Business Processes Modelling

MPB (6 cfu, 295AA)

Roberto Bruni

http://www.di.unipi.it/~bruni

13 - Workflow nets
We study some special kind of Petri nets, that are suitable models of workflows.
There are many, many variants of Petri nets
Condition / Event Systems

A **C/E system** is a Petri net whose places have all capacity equal to 1 (i.e., each place can contain one token at most)

Markings are just subsets of P (not multisets)

Firing rule is more restrictive:

t is enabled at M if $\cdot t \subseteq M$ and $t \cdot \cap M = \emptyset$

Is t_1 enabled?
A **C/E system** is a Petri net whose places have all capacity equal to 1 (i.e., each place can contain one token at most)

Markings are just subsets of P (not multisets)

Firing rule is more restrictive:
t is enabled at M if $\bullet t \subseteq M$ and $t\bullet \cap M = \emptyset$

Is t_1 enabled?

No, a token is already in p_3
A **P/T net** is a Petri net \((P,T,F)\) together with a weight function \(w : F \rightarrow \text{Nat}\).

Firings consume and produce tokens according to the weight function.

Sometimes a place capacity function \(c : P \rightarrow \text{Nat} \cup \{\infty\}\) is also considered.

Firings cannot lead to markings where the capacity of a place is exceeded.
P/T net: examples

Capacity ∞ is omitted from places
Weight 1 is omitted from arcs
P/T net: examples

Is t_1 enabled?

capacity

weight
P/T net: examples

Is \(t_1 \) enabled?

No, \(p_3 \) can contain one token at most

No, two tokens are needed from \(p_1 \)

Yes, the firing leads to \(3p_3 \)
A coloured net is a Petri net whose tokens can carry data and whose transitions can check data (see exact definition in Weske’s book).
Workflow nets
Workflow nets features

Tailored to the representation of business processes

- Formal (unambiguous) semantics
- Structural restrictions
- Decorated graphical representation
Workflow net: idea

WFN
Definition:
A Petri net \((P, T, F)\) is called workflow net if:

1. there is a distinguished initial place \(i \in P\) with \(\bullet i = \emptyset\)
2. there is a distinguished final place \(o \in P\) with \(o \bullet = \emptyset\)
3. every other place and transition belongs to a path from \(i\) to \(o\)
Workflow net: Rationale

1. a token in i represents a process instance not yet started

2. a token in o represents a finished case

3. each place and each transition can participate in a case

Definition:
A Petri net (P, T, F) is called workflow net if:

1. there is a distinguished initial place $i \in P$ with $\cdot i = \emptyset$

2. there is a distinguished final place $o \in P$ with $o \bullet = \emptyset$

3. every other place and transition belongs to a path from i to o
WF net: Example

1. receive order
2. process order
3. pack goods
4. update inventory
5. complete order
6. send goods

The diagram illustrates the workflow process with stages and transitions between them.
Basic properties

Lemma: In a workflow net there is a unique node with no incoming arc.

Lemma: In a workflow net there is a unique node with no outgoing arc.

Exercise: Guess which nodes are those.

Exercise: Prove the above lemmas (hint: suppose the nodes are not unique, reach a contradiction).
Question time: WF net?
Syntax sugar: split

AND-split

stands for

XOR-split

stands for
Syntax sugar: join

AND-join

stands for

stands for

XOR-join
Hierarchical structuring

Uniqueness of entry / exit point facilitate the hierarchical structuring of WF nets

A transition can be realized by another workflow net
WoPeD (3.7.1)
Workflow Petri Net Designer
Download WoPeD at sourceforge!
The language of a workflow net is the set of firing sequences that go from i to o

\[L(N) = \{ \sigma \mid i \xrightarrow{\sigma} o \} \]

\(L(N) \) defines the admissible traces of the workflow
Typical control flow aspects

- Sequencing
- Parallelism (AND-split + AND-join)
- Selection (XOR-split + XOR-join)
- Iteration (XOR-join + XOR-split)

Capacity constraints:
- Feedback loop
- Mutual exclusion
- Alternating
Sequencing

B is executed after A
Parallelism
(AND-split + AND-join)

A and B are both executed in no particular order
Parallelism
(“sugared” version)
Decorated version for business process stakeholders
Explicit choice
(XOR-split + XOR-join)

Either A or B is executed (choice is explicit)
Explicit choice
("sugared" version)

Decorated version for business process stakeholders
Deferred choice

Either A or B is executed (choice is implicit)
Remember

Explicit choice \neq Implicit choice

The decision is made at different points in time
Iteration
(one or more times)

A is executed 1 or more times
One-or-more iteration ("sugared" version)

Decorated version for business process stakeholders
Iteration
(zero or more times)

A is executed 0 or more times
Zero-or-more iteration ("sugared" version)

Decorated version for business process stakeholders
One serve per time

Multiple activations are handled one by one
Mutual exclusion

A and B cannot execute concurrently
Alternation

A and B execute one time each (A first)
Question time

Consider the workflow net below

How many times can A be executed?
How many times can B executed?
Can a firing sequence contain two As in a row?
Can a firing sequence contain two Bs in a row?
Can a firing sequence contain more Bs than As?
Exercises

• Which "patterns" can be found in the workflow net below?
• "Sugarize" the net
• Draw the corresponding Reachability Graph
• What is its language?
Exercises

- Which "patterns" can be found in the workflow net below?
- "Sugarize" the net (where it makes sense)
- Name all places and draw the Reachability Graph
- What is its language?
Exercises

• "Desugarize" the workflow net below
• Name all nodes and draw the Reachability Graph
• What is its language?

![Workflow Diagram]

i

select books

not found

send order

receive not avail

receive books

found

Exercises

• "Desugarize" the workflow nets below
• Name all nodes and draw the Reachability Graphs
• What are their languages?
Execution constraints can depend on the environment in which processes are enacted.

In workflow nets, transitions can be decorated with the information on who (or what) is responsible for the "firing" of that task.

Such annotations are called triggers.
Triggers

Triggers can be:

a human interaction

the receipt of a message

the expiration of a time-out

Transitions with no trigger can fire automatically
Symbols for triggers

- **Automatic Trigger**: Task enacted automatically
- **User Trigger**: A human user takes initiative and starts activity
- **External Trigger**: External event required to start activity
- **Time Trigger**: Activity started when timer elapses
Triggers: example

send request -> collect response -> archive file

send reminder
Triggers: example
Explicit vs Implicit XOR-split

(a) *Explicit xor split* does not enable A and B concurrently

(b) *Implicit xor split* enables A and B concurrently
Motivation for the analysis

L(N) shows the correct ways to run the process if it is empty there is clearly some problem.

Are we guaranteed that nothing can go wrong? Are we guaranteed that once a case is started it will reach an end?

BPs are large, with increasing complexity flawed situations are frequent.
Is this WF net ok?

What does it mean "to be ok"?