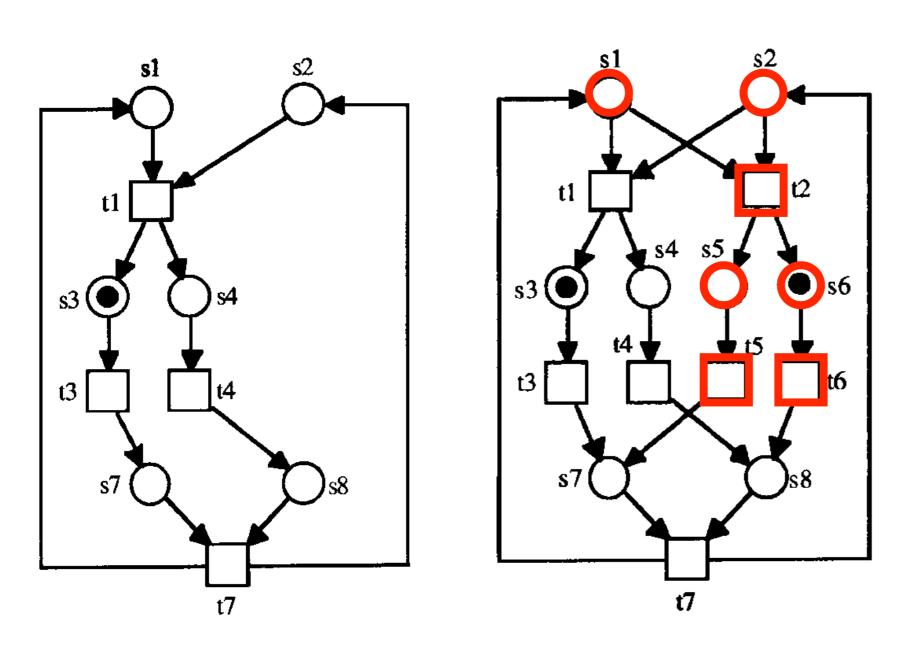


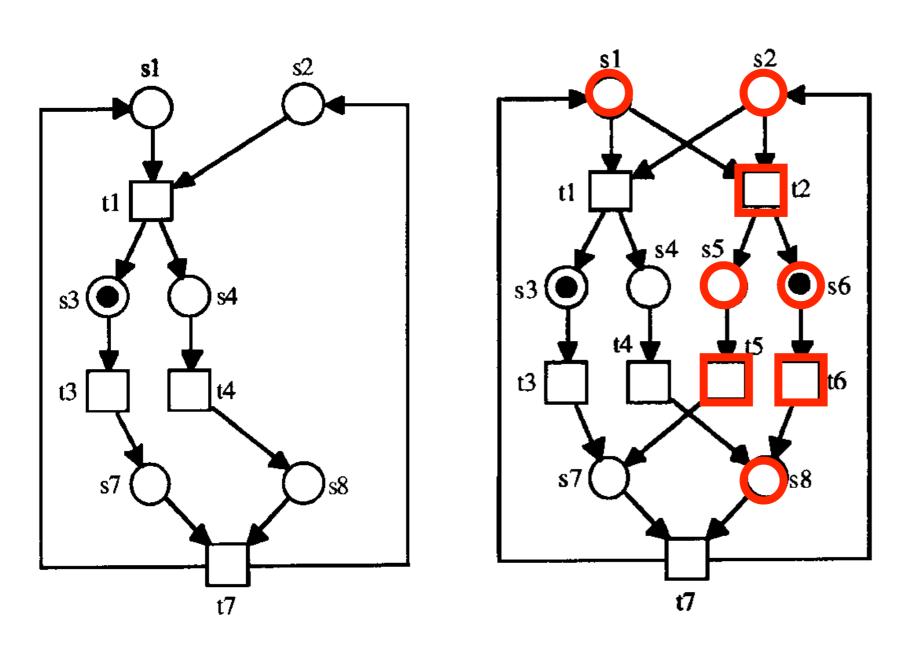


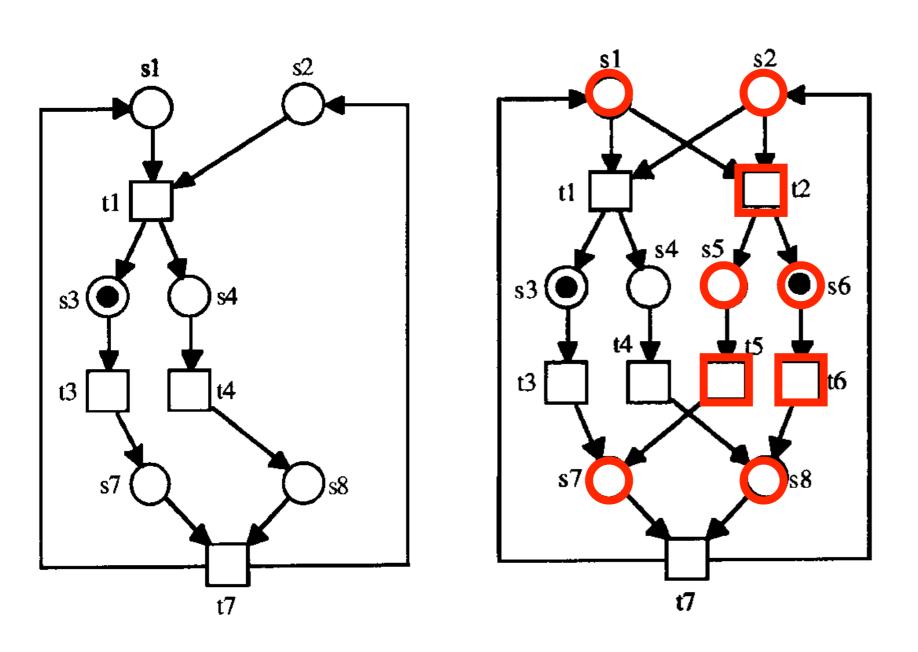


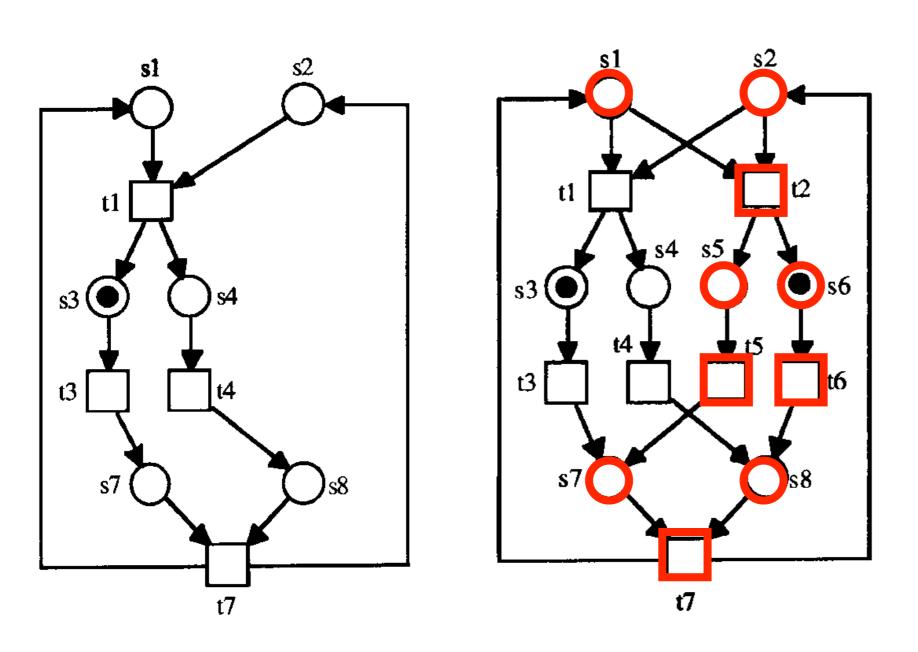


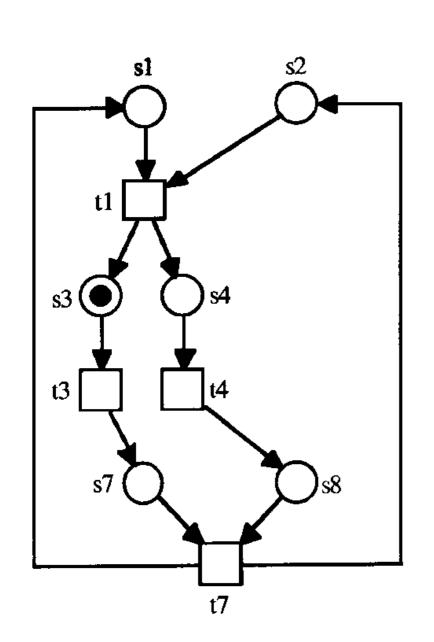


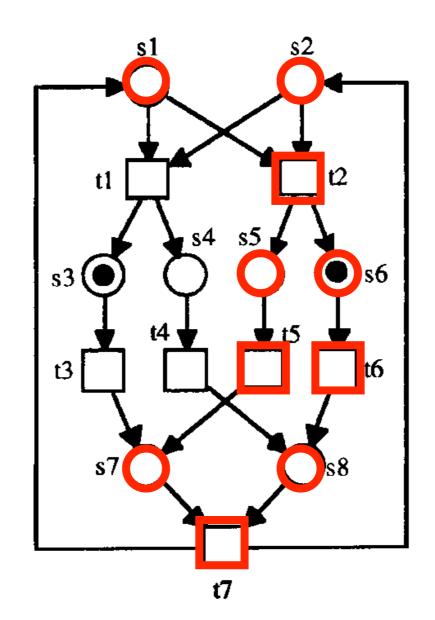


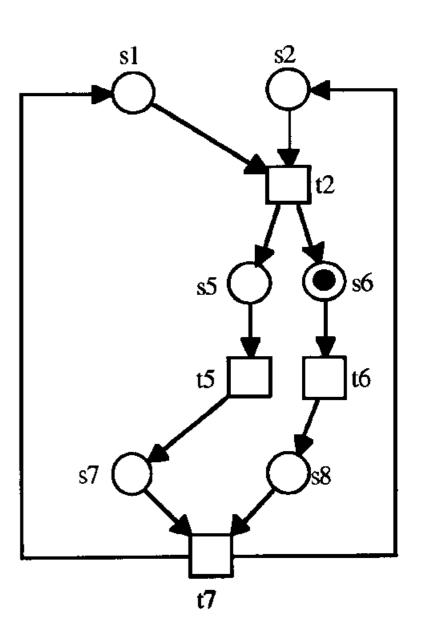


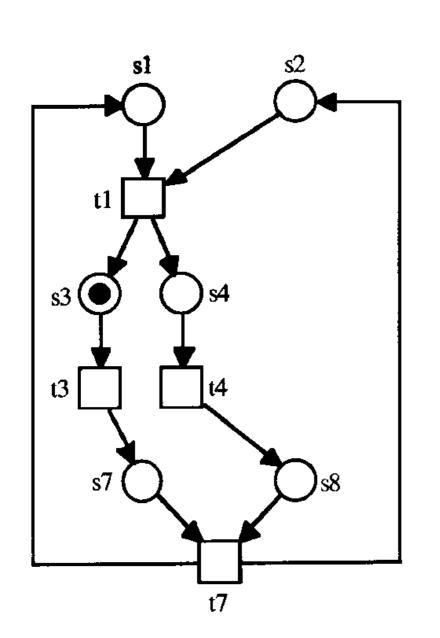


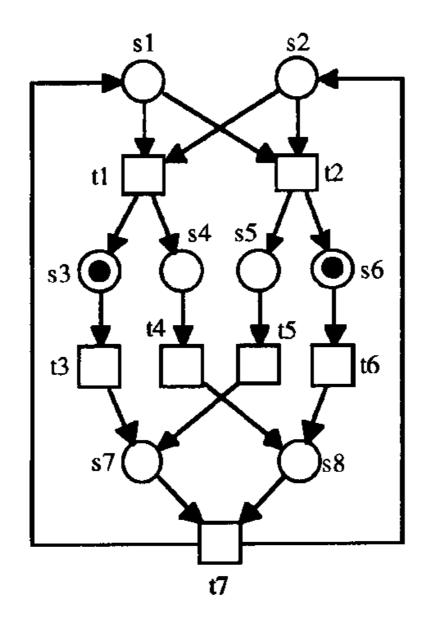


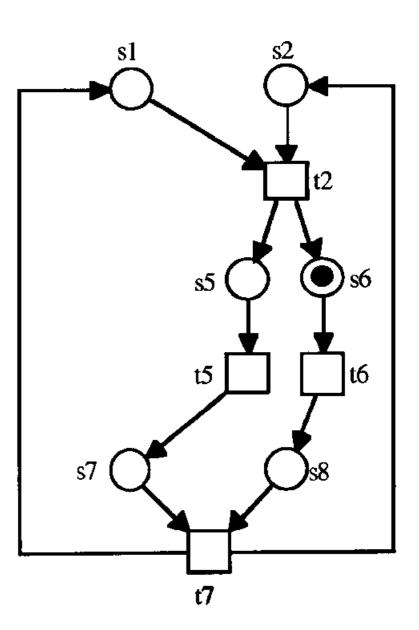












T-coverability theorem

Theorem: If a free-choice net N is live and bounded then N is T-coverable

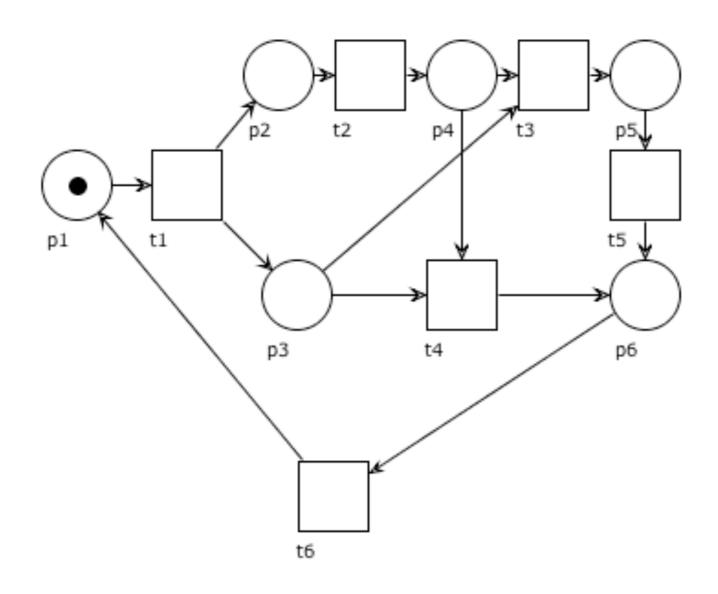
(proof omitted)

Consequence:

free-choice + not T-coverable => not (live and bounded)

Exercise

Find an S-cover and a T-cover for the net below and derive suitable S- and T-invariants



Compositionality

Compositionality of sound free-choice nets

Lemma:

If a free-choice workflow net N is sound then it is safe

(because N* is S-coverable and M₀=i has just one token)

Proposition:

If N and N' are sound free-choice workflow nets then N[N'/t] is a sound free-choice workflow net

(we just need to show that N[N'/t] is free-choice)