Methods for the specification and verification of business processes

MPB (6 cfu, 295AA)

Roberto Bruni

http://www.di.unipi.it/~bruni

13 - Workflow nets
We study some special kind of Petri nets, that are suitable models of workflows.
There are many, many variants of Petri nets
A **C/E system** is a Petri net whose places have all capacity equal to 1 (i.e., each place can contain one token at most)

Markings are just subsets of P (not multisets)

Firing rule is more restrictive:
t is enabled at M if $\cdot t \subseteq M$ and $t \cdot \cap M = \emptyset$

Is t_1 enabled?
A **P/T net** is a Petri net \((P,T,F)\) together with a weight function \(w : F \rightarrow \text{Nat}\).

Firings consume and produce tokens according to the weight function.

Sometimes a place capacity function \(c : P \rightarrow \text{Nat} \cup \{\infty\}\) is also considered.

Firings cannot lead to markings where the capacity of a place is exceeded.
P/T net: examples

Capacity ∞ is omitted from places
Weight 1 is omitted from arcs
P/T net: examples

Is t_1 enabled?
Coloured nets (also called High-Level)

A coloured net is a Petri net whose tokens can carry data and whose transitions can check data (see exact definition in Weske’s book)

- Paula, 15000
- Mary, 22000
- Peter, 23000

[CreditRequest]

[AssessRisk]

[SimpleRiskAssessment]

[AdvancedRiskAssessment]

[BeginsWith (c, A-H)]

[BeginsWith (c, I-Z)]

[Inform Customer A-H]

[Inform Customer I-Z]
Workflow nets
Workflow nets features

Aim: To ease the representation of business processes

- Formal (unambiguous) semantics
- Decorated graphical representation
- Structural restrictions
- Efficient analysis of process properties
- Tool independence (.pnml standard)
Workflow net: idea

WFN

start → work → end
Definition:
A Petri net \((P, T, F)\) is called workflow net if:

1. there is a distinguished initial place \(i \in P\) with \(\bullet i = \emptyset\)
2. there is a distinguished final place \(o \in P\) with \(o\bullet = \emptyset\)
3. every other place and transition belongs to a path from \(i\) to \(o\)
Definition:
A Petri net \((P, T, F)\) is called **workflow net** if:

1. there is a distinguished *initial place* \(i \in P\) with \(i\bullet = \emptyset\)
2. there is a distinguished *final place* \(o \in P\) with \(o\bullet = \emptyset\)
3. every other place and transition belongs to a path from \(i\) to \(o\)
WF net: Example
Basic properties

Lemma: In a workflow net there is a unique node with no incoming arc

Lemma: In a workflow net there is a unique node with no outgoing arc

Exercise: Guess which nodes are those

Exercise: Prove the above lemmas (hint: suppose the nodes are not unique, reach a contradiction)
Question time: WF net?
Hierarchical structuring

Uniqueness of entry / exit point facilitate the hierarchical structuring of WF nets
Abstract view
Subprocesses in Woped
Typical control flow aspects

Sequencing

Parallelism (AND-split + AND-join)

Selection (XOR-split + XOR-join)

Iteration (XOR-join + XOR-split)

Capacity constraints:
 Feedback loop
 Mutual exclusion
 Alternating
Sequencing

B is executed after A
Parallelism (AND-split + AND-join)
A and B are both executed in no particular order
Parallelism
("sugared" version)

Decorated version for business process stakeholders
Deferred choice
(XOR-split + XOR-join)

Either A or B is executed (choice is *implicit*)
Explicit choice
(XOR-split + XOR-join)

Either A or B is executed (choice is explicit)
Choice
("sugared" version)
Decorated version for business process stakeholders
Syntax Sugar

And split

Xor split
Remember

Explicit choice ≠ Implicit choice

The decision is made at different points in time
Iteration
(one or more time)

A is executed 1 or more time
One-or-more iteration
(“sugared” version)

Decorated version for business process stakeholders
Iteration
(zero or more time)

A is executed 0 or more times

Diagram:
- A is a decision point.
- The diagram shows a process where A can be repeated zero or more times.
Iteration
(zero or more time)

A is executed 0 or more time
Zero-or-more iteration ("sugared" version)

Decorated version for business process stakeholders
Zero-or-more iteration
(simplified version)

Decorated version for business process stakeholders
One serve per time

Multiple activations are handled one by one
Mutual exclusion

A and B cannot execute concurrently
Alternation

A and B execute one time each (A first)
Question time

What's the difference (also in terms of firing sequences)?
Question time

What's the difference (also in terms of firing sequences)?

For example, here B can be executed after C
Exercises

- Which "patterns" can be found in the workflow net below?
- "Sugarize" the net
- Draw the corresponding Reachability Graph
- What are the possible firing sequences?
Exercises

• Which "patterns" can be found in the workflow net below?

• "Sugarize" the net (where it makes sense)

• Name all places and draw the Reachability Graph
Exercises

• "Desugarize" the workflow net below, then name all places and all transitions
• Draw the corresponding Reachability Graph
• What are the possible firing sequences?
Exercises

• "Desugarize" the workflow nets below, then name all items
• Draw the corresponding Reachability Graphs
• What are their possible firing sequences?
Triggers

Execution constraints can depend on the environment in which processes are enacted.

In the contexts of workflow nets, transitions can be annotated with the information on who (or what) is responsible for the "firing" of that task.

All transitions that are not annotated can fire automatically.

Such annotations are called triggers.
Triggers

Triggers can be:

a human interaction

the receipt of a message

the expiration of a time-out
Symbols for triggers

- **Automatic Trigger**: Task enacted automatically
- **User Trigger**: A human user takes initiative and starts activity
- **External Trigger**: External event required to start activity
- **Time Trigger**: Activity started when timer elapses
Triggers: example
Triggers: example
Explicit vs Implicit XOR-split

(a) Explicit xor split does not enable A and B concurrently

(b) Implicit xor split enables A and B concurrently
Encoding triggers

Trigger activities can formally be represented by places with an arc to the respective transition...

but such nets would not be workflow nets! (unless the resource is allocated at the beginning and deallocated at the end)
Terminology: revisited

task: A logical step which may be executed for many cases

work item = task + case
A logical step which may be executed for a specific case

activity = task + case + (trigger) + (resource)
The actual execution of a task for a specific case

(work items and activities are task instances)
Motivation for the analysis

Old BPs generally had simple structures and a physical document linked to each case (a sort of token that serializes tasks)

ICT developments (databases and networks) allowed terrific enhancements... and dangers:
- information is shared
- parallelization is possible
- completion times can be shortened
- BPs are larger, with increasing complexity
- flawed situations are more frequent
Is this WF net ok?