Methods for the specification and verification of business processes MPB (6 cfu, 295AA)

Roberto Bruni
http://www.di.unipi.it/~bruni

11 - Invariants

Object

We introduce two relevant kinds of invariants for Petri nets

Free Choice Nets (book, optional reading)
https://www7.in.tum.de/~esparza/bookfc.html

Puzzle time: tiling a chessboard with dominoes

Puzzle time: tiling a chessboard with dominoes

Puzzle: from MI to MU

You can compose words using symbols M, I, U
Given the initial word MI, you can apply the following transformations, in any order, as many times as you like:

1. Add a \mathbf{U} to the end of any string ending in I (e.g., MI to MIU).
2. Double the string after the M (e.g., MIU to MIUIU).
3. Replace any III with a U (e.g., MUIIIU to MUUU).
4. Remove any UU (e.g., MUUU to MU).

Can you transform MI to MU?

Invariant

An invariant of a dynamic system is an assertion that holds at every reachable state

Examples:
liveness of a transition t deadlock freedom boundedness

Recall:

Liveness, formally

$\left(P, T, F, M_{0}\right)$
$\forall t \in T, \quad \forall M \in\left[M_{0}\right\rangle, \quad \exists M^{\prime} \in[M\rangle, \quad M^{\prime} \xrightarrow{t}$

Liveness as invariant

Lemma

If $\left(P, T, F, M_{0}\right)$ is live and $M \in\left[M_{0}\right\rangle$, then (P, T, F, M) is live.

Let $t \in T$ and $M^{\prime} \in[M\rangle$.
Since $M \in\left[M_{0}\right\rangle$, then $M^{\prime} \in\left[M_{0}\right\rangle$.
Since $\left(P, T, F, M_{0}\right)$ is live, $\exists M^{\prime \prime} \in\left[M^{\prime}\right\rangle$ with $M^{\prime \prime} \xrightarrow{t}$.
Therefore (P, T, F, M) is live.

Recall: Deadlock freedom, formally

$$
\left(P, T, F, M_{0}\right)
$$

$$
\forall M \in\left[M_{0}\right\rangle, \quad \exists t \in T, \quad M \xrightarrow{t}
$$

Deadlock freedom as invariant

Lemma: If $\left(P, T, F, M_{0}\right)$ is deadlock-free and $M \in\left[M_{0}\right\rangle$, then (P, T, F, M) is deadlock-free.

Let $M^{\prime} \in[M\rangle$.
Since $M \in\left[M_{0}\right\rangle$, then $M^{\prime} \in\left[M_{0}\right\rangle$.
Since $\left(P, T, F, M_{0}\right)$ is deadlock-free, $\exists t \in T$ with $M^{\prime} \xrightarrow{t}$.
Therefore (P, T, F, M) is deadlock-free.

Exercise

Give the formal definition of Boundedness
Then prove that Boundedness is an invariant
Or give a counter-example

Exercise

Give the formal definition of Cyclicity

Then prove that Cyclicity is an invariant
Or give a counter-example

Structural invariants

In the case of Petri nets, it is possible to compute certain vectors of rational numbers ${ }^{(*)}$ (directly from the structure of the net) (independently from the initial marking) which induce nice invariants, called

S-invariants

T-invariants
(*) it is not necessary to consider real-valued solutions, because incidence matrices only have integer entries

Why invariants?

Can be calculated efficiently
(polynomial time for a basis)
Independent of initial marking
Structural property with behavioural consequences
However, the main reason is didactical!
You only truly understand a model if you think about it in terms of invariants!

S-invariants

S-invariant

(aka place-invariant)

Definition: An S-invariant of a net $N=(P, T, F)$ is a rational-valued solution \mathbf{x} of the equation

$$
\mathbf{x} \cdot \mathbf{N}=\mathbf{0}
$$

Fundamental property of S-invariants

Proposition: Let I be an invariant of N.
For any $M \in\left[M_{0}\right\rangle$ we have $\mathbf{I} \cdot M=\mathbf{I} \cdot M_{0}$

Fundamental property of S-invariants

Proposition: Let I be an invariant of N.
For any $M \in\left[M_{0}\right\rangle$ we have $\mathbf{I} \cdot M=\mathbf{I} \cdot M_{0}$
Since $M \in\left[M_{0}\right\rangle$, there is σ s.t. $M_{0} \xrightarrow{\sigma} M$
By the marking equation: $M=M_{0}+\mathbf{N} \cdot \vec{\sigma}$

Therefore: $\quad \mathbf{I} \cdot M=\mathbf{I} \cdot\left(M_{0}+\mathbf{N} \cdot \vec{\sigma}\right)$

$$
\begin{aligned}
& =\mathbf{I} \cdot M_{0}+\mathbf{I} \cdot \mathbf{N} \cdot \vec{\sigma} \\
& =\mathbf{I} \cdot M_{0}+\mathbf{0} \cdot \vec{\sigma} \\
& =\mathbf{I} \cdot M_{0}
\end{aligned}
$$

Place-invariant, intuitively

A place-invariant assigns a weight to each place such that the weighted token sum remains constant during any computation

For example, you can imagine that tokens are coins, places are the different kinds of available coins, the S-invariant assigns a value to each coin: the value of a marking is the sum of the values of the tokens/coins in it and it is not changed by firings

Place-invariant, intuitively

A place-invariant assigns a weight to each place such that the weighted token sum remains constant during any computation

For example, you can imagine that tokens are molecules, places are different kinds of molecules, the S-invariant assigns the number of atoms needed to form each molecule:
the overall number of atoms is not changed by firings

Intuition: bubbles

Intuition: bubbles

p_{1}

 within tokens

Intuition: bubbles

$1\left(p_{1}\right)=2 \quad$ within tokens

Intuition: bubbles

$I\left(p_{1}\right)=2 \quad$ within tokens

Intuition: bubbles

$1\left(p_{1}\right)=2 \quad$ within tokens

Intuition: bubbles

$1\left(p_{1}\right)=2 \quad$ within tokens

Intuition: bubbles

$I\left(p_{1}\right)=2 \quad$ within tokens

Intuition: bubbles

$I\left(p_{1}\right)=2 \quad$ within tokens

Intuition: bubbles

$I\left(p_{1}\right)=2$

 within tokens

Intuition: tokens

Intuition: tokens

Traffic-lights example

1red + 1green + 1yellow = 1

Traffic-lights example

1red' +1 green' +1 yellow' = 1 1 red +1 green +1 yellow $=1$

Traffic-lights example

1 mutex +1 green +1 green' +1 yellow +1 yellow' $=1$

1 red' +1 green' +1 yellow' $=1$
1 red +1 green +1 yellow $=1$

Traffic-lights example

1mutex +1 green +1 green' +1 yellow +1 yellow' $=1$ -

1red' +1 green' +1 yellow' $=1 \boldsymbol{+}$
1 red +1 green +1 yellow $=1 \boldsymbol{}$

Traffic-lights example

1red + 1red' - 1 mutex = 1

1red' $+1=\mathbf{4}$
1red + + $=1$ +

Alternative definition of S-invariant

Proposition:

A mapping I : $P \rightarrow \mathbb{Q}$ is an S-invariant of N iff for any $t \in T$:

$$
\sum_{p \in \bullet} \mathbf{I}(p)=\sum_{p \in t \bullet} \mathbf{I}(p)
$$

Exercise

Prove the proposition about the alternative characterization of S-invariants

Consequence of alternative definition

Very useful in proving S-invariance!
The check is possible without constructing the incidence matrix

Question time

Which of the following are S-invariants?
$\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$
[0 0 11]
$\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$
[11 1 2]
$\forall t \in T, \sum_{p \in \boldsymbol{\bullet}} \mathbf{I}(p) \stackrel{?}{=} \sum_{p \in \in \bullet} \mathbf{I}(p) \quad\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]$

Question time

Which of the following are S-invariants?

Exercises

Do S-invariants depend on the initial marking?

Can the two nets below have different S-invariants?

Exercises

Define two (linearly independent) S-invariants for each of the nets below

S-invariants and system properties

Semi-positive S-invariants

The S-invariant \mathbf{I} is semi-positive if $\mathbf{I}>\mathbf{0}$ (i.e. $\mathbf{I} \geq \mathbf{0}$ and $\mathbf{I} \neq \mathbf{0}$)

The support of \mathbf{I} is: $\langle\mathbf{I}\rangle=\{p \mid \mathbf{I}(p)>0\}$
The S-invariant \mathbf{I} is positive if $\mathbf{I} \succ \mathbf{0}$
(i.e. $\mathbf{I}(p)>0$ for any place $p \in P$)
(i.e. $\langle\mathbf{I}\rangle=P$)

A (semi-positive) S-invariant whose coefficients are all 0 and 1 is called uniform

Note

Notation: $\bullet S=\bigcup_{s \in S} \bullet s$

Every semi-positive invariant satisfies the equation

$$
\bullet\langle\mathbf{I}\rangle=\langle\mathbf{I}\rangle \bullet
$$

pre-sets of support equal post-sets of support
(the result holds for both S-invariant and T-invariant)

A sufficient condition for boundedness

Theorem:
If $\left(P, T, F, M_{0}\right)$ has a positive S -invariant then it is bounded

Let $M \in\left[M_{0}\right\rangle$ and let I be a positive S-invariant.
Let $p \in P$. Then $\mathbf{I}(p) M(p) \leq \mathbf{I} \cdot M=\mathbf{I} \cdot M_{0}$
Since \mathbf{I} is positive, we can divide by $\mathbf{I}(p)$:
$M(p) \leq\left(\mathbf{I} \cdot M_{0}\right) / \mathbf{I}(p)$

A sufficient condition for boundedness

Theorem:
If $\left(P, T, F, M_{0}\right)$ has a positive S -invariant then it is bounded

Let $M \in\left[M_{0}\right\rangle$ and let I be a positive S-invariant.
Let $p \in P$. Then $\mathbf{I}(p) M(p) \leq \mathbf{I} \cdot M=\mathbf{I} \cdot M_{0}$
Since \mathbf{I} is positive, we can divide by $\mathbf{I}(p)$:
$M(p) \leq\left(\mathbf{I} \cdot M_{0}\right) / \mathbf{I}(p)$

Consequences of previous theorem

By exhibiting a positive S-invariant we can prove that the system is bounded for any initial marking

Note that all places in the support of a semi-positive S-invariant are bounded for any initial marking

Example

To prove that the system is bounded we can just exhibit a positive S-invariant

$$
I=\left[\begin{array}{lll}
1 & 1 & 2
\end{array}\right]
$$

Exercises

Find a positive S-invariant for the net below

A necessary condition for liveness

Theorem:

If $\left(P, T, F, M_{0}\right)$ is live then for every semi-positive invariant \mathbf{I} :

$$
\mathbf{I} \cdot M_{0}>0
$$

Let $p \in\langle\mathbf{I}\rangle$ and take any $t \in \bullet p \cup p \bullet$.
By liveness, there are $M, M^{\prime} \in\left[M_{0}\right\rangle$ with $M \xrightarrow{t} M^{\prime}$
Then, $M(p)>0($ if $t \in p \bullet)$ or $M^{\prime}(p)>0($ if $t \in \bullet p)$
If $M(p)>0$, then $\mathbf{I} \cdot M \geq \mathbf{I}(p) M(p)>0$
If $M^{\prime}(p)>0$, then $\mathbf{I} \cdot M^{\prime} \geq \mathbf{I}(p) M^{\prime}(p)>0$
In any case, $\mathbf{I} \cdot M_{0}=\mathbf{I} \cdot M=\mathbf{I} \cdot M^{\prime}>0$

Consequence of previous theorem

If we find a semi-positive invariant such that

$$
\mathbf{I} \cdot M_{0}=0
$$

Then we can conclude that the system is not live

Example

It is immediate to check the counter-example

$$
\begin{gathered}
\mathbf{I}=\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right] \\
{\left[\begin{array}{lll}
1 & 0 & 1 \\
\mathbf{I}
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=0} \\
M_{0}
\end{gathered}
$$

Markings that agree on all S-invariant

Definition: M and M ' agree on all S-invariants if for every S-invariant I we have $I \cdot M=I \cdot M^{\prime}$

Note: by properties of linear algebra, this corresponds to require that the equation on y $M+\mathbf{N} \cdot \mathbf{y}=M^{\prime}$ has some rational-valued solution

Remark: In general, there can exist M and M^{\prime} that agree an all S -invariants but such that none of them is reachable from the other

A necessary condition for reachability

Reachability is decidable, but EXPSPACE-hard
S-invariants provide a preliminary check that can be computed efficiently

```
Let \(\left(P, T, F, M_{0}\right)\) be a system.
If there is an S-invariant \(\mathbf{I}\) s.t. \(\mathbf{I} \cdot M \neq \mathbf{I} \cdot M_{0}\) then \(M \notin\left[M_{0}\right\rangle\)
If the equation \(\mathbf{N} \cdot \mathbf{y}=M-M_{0}\) has no rational-valued solution, then \(M \notin\left[M_{0}\right\rangle\)
```


S-invariants: recap

Positive S-invariant Unboundedness
=> boundedness
=> no positive S-invariant

Semi-positive S-invariant I and liveness $=>I \cdot M_{0}>0$ Semi-positive S-invariant I and I•M0 $=0 \quad=>$ non-live

S-invariant I and M reachable S-invariant I and I $\cdot \mathrm{M} \neq \mathrm{I} \cdot \mathrm{M}_{0}$

$$
=>I \cdot M=I \cdot M_{0}
$$

=> M not reachable

Exercises

Can you find a positive S-invariant?

Exercises

Prove that the system is not live by exhibiting a suitable S-invariant

T-invariants

Dual reasoning

The S-invariants of a net N are vectors satisfying the equation

$$
\mathbf{x} \cdot \mathbf{N}=\mathbf{0}
$$

It seems natural to ask if we can find some interesting properties also for the vectors satisfying the equation

$$
\mathbf{N} \cdot \mathbf{y}=\mathbf{0}
$$

T-invariant

(aka transition-invariant)

Definition: A T-invariant of a net $N=(P, T, F)$ is a rational-valued solution \mathbf{y} of the equation

$$
\mathbf{N} \cdot \mathbf{y}=\mathbf{0}
$$

- | $?$ |
| :---: |
| $?$ |
| $?$ |
| $?$ |
| $?$ |
| $?$ |$=$| 0 |
| :--- |
| 0 |
| 0 |
| 0 |
| 0 |

Fundamental property of T-invariants

Proposition: Let $M \xrightarrow{\sigma} M^{\prime}$.
The Parikh vector $\vec{\sigma}$ is a T-invariant iff $M^{\prime}=M$

Fundamental property of T-invariants

Proposition: Let $M \xrightarrow{\sigma} M^{\prime}$.
The Parikh vector $\vec{\sigma}$ is a T-invariant iff $M^{\prime}=M$
$\Rightarrow)$ By the marking equation lemma $M^{\prime}=M+\mathbf{N} \cdot \vec{\sigma}$
Since $\vec{\sigma}$ is a T-invariant $\mathbf{N} \cdot \vec{\sigma}=\mathbf{0}$, thus $M^{\prime}=M$.
$\Leftarrow)$ If $M \xrightarrow{\sigma} M$, by the marking equation lemma $M=M+\mathbf{N} \cdot \vec{\sigma}$ Thus $\mathbf{N} \cdot \vec{\sigma}=M-M=\mathbf{0}$ and $\vec{\sigma}$ is a T-invariant

Transition-invariant, intuitively

A transition-invariant assigns a number of occurrences to each transition such that any occurrence sequence comprising exactly those transitions leads to the same marking where it started (independently from the order of execution)

Example

An easy-to-be-found T-invariant

Alternative definition of T-invariant

Proposition:
A mapping $\mathbf{J}: T \rightarrow \mathbb{Q}$ is a \mathbf{T}-invariant of N iff for any $p \in P$:

$$
\sum_{t \in \bullet} \mathbf{J}(t)=\sum_{t \in p \bullet} \mathbf{J}(t)
$$

Question time

Which of the following are T -invariants?
$\begin{array}{llll}t_{1} & t_{2} & t_{3} & t_{4} \\ t_{5}\end{array}$

$\left.\begin{array}{lllll}{\left[\begin{array}{llll}1 & 0 & 0 & 1\end{array}\right.} \\ {[1} & 1 & 2 & 1 & 2\end{array}\right]$

$$
\forall p \in P, \sum_{t \in \bullet} \mathbf{J}(t) \stackrel{?}{=} \sum_{t \in p \bullet} \mathbf{J}(t)
$$

T-invariants and system properties

Pigeonhole principle

If n items are put into m slots, with $\mathrm{n}>\mathrm{m}$, then at least one slot must contain more than one item

Reproduction lemma

Lemma: Let $\left(P, T, F, M_{0}\right)$ be a bounded system.
If $M_{0} \xrightarrow{\sigma}$ for some infinite sequence σ, then
there is a semi-positive T-invariant \mathbf{J} such that $\langle\mathbf{J}\rangle \subseteq\{t \mid t \in \sigma\}$.
Assume $\sigma=t_{1} t_{2} t_{3} \ldots$ and $M_{0} \xrightarrow{t_{1}} M_{1} \xrightarrow{t_{2}} M_{2} \xrightarrow{t_{3}} \ldots$
By boundedness: [$\left.M_{0}\right\rangle$ is finite.
By the pigeonhole principle, there are $0 \leq i<j$ s.t. $M_{i}=M_{j}$
Let $\sigma^{\prime}=t_{i+1} \ldots t_{j}$. Then $M_{i} \xrightarrow{\sigma^{\prime}} M_{j}=M_{i}$
By the marking equation lemma: $\overrightarrow{\sigma^{\prime}}$ is a T-invariant. (fund. prop. of T-inv.) It is semi-positive, because σ^{\prime} is not empty $(i<j)$.
Clearly, $\langle\mathbf{J}\rangle$ only includes transitions in σ.

Boundedness, liveness

and positive T-invariant

Theorem: If a bounded system is live, then it has a positive T-invariant

By boundedness: $\left[M_{0}\right\rangle$ is finite and we let $k=\left|\left[M_{0}\right\rangle\right|$.
By liveness: $M_{0} \xrightarrow{\sigma_{1}} M_{1}$ with $\overrightarrow{\sigma_{1}}(t)>0$ for any $t \in T$
Similarly: $M_{1} \xrightarrow{\sigma_{2}} M_{2}$ with $\overrightarrow{\sigma_{2}}(t)>0$ for any $t \in T$
Similarly: $M_{0} \xrightarrow{\sigma_{1}} M_{1} \xrightarrow{\sigma_{2}} M_{2} \ldots \xrightarrow{\sigma_{k}} M_{k}$
By the pigeonhole principle, there are $0 \leq i<j \leq k$ s.t. $M_{i}=M_{j}$
Let $\sigma=\sigma_{i+1} \ldots \sigma_{j}$. Then $M_{i} \xrightarrow{\sigma} M_{j}=M_{i}$
By the marking equation lemma: $\vec{\sigma}$ is a T-invariant. (fund. prop. of T-inv.) It is positive, because $\vec{\sigma}(t) \geq \overrightarrow{\sigma_{j}}(t)>0$ for any $t \in T$.

Corollary of previous theorem

Every live and bounded system has:
a reachable marking M and
an occurrence sequence $M \xrightarrow{\sigma} M$
such that all transitions of N occur in σ.

T-invariants: recap

Boundedness + liveness => positive T-invariant
No positive T-invariant => non (live + bounded) No positive T-invariant => non-live OR unbounded No positive T-invariant + liveness => unbounded No positive T-invariant + boundedness => non-live No positive T-inv. + positive S-inv. => non-live

Exercises

Exhibit a system that has a positive T-invariant but is not
live and bounded

Exhibit a live system that has a positive T-invariant but is not bounded

