Methods for the specification and verification of business processes

MPB (6 cfu, 295AA)

Roberto Bruni
http://www.di.unipi.it/~bruni

13 - Workflow nets
Object

We study some special kind of Petri nets, that are suitable models of workflows
There are many, many variants of Petri nets
A **C/E system** is a Petri net whose places have all capacity equal to 1 (i.e., each place can contain one token at most)

Markings are just subsets of P (not multisets)

Firing rule is more restrictive:
t is enabled at M if $\bullet t \subseteq M$ and $t\bullet \cap M = \emptyset$

Is t_1 enabled?
Place / Transition

Petri nets

A **P/T net** is a Petri net \((P,T,F)\) together with a weight function \(w : F \rightarrow \text{Nat}\).

Firings consume and produce tokens according to the weight function.

Sometimes a place capacity function \(c : P \rightarrow \text{Nat} \cup \{\infty\}\) is also considered.

Firings cannot lead to markings where the capacity of a place is exceeded.
P/T net: examples

Capacity ∞ is omitted from places
Weight 1 is omitted from arcs
P/T net: examples

Is t_1 enabled?
Coloured nets
(also called High-Level)

A coloured net is a Petri net whose tokens can carry data and whose transitions can check data (see exact definition in Weske’s book)
Workflow nets
Workflow nets features

Aim: To ease the representation of business processes

- Formal (unambiguous) semantics
- Decorated graphical representation
- Structural restrictions
- Efficient analysis of process properties
- Tool independence (.pnml standard)
Workflow net: idea
Workflow net

Definition:
A Petri net \((P, T, F)\) is called workflow net if:

1. there is a distinguished initial place \(i \in P\) with \(\bullet i = \emptyset\)
2. there is a distinguished final place \(o \in P\) with \(o\bullet = \emptyset\)
3. every other place and transition belongs to a path from \(i\) to \(o\)
Workflow net: Rationale

1. a token in \(i \) represents a process instance not yet started
2. a token in \(o \) represents a finished case
3. each place and each transition can participate in a case

Definition:
A Petri net \((P,T,F)\) is called workflow net if:

1. there is a distinguished initial place \(i \in P \) with \(\bullet i = \emptyset \)
2. there is a distinguished final place \(o \in P \) with \(o\bullet = \emptyset \)
3. every other place and transition belongs to a path from \(i \) to \(o \)
WF net: Example
Basic properties

Lemma: In a workflow net there is a unique node with no incoming arc

Lemma: In a workflow net there is a unique node with no outgoing arc

Exercise: Guess which nodes are those

Exercise: Prove the above lemmas (hint: suppose the nodes are not unique, reach a contradiction)
Question time: WF net?
Syntax sugar: split

AND-split

stands for

XOR-split

stands for
Syntax sugar: join

AND-join

stands for

stands for

XOR-join
Hierarchical structuring

Uniqueness of entry / exit point facilitate the hierarchical structuring of WF nets.

A transition can be realized by another workflow net.
WoPeD (3.6.0)
Workflow Petri Net Designer
Download WoPeD at sourceforge!
Typical control flow aspects

Sequencing

Parallelism (AND-split + AND-join)

Selection (XOR-split + XOR-join)

Iteration (XOR-join + XOR-split)

Capacity constraints:
 Feedback loop
 Mutual exclusion
 Alternating
Sequencing

B is executed after A
Parallelism

(AND-split + AND-join)

A and B are both executed in no particular order
Parallelism
(“sugared” version)
Decorated version for business process stakeholders
Explicit choice
(XOR-split + XOR-join)

Either A or B is executed (choice is explicit)
Explicit choice
(“sugared” version)
Decorated version for business process stakeholders
Deferred choice

Either A or B is executed (choice is implicit)
Remember

Explicit choice ≠ Implicit choice

The decision is made at different points in time
Iteration
(one or more times)

A is executed 1 or more times
One-or-more iteration ("sugared" version)

Decorated version for business process stakeholders
Iteration
(zero or more times)

A is executed 0 or more times
Zero-or-more iteration ("sugared" version)

Decorated version for business process stakeholders
One serve per time

Multiple activations are handled one by one
Mutual exclusion

A and B cannot execute concurrently
Alternation

A and B execute one time each (A first)
Consider the workflow net below:

How many times can A be executed?
How many times can B executed?
Can a firing sequence contain two As in a row?
Can a firing sequence contain two Bs in a row?
Can a firing sequence contain more Bs than As?
Exercises

- Which "patterns" can be found in the workflow net below?
- "Sugarize" the net
- Draw the corresponding Reachability Graph
- What are the possible firing sequences?
Exercises

• Which "patterns" can be found in the workflow net below?
• "Sugarize" the net (where it makes sense)
• Name all places and draw the Reachability Graph
• What are the possible firing sequences?
Exercises

• "Desugarize" the workflow net below
• Name all nodes and draw the Reachability Graph
• What are the possible firing sequences?
Exercises

• "Desugarize" the workflow nets below
• Name all nodes and draw the Reachability Graphs
• What are their possible firing sequences?
Triggers

Execution constraints can depend on the environment in which processes are enacted.

In workflow nets, transitions can be decorated with the information on who (or what) is responsible for the "firing" of that task.

Such annotations are called triggers
Triggers

Triggers can be:

a human interaction

the receipt of a message

the expiration of a time-out

Transitions with no trigger can fire automatically
Symbols for triggers

- **Automatic Trigger**: Task enacted automatically
- **User Trigger**: A human user takes initiative and starts activity
- **External Trigger**: External event required to start activity
- **Time Trigger**: Activity started when timer elapses
Triggers: example

- send request
- collect response
- archive file
- send reminder
Triggers: example

- Start:
 - i

- Charge credit card success or failure:
 - A

- Spam customer:
 - B

- Receive:
 - D

- Pack complete or incomplete:
 - G

- Backorder:
 - E

- Cancel order:
 - C

- Update billing info updated or canceled:
 - o

- Ship:
 - o
Explicit vs Implicit XOR-split

(a) *Explicit xor split* does not enable A and B concurrently

(b) *Implicit xor split* enables A and B concurrently
Motivation for the analysis

Old BPs generally had simple structures and a physical document linked to each case (a sort of token that serializes tasks)

ICT developments (databases and networks) allowed terrific enhancements... and dangers:
 - information is shared
 - parallelization is possible
 - completion times can be shortened
 - BPs are larger, with increasing complexity
 - flawed situations are more frequent
Is this WF net ok?

What does it mean "to be ok"?