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We study some OgoodO properties of
free-choice nets

Free Choice Nets (book, optional reading)
https://www7.in.tum.de/~esparza/bookfc.html
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Free-choice net

Definition: We recall that a net N Is free-choice if
whenever there Is an arc (p,t), then there Is an arc
from any input place of t
to any output transition of p

/
%t / implies j/é(t/
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Free-choice net:
alternative definition s

Proposition: All the following definitions of free-choice net are equivalent.

1) A net (P, T, F) is free-choice if:
Vpe PVteT, (p,t) € F implies ot x pe C F.

2) A net (P, T, F) is free-choice if:
Vp,q € P,Vt,u €T, {(p,t),(q,t), (p,u)} C F implies (q,u) € F.

3) A net (P, T, F) is free-choice if:
Vp,q € P, either pe = ge or p e Nge = ().

4) A net (P, T, F) is free-choice if:
Vt,u € T, either of = o1, or ot N ey, = ().
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Free-choice net:
my favourite definition

4) A net (P, T, F) is free-choice if:
Vt,u € T, either of = o1, or ot N ey = ().



Free-choice system

Definition: A system (N,Mo) Is free-choice
If N Is free-choice
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Fundamental property
of free-choice nets

Proposition: Let (P, T, F, M) be free-choice.
If M —*3 and t € pe, then M s for every t’ € pe.

The proof Is trivial, by definition of free-choice net



Exercises

Prove that every S-net Is free-choice
Prove that every T-net Is free-choice

Show a free-choice net that is neither an S-net nor a T-net

Free-choice
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Free-choice N*

Proposition: A workflow net N Is free-choice
Iff N* Is free-choice

N and N* differ only for the reset transition,
whose pre-set (0) Is disjoint
from the pre-set of any other transition
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Rank Theorem
(main result)

Theorem:;:
A free-choice system (P, T,F,MO0) is live and bounded
Iff
. It has at least one place and one transition
. It IS connected
. Mo marks every proper siphon
. It has a positive S-invariant
. It has a positive T-invariant
.rank(N) = |Cn| - 1

OOk, WDNE

(where Cn Is the set of clusters)
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Clusters
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Cluster

Let x be the node of a net N = (P, T, F)
(not necessarily free-choice)

Definition:
The cluster of x, written |xz|, is the least set s.t.

1. z € |x]
(if a place p is in the cluster,
then all transitions in the

2. pr c [33] N P then pe C [m] post-set of p are in the cluster)

3. If / c [x] N T then o/ g [ﬁ] (if a transition t is in the cluster,

then all places in the
pre-set of t are in the cluster)
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Cluster: example
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Cluster: example

2\
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Cluster: example
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Cluster: example
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Clusters partition

Lemma: Theset {|x| | x € PUT } is a partition of PUT

Take the reflexive, symmetric and transitive closure E of

FI (P" T)

From the definition, 1t follows that

y # [X] ! (X,y) # E

Since E Is an equivalence relation, its classes define a partition
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Fundamental property
of clusters In f.c. nets

Proposition:
if M " | then for anyt' # [t] we haveM '

Immediate consequence of the fact that, for free-choice

t,t' ! [x] il ¥t= ¥
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Exercise

Draw all clusters In the nets below

UG
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Exercise

Draw all clusters In the free-choice net below




Stable markings



Stable set of markings

DebPnition: A set of markingdM Is calledstable if

M! M  implies [M"# M

(starting from any marking in the stable set M,
no marking outside M is reachable)
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Question time

Given a net system:
Is the singleton set { 0 } a stable set?
Is the set of all markings a stable set?
Is the set of live markings a stable set?

Is the set of deadlock markings a stable set?
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Stability check

M Is stable |
IM, LMY (MM # M $% M' impliesM'"™ M)
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Example

Which of the following Is a stable set of markings?

p2

t

27

{ 2p1tp2 }
{ 2p1tp2, p1+2ps }
{p1, P2}



pl

A

t

Exercises

Which of the following Is a stable set of markings?

{p1, p3}
{2p1+2p2, 2ps }

{ 2p1+2p2 , p1+p2t+pPs, 2Pps }

{ p1, 2p1+2p2 , p1+p2+pPs , 2Ps }
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Exercises

Given a net system:
Is the set { M | M(P)=1 } a stable set?
Is the set of markings reachable from Mo a stable set?

Is the set { M | M(P)<k } a stable set?
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Exercises

Let | be an S-invariant

Istheset{M | I!M =1 Mp } a stable set?
Istheset{M | I'M! I'Mp } a stable set?
Istheset{M|I!M =1} a stable set?

Istheset{ M | I!M =0 } a stable set?
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Exercises

Let M and M’ be stable sets
Is thelr union a stable set?
IS their intersection a stable set?
Is their difference a stable set?
What Is the least stable set that includes a marking Mo?

What Is the largest stable set of a net?
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Siphons



Proper siphon

DePnition:
A set of placeR Is asiphon if ¥R ! R¥

It IS a proper siphon If R = #
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Siphons, Intuitively

A set of places R is a siphon if
all transitions that can produce tokens in the places of R
require some place in R to be marked
Therefore:

If no token Is present in R,
then no token will ever be produced in R
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Siphon check

Let R be a set of places of a net
mark with ! all transitions that consume tokens from R

If there Is a transition producing tokens in some place of
R that Is not marked by !, then R Is not a siphon

Otherwise R Is a siphon
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¥R ! R¥

Siphon check: example

Is R = { prodlbusy, prodlfree, itembuffer} a siphon?
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¥R ! R¥

Siphon check: example

Is R = { prodlbusy, prodlfree, itembuffer} a siphon?
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¥R ! R¥

Siphon check: example

Is R ={ prodlbusy, itembuffer} a siphon?

dl busy

41




¥R ! R¥

Siphon check: example

Is R ={ prodlbusy, itembuffer} a siphon?
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Fundamental property
of siphons

Proposition: Unmarked siphons remain unmarked
Take a siphon R.
We just need to prove that the set of markings

M={M|MR)=0}
IS stable, which is immediate by definition of siphon
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Conseqguence of the
fundamental property

Corollary:
If a siphon R Is marked at some reachable marking M,
then it was Initially marked at Mo

By hypothesis: M(R)>0
By contradiction: assume Mo(R)=0

Then by the fundamental property of siphons: M(R)=0
which i1s absurd
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Siphons and liveness

Prop.: Live systems have no unmarked proper siphons
(We show that every proper siphon R of a live system Is
initially marked)

Takep! R and lett! ¥p" p¥
Since the system is live, then there a# M ' | [Mg# such tha

M %6 M

Thereforep is marked at eithetM or M

ThereforeR is marked at eithetM or M

ThereforeR was initially marked (atV ()
45



Siphons and deadlock

Proposition:
Deadlocked systems have an unmarked proper siphon

Let M be a deadlocked marking
LetR={p| M(p)=0}
SinceM Is deadlock:R¥ =T

Therefore¥R! T = R¥ andR Is a siphor
SinceT cannot be emptyR Is proper
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A Key observation

If we can guarantee that

all proper siphons are marked
at every reachable marking,

then the system Is deadlock free
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Exercise

Prove that the union of siphons is a siphon
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Proper trap

DebPnition:
A set of placeR Is atrap If ¥R ! R¥

It Is apropertrap f R = #
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Traps, intuitively

A set of places Ris a trap If
all transitions that can consume tokens from R
produce some token in some place of R
Therefore:

If some token is present in R,
then it Is never possible for R to become empty
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Trap check

Let R be a set of places of a net
mark with ! all transitions that produce tokens in R

If there Is a transition consuming tokens from some
place In R that iIs not marked by !, then R Is not a trap

Otherwise R Is a trap

52



¥R ! R¥

Trap check: example

Is R = { itembuffer, conslbusy, conslfree} a trap?

prodl busy

AN

prod1l s:att\®/ prodl end
prodl free

item buffer

53

consl stasl

consl busy

consl end



¥R ! R¥

Trap check: example

Is R = { itembuffer, conslbusy, conslfree} a trap?

prodl busy

prod1l s:att\ pr| nd _
. consl free
prodl free cl stast
. consl end
item buffer

consl busy
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¥R ! R¥

Trap check: example

Is R = { itembuffer, conslbusy} a trap?

prodl busy

AN

item buffer

prod1l s:att\ prodl end /Q\
consl free
prodl free consl stagt
consl end
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¥R ! R¥

Trap check: example

Is R = { itembuffer, conslbusy} a trap?

prodl busy
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Fundamental property
of traps

Proposition: Marked traps remain marked
Take a trap R.
We just need to prove that the set of markings

M={M|M(R)>0}
IS stable, which Is Immediate by definition of trap
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Conseqguence of the
fundamental property

Corollary:
If a trap R Is unmarked at some reachable marking M,
then it was Initially unmarked at Mo

By hypothesis: M(R)=0
By contradiction: assume Mo(R)>0

Then by the fundamental property of traps: M(R)>0
which Is absurd
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Exercise

Prove that the union of traps Is a trap
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Putting pleces together

unmarked siphons stay unmarked
(marked siphons can become unmarked)

If a siphon Is marked at M, It was marked at Mo

If all proper siphons always stay marked => deadlock-free
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Putting pleces together

If all proper siphons always stay marked => deadlock-free

marked traps stay marked
(unmarked traps can become marked)

If a trap Is unmarked at M, It was unmarked at Mo
If a siphon contains a marked trap, it stays marked

if all siphons contain marked traps, they stay marked
=> deadlock-free
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A sufficient condition
for deadlock-freedom

Proposition:
If every proper siphon of a system includes an initially
marked trap, then the system is deadlock-free

We show that If the system iIs not deadlock free, then there Is
a siphon that does not include any marked trap.

Assume some reachable M is dead.

Let R be the set of unmarked places at M.
Then, we have seen that R Is a proper siphon.
Since M(R)=0, then R includes no trap marked at M.
Therefore, R includefzno trap marked at Mo



Note

It IS easy to observe that every siphon includes a
(possibly empty) unigue maximal trap
with respect to set inclusion

Moreover, a siphon includes a marked trap
Iff
Its maximal trap Is marked
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Exercise

Find all siphons and traps in the net below

/ p2 t2 p4 t3 ps;!;
p3 / PE

te
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Live and dead places
(recall)



Place liveness

DebPnition: Let (P, T,F,Mg) be a net system.

A placep! Pisliveif "M ! [Mg#$M'! [M #M'(p) > O

A place p is live
If every time it becomes unmarked
there Is still the possibility to be marked in the future
(or if it Is always marked)

DePnition :
A net system(P, T, F, My) Is place-live If every placep! P Is live

liveness implies place-liveness
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Dead nodes

DebPnition: Let (P, T,F) be a net system.
A transitiont! T isdeadatM if"M'! [M #M" Bo%

A placep! P isdeadatM if "M'! [M#M'(p)=0
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Some obvious facts

If a system Is not live, it has a transition dead at some
reachable marking

If a system is not place-live, it has a place dead at
some reachable marking

If a place / transition Is dead at M, then it remains dead
at any marking reachable from M
(the set of dead nodes can only increase during a run)

Every transition in the pre- or post-set of a dead place
IS also dead
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An obvious facts In
free-choice nets

In a free-choice net:
If an output transition t of a place p Is dead at M
then any output transition tO of p is dead at M

(because t and tO must have the same pre-set)

69



Dead t, dead p

Lemma: If the transition t is dead at M in a free-choice net,
then there is a non-live place p in the pre-set of t
(l.e., p Is dead at some marking reachable from M)

By contraposition, we prove: if all input places pbfare live thent is not dead
Let ¥t =[t]! P = {p1,...,Pn}

Slnce all placeﬁl, ..., pn are live atM , there exists
M M1 L M
such thatM; (p.) > 0 for all i

If the sequence containg $ [t] thent is not dead atM
If no transition In[t] appears In the sequence, then no tokendnis consume

HenceM,(p;) > O for all i, and M, # andt is not dead atM
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Place-liveness implies
liveness In f.c. nets

Proposition: If a free-choice system is place-live,
then it is live

If a free-choice system Is not live then there Is a
transition t dead at some reachable marking M

But then some input place of t must be dead at M,
so the system Is not place-live

/1



Conseqguence In f.c. nets:
place-liveness = liveness

If a free-choice system is place-live, then it is live
In any system, liveness implies place-liveness
Therefore:

A free-choice system is live iff it is place-live
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Non-liveness and
unmarked siphons

Lemma: Every non-live free-choice system has a proper
siphon R and a reachable marking M such that M(R)=0

By non-liveness: the system Is not place-live,
l.e., somep Is dead at somé.

Take M ! L " such that every place not dead &t
is not dead at any marking ofM " /Of
l.e. all markings IfM " have the same sdR*dead place
(dead places remain dead)

Next we prove thatR Is a proper siphon anl (R) =0
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Non-liveness and
unmarked siphons

Lemma: Every non-live free-choice system has a proper
siphon R and a reachable marking M such that M(R)=0

1. R Is a siphon

¥ anyt € ¥R is dead atM
(If not any g € t ¥ "R would not be dead)

¥ everyt dead atM has an input place IR
(t has some input place dead at some marking reachable kbl

2. R Is proper
p is dead atL, hence it is dead aM , hencep € R, henceR # ()

3. M (R) =0 because it contains dead plage
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CommonerQOs theorem
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CommonerOs theorem

Theorem:
A free-choice system is live

Iff

every proper siphon includes an initially marked trap

(we show just the OifO direction, which is simpler)
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CommonerOs theorem:
OifO direction
(Non-live free-choice implies that

a proper siphon exists whose traps are all unmarked)

We know that a non-live free-choice system contains a
proper siphon R such that M(R)=0

So every trap included in R is unmarked at M

Since marked traps remain marked,
every trap included in R must have been
initially unmarked
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Complexity of the
non-liveness problem
INn free-choice systems
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A non-deterministic
algoritnm for non-liveness

1. guess a set of places R

2. check If R Is a siphon (¥R" R¥)
(polynomial time)

3. If R Is a siphon, compute the maximaltrap Q " R

4. if Mo(Q)=0, then answer Onon-liveO
(polynomial time)
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A polynomial algorithm for
maximal trap In a siphon

¥R ! RY¥ ¥Q! Q¥
3. If R Is a siphon, compute the maximal trap Q " R

Input: AnetN =(P,T,F)andR! P
Output: Q! R

Q=R
while ("p# Q, "t # p¥, t $#Q)
Q:= Q\{p}

return Q
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Main consequence

The non-liveness problem for free-choice systems is in NP
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|s the same problem In P?

The corresponding deterministic algorithm cannot make
the guess in step 1

It has to explore all possible subsets of places
2IPl cases!
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NP-completeness

We next sketch the proof of the reduction to non-liveness
In a free-choice net of the CNF-SAT problem

(Satisfiability problem for propositional formulas in
conjunctive normal form)
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CNF-SAT formulas

Variables:x, Xo, ..., Xn
Literals: X1, ¥1, X2, ¥, ..., Xn , ¥
Clause: disjunction of literals

Formula: conjunction of clauses

Example:! = (x1! )" (X1! B! X3)" (Xo! ®3)

Is there an assignment of boolean values to the variables such!thattrue ?
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The free-choice net of a
formula

The idea Is
to construct a free-choice system (P, T,F,Mo)
and show that

the formula 1s satisfiable
Iff
(P, T,F,Mo) is not live
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CNF-SAT formulas

Is there an assignment of boolean values to the variables such!thattrue ?

Is there an assignment of boolean values to the variables suchAhat false?

| :(Xl! 73)" (Xl! Xo | X3)

Al :(71! X3) " (71! Xo | 73)
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Al = (X! X3)" (X1! x2! X3)" (X2! X3)

288
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= (X1! X3)" X2 ! X3)" (X2! X3)

Q" é)“ o2

One place Li for each varlableﬂ

I I S N E—

4
~
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One transition for each Ilteral

@%}f R
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One transition C; for each clause C;
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Al

A place for each occurrence of a literal

&,
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(X1 ! X2! X3)" (X2

L1 % Lo 3

) 44| X2 B X3 ¥3
Co Cs

\%

A place for true

92



Al

C>

93

M

A transition to restart

mBack



Al

X2 ! X3)"

(X2 I X3)
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Al :(71! X3) " (71! Xo | 73) " (72! X3)

L1 , Lo L3
»OS Ol 91
X1 B X2 B X

FIx an aSS|gnment

Q

Back
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= (X! X3) X2 ! X3)" (Xz' X3)
/&_2
. MO.@-

| non\e enabled, Back I1s dead

‘%}’True

Back

X1
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= (X! X3)

(X1 ! x2! X3)°

A1

Yfl

x2

) 4y,

PN

X3

( X2 ! X3)

m:s

If ! IS satlsbable, then the net IS Nnot |

If the net IS not live, then! Is satisbab|

’L‘[j lrue
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= (X! X3)" (Xg! x2! X3)" (X2! X3)

| 1 Lo | 3
. . .
2 =
ofe Qoo O
. True

Back
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Main consequence#®

No polynomial algorithm to decide liveness of a
free-choice system exists

(unless P=NP)
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Exercise

Draw the net corresponding to the formula
Xo I (X1" X3" Xa) ! (X2" X2) ! (X1" Xa) ! (X2" Xy)

Is It satisflable?
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Live and bounded
free-choice nets



Rank Theorem

Theorem:;:
A free-choice system (P, T,F,MO0) is live and bounded
Iff
. It has at least one place and one transition
. It IS connected
. Mo marks every proper siphon
. It has a positive S-invariant
. It has a positive T-invariant
.rank(N) = |Cn]| - 1

OOk, WDNE

(where Cn Is the set of clusters)
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A polynomial algorithm
for maximal siphon

A polynomial algorithm for computing maximal siphon in R

Input: AnetN =(P, T,F,Mg),R! P
Output: Q! R

Q=R

while ("p# Q, "t # ¥p, t $#Q¥)
Q:= Q\{p}

return Q

103 Q is asiphon if ¥Q ! Q¥



A polynomial algorithm for
maximal unmarked siphon

3. Mo marks every proper siphon

Input: AnetN =(P,T,F,Mg),IR={p|Mou(p) =0}

Output: Q! R maximal unmarked siphon

Q=R

while ("p# Q, "t # ¥p, t $HQY)
Q= Q\{p}

return Q

If Q Is empty then Mo marks every proper siphon
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Main consequence

Given a free-choice system, the problem to decide
if it is live and bounded
can be solved in polynomial time

105



Free-Choice vs
Soundness

Note that free-choice Is orthogonal to soundness:
there exists WF-nets that are free-choice but not sound

there exists WF-nets that are sound but not free-choice
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Example: sound
but not free-choice

0 0)
tQ\

4,,( )_), (011000)
) ’ \\\,
3
t5
0S (001001) (010100)
2
£3
t
p3 t3 p4 t4 (000101)
t4
t6\
(000010)



Exercise

Draw a workflow net that is free-choice but not sound
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Coverability



S-Coverabllity analysis

A case Is often composed by parallel threads of control
(each thread imposing some order over its tasks)

The notion of S-coverability allows to reveal such threads
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A technique to find
a positive S-invariant

Decompose the free-choice net N In suitable S-nets so
that any place of N belongs to an S-net
(the same place can appear In more S-nets)
Each S-net provides a uniform S-invariant

A positive S-invariant Is obtained
as the sum of the S-invariants of each subnet
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S-component

Debnition: LetN =(P, T,F)and!”™ X #P$T
Let N' = (P %X, T %X,F %(X & X)) be a subnet oN .
N’ is anS-component if

1. It Is a strongly connected S-net

2. for every placep' X %P, we have¥p $ p¥# X
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S-cover

Definition: Let C be a set of S-components of a net N

C is an S-cover if every place p of N
belongs to one or more S-components in C

We say that N is covered by S-components
If It has an S-cover
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S-cover: example
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S-cover ability theorem

Theorem: If a free-choice net N is live and bounded
then N Is S-coverable

(proof omitted)

Conseguence:
free-choice + not S-coverable => not (live and bounded)
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A technique to find
a positive T-Invariant

Decompose the free-choice net N In suitable T-nets so
that any transition of N belongs to a T-net
(the same transition can appear in more T-nets)
Each T-net provides a uniform T-invariant

A positive T-invariant Is obtained
as the sum of the T-invariants of each subnet
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T-component

Debnition; Let N = (P,T,F)and) Cc X C PUT
let N'=(PNX, TNX,FN(X x X)) be a subnet ofV.
N’ is aT-component if

1. It Is a strongly connected T-net

2. for every transitiont € X N1°, we haveet Ute C X
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T-cover

Definition: Let C be a set of T-components of a net N

C is a T-cover If every transition t of N
belongs to one or more T-components in C

We say that N is covered by T-components
If It has a T-cover
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T-cover: example
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T-cover ability theorem

Theorem: If a free-choice net N is live and bounded
then N Is T-coverable

(proof omitted)

Conseguence:
free-choice + not T-coverable => not (live and bounded)
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Exercise

Find an S-cover and a T-cover for the net below
and derive suitable S- and T-Iinvariants

/ p2 t2 p4 t3 ps;!;

pl tl W tS ‘!'
p3 /D6

te
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Compositionality of
sound free-choice nets

Lemma:
If a free-choice workflow net N Is sound
then It Is safe

(because N* is S-coverable and Mo=I has just one token)

i Proposition:
If N and I\INC) are sound free-choice workflow nets
then N[NO/t] is a sound free-choice workflow net

(we just need to show that N[NO/] is free-choice)
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