Methods for the specification and verification of business processes MPB (6 cfu, 295AA)

Roberto Bruni
http://www.di.unipi.it/~bruni
14 - Analysis of WF nets

Object

We study suitable soundness properties of Workflow nets

Structural analysis

No entry / exit point for a case
no entry: when should the case start?
no exit: when should the case end? ruled out by definition of workflow nets

Structural analysis

Multiple entry / exit point for a case
multiple entry: when should the case start? multiple exit: when should the case end? ruled out by definition of workflow nets

Structural analysis

Tasks t without incoming and/or outgoing arcs
no input: when should t be carried out? no output: t does not contribute to case completion ruled out by definition of workflow nets

Structural analysis

Wrong decorations of transitions
split with only one outgoing arc

join with only one incoming arc

left to designer responsibility

Activity analysis

Dead tasks
Tasks that can never be carried out Each transitions lies on a path from ito o: not sufficient

can arise in workflow nets

Token analysis

Some tokens left in the net after case completion

(when a token is in the final place the case should end) can arise in workflow nets

Activity analysis

Activities still take place after case completion
it can be a (worse) consequence of the previous flaw can arise in workflow nets

Token analysis

More than one token reaches the end place
it can be a consequence of the above flaws can arise in workflow nets

Net analysis

Deadlock (stop before producing output)

a case blocks without coming to an end can arise in workflow nets

Question time

Do you see any problem in the workflow net below?

Question time

Do you see any problem in the workflow net below?

Question time

Do you see any problem in the workflow net below?

Question time

Do you see any problem in the workflow net below?

Exercise

Livelock (divergence without producing output)

a case is trapped in a cycle with no opportunity to end can arise in workflow nets

Draw a workflow net that suffers from livelock

Remark

All the previous flaws are typical errors that can be detected without any knowledge about the actual content of the Business Process

Verification and
 validation

Verification aims to answer qualitative questions Is there a deadlock possible?
Is it possible to successfully handle a specific case?
Will all cases terminate eventually?
Is it possible to execute a certain task?
Validation is concerned with
the relation between the model and the reality
How does a model fit log files?
Which model does fit better?

Simulation techniques

Test analysis
Try and see if certain firing sequences are allowed by the workflow net

Using WoPeD:
Play (forward and backward) with net tokens Record certain runs (to replay or explain)
Randomly select alternatives

Problem: how to make sure that all possible runs have been examined?

Reachability analysis

Verification by inspection
All possible runs of a workflow net are represented in its Reachability Graph (if finite)

Using WoPeD:
Total number of states is evident (a single run does not necessarily visit all nodes)

End states are evident (no outgoing arc)
Easy to check if dangerous or undesired states can arise (e.g. the green-green state in the two-traffic-lights)

Boundedness (for Nets)

Proposition:
The reachability graph of a net is finite
if and only if

the net is bounded

Boundedness (for Nets)

Proposition:
A net is unbounded

if and only if
its reachability graph is not finite

Coverability graph

A coverability graph is a finite over-approximation of the reachability graph

It allows for markings with infinitely many tokens in one place (called extended bags)

$$
B: P \longrightarrow \mathbb{N} \cup\{\infty\}
$$

Discover unbounded

places

Suppose

$M_{0} \xrightarrow{t_{1}} M_{1} \xrightarrow{t_{2}} M_{2} \ldots \xrightarrow{t_{i}} M_{i} \ldots \xrightarrow{t_{j}} M_{j}$
with $M_{i} \subset M_{j}$
Let $M=M_{i}$ and $M^{\prime}=M_{j}$ and $L=M^{\prime}-M$

By the monotonicity Lemma we have, for any $n \in \mathbb{N}$:
$M \rightarrow^{*} M+L \rightarrow^{*} M+2 L \rightarrow^{*} \ldots \rightarrow^{*} M+n L$

Hence all places p marked by L (i.e. if $L(p)>0$) are unbounded

Cover unbounded places

Idea:
When computing the RG , if M^{\prime} is found s.t.
$M_{0} \rightarrow^{*} M \rightarrow^{*} M^{\prime}$ with $M \subset M^{\prime}$

Add the extended bag B (instead of M^{\prime}) to the graph
where $B(p)= \begin{cases}M^{\prime}(p) & \text { if } M^{\prime}(p)-M(p)=0 \\ \infty & \text { otherwise }\end{cases}$

A few remarks

Idea: mark unbounded places by ∞
Remind: $M \subset M^{\prime}$ means that $M \subseteq M^{\prime} \wedge M \neq M^{\prime}$, i.e.,

1. for any $p \in P, M^{\prime}(p) \geq M(p)$
2. there exists at least one place $q \in P$ such that $M^{\prime}(q)>M(q)$

Remark:

Requiring $M_{0} \rightarrow^{*} M \rightarrow^{*} M^{\prime}$ is different than requiring $M, M^{\prime} \in\left[M_{0}\right\rangle$

Operations on extended

bags

Inclusion: Let $B, B^{\prime}: P \rightarrow \mathbb{N} \cup\{\infty\}$
We write $B \subseteq B^{\prime}$ if for any p we have
$B^{\prime}(p)=\infty$ or $B(p), B^{\prime}(p) \in \mathbb{N} \wedge B(p) \leq B^{\prime}(p)$
Sum: Let $B, B^{\prime}: P \rightarrow \mathbb{N} \cup\{\infty\}$
$\left(B+B^{\prime}\right)(p)= \begin{cases}\infty & \text { if } B(p)=\infty \text { or } B^{\prime}(p)=\infty \\ B(p)+B^{\prime}(p) & \text { if } B(p), B^{\prime}(p) \in \mathbb{N}\end{cases}$
Difference: Let $B: P \rightarrow \mathbb{N} \cup\{\infty\}$ and $M: P \rightarrow \mathbb{N}$ with $M \subseteq B$
$(B-M)(p)= \begin{cases}\infty & \text { if } B(p)=\infty \\ B(p)-M(p) & \text { if } B(p) \in \mathbb{N}\end{cases}$

Compute a reachability graph

1. Initially $N=\left\{M_{0}\right\}$ and $A=\varnothing$
(all bags are finite in this case)

Compute a reachability graph

1. Initially $N=\left\{M_{0}\right\}$ and $A=\varnothing$
2. Take a bag $B \in N$ and a transition $t \in T$ such that 1. B enables t and there is no arc labelled t leaving from B
(all bags are finite in this case)

Compute a reachability graph

1. Initially $N=\left\{M_{0}\right\}$ and $A=\varnothing$
2. Take a bag $B \in N$ and a transition $t \in T$ such that
3. B enables t and there is no arc labelled t leaving from B
4. Let $\mathrm{B}^{\prime}=\mathrm{B}-\cdot \mathrm{t}+\mathrm{t}^{\bullet}$
(all bags are finite in this case)

Compute a reachability graph

1. Initially $N=\left\{M_{0}\right\}$ and $A=\varnothing$
2. Take a bag $B \in N$ and a transition $t \in T$ such that
3. B enables t and there is no arc labelled t leaving from B
4. Let $\mathrm{B}^{\prime}=\mathrm{B}-\cdot \mathrm{t}+\mathrm{t}^{\bullet}$
5. Add B^{\prime} to N and $\left(B, t, B^{\prime}\right)$ to A
(all bags are finite in this case)

Compute a reachability graph

1. Initially $N=\left\{M_{0}\right\}$ and $A=\varnothing$
2. Take a bag $B \in N$ and a transition $t \in T$ such that
3. B enables t and there is no arc labelled t leaving from B
4. Let $\mathrm{B}^{\prime}=\mathrm{B}-\cdot \mathrm{t}+\mathrm{t}^{\bullet}$
5. Add B^{\prime} to N and $\left(B, t, B^{\prime}\right)$ to A
6. Repeat steps $2,3,4$ until no new arc can be added
(all bags are finite in this case)

Compute a reachability graph

1. Initially $N=\left\{M_{0}\right\}$ and $A=\varnothing$
2. Take a bag $B \in N$ and a transition $t \in T$ such that
3. B enables t and there is no arc labelled t leaving from B
4. Let $\mathrm{B}^{\prime}=\mathrm{B}-\cdot \mathrm{t}+\mathrm{t}^{\bullet}$
5. Add B^{\prime} to N and $\left(B, t, B^{\prime}\right)$ to A
6. Repeat steps $2,3,4$ until no new arc can be added
(all bags are finite in this case)

Compute a coverability graph

1. Initially $N=\left\{M_{0}\right\}$ and $A=\varnothing$
2. Take a bag $B \in N$ and a transition $t \in T$ such that
3. B enables t and there is no arc labelled t leaving from B
4. Let $\mathrm{B}^{\prime}=\mathrm{B}-\cdot \mathrm{t}+\mathrm{t} \cdot$
5. Let B_{c} such that for any $\mathrm{p} \in \mathrm{P}$
6. $B_{c}{ }^{\prime}(p)=\infty$ if there is a node $B^{\prime \prime} \in N$ such that
7. there is a direct path from $B^{\prime \prime}$ to B in the graph computed so far
8. $B^{\prime \prime} \subseteq B^{\prime}$,

$$
B^{\prime \prime} \xrightarrow{\sigma} B \xrightarrow{t} B^{\prime}
$$

3. $B^{\prime \prime}(p)<B^{\prime}(p)$
4. $B_{c}{ }^{\prime}(p)=B^{\prime}(p)$ otherwise
5. Add $B_{c}{ }^{\prime}$ to N and $\left(B, t, B_{c}{ }^{\prime}\right)$ to A
6. Repeat steps $2,3,4,5$ until no new arc can be added

Example

Properties of

 coverability graphsA coverability graph is always finite, but it is not always uniquely defined
(it depends on which B and t are selected at step 2)
Every firing sequence has a corresponding path in the CG (the converse is not necessarily true)

Any path in a CG that visits only finite markings corresponds to a firing sequence

If the $R G$ is finite, then it coincides with the CG

Reachability analysis by coverability

All possible behaviours of a workflow net are represented exactly in the Reachability Graph (if finite)

We use Coverability Graph when necessary (RG not finite)

Exercise

Do you see any problem in the workflow net below?

Exercise

Which problem(s) in the workflow net below? How would you redesign the business process?

Soundness

Soundness

of Business Processes

A process is called sound if

1. it contains no unnecessary tasks
2. every case is always completed in full
3. no pending items are left after case completion

Soundness

of Workflow nets

A workflow net is called sound if

1. for each transition t, there is a marking M (reachable from i) that enables t
2. for each token put in place i, one token eventually appears in the place o
3. when a token is in place o, all other places are empty

Fairness assumption

Remark:

Condition 2 does not mean that iteration must be forbidden or bound

It says that from any reachable marking M there must be possible to reach o in some steps

Fairness assumption:
A task cannot be postponed indefinitely

Soundness, Formally

A workflow net is called sound if
no dead task no transition is dead

$$
\forall t \in T . \exists M \in[i\rangle . M \xrightarrow{t}
$$

option to complete place o is eventually marked

$$
\forall M \in[i\rangle . \exists M^{\prime} \in[M\rangle . M^{\prime}(o) \geq 1
$$

proper completion when o is marked, no other token is left

$$
\forall M \in[i\rangle . M(o) \geq 1 \Rightarrow M=o
$$

Dead, live or non-live

A remark about terminology:
t is dead: its firing is always ruled out
t is live: its firing can never be ruled out
t is non-live $=$ its firing is possibly ruled out

1: no dead tasks

1: no dead tasks

The check must be repeated for each task

2: option to complete

2: option to complete

The check must be repeated for each reachable marking

3: proper completion

3: proper completion

3: proper completion

The check must be repeated for each marking M such that $\mathrm{M}(\mathrm{o})=1$

Brute-force analysis

First, check if the Petri net is a workflow net easy "syntactic" check

Second, check if it is sound (more difficult): build the Reachability Graph
to check 1: for each transition t there must be an arc in the RG that is labelled with t
to check 2\&3: the RG must have only one final state (sink) and it must consists of one token in o

Some Pragmatic Considerations

All checks can better be done automatically (computer aided)
but nevertheless RG construction...

1. can be computationally expensive for large nets
(because of state explosion)
2. provides little support in repairing unsound processes
3. can be infinite (CG can be used, but it is not exact)

N^{*}

Advanced support

Translate soundness to other well-known properties that can be checked more efficiently:
boundedness and liveness

Play once

Play once

Play Twice

Play Twice

Play Twice

From N to N*

Strong connectedness

of N^{\star}

Let us denote by $N: i \rightarrow o$ a workflow net with entry place i and exit place o.

Let N^{*} be the net obtained by adding the "reset" transition to N reset : $o \rightarrow i$.

Proposition:

N^{*} is strongly connected.

Strong connectedness

of N^{\star}

Let us denote by $N: i \rightarrow o$ a workflow net with entry place i and exit place o.

Let N^{*} be the net obtained by adding the "reset" transition to N reset : $o \rightarrow i$.

Proposition:

N^{*} is strongly connected.

Take two nodes of $(x, y) \in F_{N^{*}}$, we want to build a path from y to x

Strong connectedness

of N^{\star}

Let us denote by $N: i \rightarrow o$ a workflow net with entry place i and exit place o.

Let N^{*} be the net obtained by adding the "reset" transition to N reset : $o \rightarrow i$.

Proposition:

N^{*} is strongly connected.
If $x, y \neq$ reset, then
y lies on a path $i \rightarrow^{*} y \rightarrow^{*} o$, because N is a workflow net, x lies on a path $i \rightarrow^{*} x \rightarrow^{*} o$, because N is a workflow net, we combine the paths $y \rightarrow^{*} o \rightarrow_{72}$ reset $\rightarrow i \rightarrow^{*} x$

Strong connectedness

of N^{*}

Let us denote by $N: i \rightarrow o$ a workflow net with entry place i and exit place o.

Let N^{*} be the net obtained by adding the "reset" transition to N reset : $o \rightarrow i$.

Proposition:

N^{*} is strongly connected.
If $x=o, y=$ reset, then take any path $i \rightarrow^{*} o$, we build the path reset $\rightarrow i \rightarrow^{*} o$

Strong connectedness

of N^{*}

Let us denote by $N: i \rightarrow o$ a workflow net with entry place i and exit place o.

Let N^{*} be the net obtained by adding the "reset" transition to N reset : $o \rightarrow i$.

Proposition:

N^{*} is strongly connected.
If $x=$ reset, $y=i$, then
take any path $i \rightarrow^{*} o$,
we build the path $i \rightarrow^{*} o \rightarrow$ reset

MAIN THEOREM

Let us denote by $N: i \rightarrow o$ a workflow net with entry place i and exit place o

Let N^{*} be the net obtained by adding the "reset" transition to N reset : $o \rightarrow i$

Theorem:

N is sound iff N^{*} is live and bounded

Proof of MAIN THEOREM (1)

N^{*} live and bounded implies N sound:
Since N^{*} is live: for each $t \in T$ there is $M \in[i\rangle . M \xrightarrow{t}$
Take any $M \in[i\rangle$ enabling reset $: o \rightarrow i$, hence $M \supseteq o$
Let $M \xrightarrow{\text { reset }} M^{\prime}$. Then $M^{\prime} \in[i\rangle$ and $M^{\prime} \supseteq i$
Since N^{*} is bound, it must be $M^{\prime}=i$ (and $M=o$)
Otherwise all places marked by $M^{\prime}-i=M-o$ would be unbounded
Hence N^{*} just allows multiple runs of N :
"option to complete" and "proper completion" hold (see above) "no dead task" holds because N^{*} is live

A technical lemma

Lemma:

If N is sound, M is reachable in N iff M is reachable in N^{*}
$\Rightarrow)$ straightforward
$\Leftarrow)$ Let $i \xrightarrow{\sigma} M$ in N^{*} for $\sigma=t_{1} t_{2} \ldots t_{n}$
We proceed by induction on the number r of instances of reset in σ If $r=0$, then reset does not occur in σ and M is reachable in N
If $r>0$, let k be the least index such that $t_{k}=$ reset
Let $\sigma=\sigma^{\prime} t_{k} \sigma^{\prime \prime}$ with $\sigma^{\prime}=t_{1} t_{2} \ldots t_{k-1}$ fireable in N
Since N is sound: $i \xrightarrow{\sigma^{\prime}} o$ and $i \xrightarrow{\sigma^{\prime \prime}} M$
Since $\sigma^{\prime \prime}$ contains $r-1$ instances of reset:
by inductive hypothesis M is reachable in N

Proof of MAIN THEOREM (2)

N sound implies N^{*} bounded :
We proceed by contradiction, assuming N^{*} is unbounded
Since N^{*} is unbounded:
$\exists M, M^{\prime}$ such that $i \rightarrow^{*} M \rightarrow^{*} M^{\prime}$ with $M \subset M^{\prime}$
Let $L=M^{\prime}-M \neq \emptyset$
Since N is sound:
$\exists \sigma \in T^{*}$ such that $M \xrightarrow{\sigma} o$
By the monotonicity Lemma: $M^{\prime} \xrightarrow{\sigma} o+L$ and thus $o+L \in[i\rangle$ Which is absurd, because N is sound

Proof of MAIN THEOREM (3)

N sound implies N^{*} live:
Take any transition t and let M be a marking reachable in N^{*} By the technical lemma, M is reachable in N

Since N is sound: $\exists \sigma \in T^{*}$ with $M \xrightarrow{\sigma} o$ Since N is sound: $\exists \sigma^{\prime} \in T^{*}$ with $i \xrightarrow{\sigma^{\prime}} M^{\prime}$ and $M^{\prime} \xrightarrow{t}$

Let $\sigma^{\prime \prime}=\sigma$ reset σ^{\prime}, then:
$M \xrightarrow{\sigma^{\prime \prime}} M^{\prime}$ in N^{*} and $M^{\prime} \xrightarrow{t}$

Exercise

Use some tools to check if the net below is a sound workflow net or not

Exercise

Use some tools to check if the net below is a sound workflow net or not

Exercise

Analyse the following net

