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Object

We give a matrix-based representation of Petri
nets and their computations

Free Choice Nets (book, optional reading)
https://www7.in.tum.de/~esparza/bookfc.html
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Key point

The change of the numbers of tokens on a place p
caused by the firing of the transition t does not
depend on the current marking

It is entirely determined by the net
(i.e., by the flow relation)

Let us have a look at the relative changes for
every place and transition...



How p relates to t
—()

Place p and transition ¢t are completely unrelated:

(p,t) € F and (t,p) € F

e p has no influence on the enabling of ¢

e firing t does not change the number of tokens in p



How p relates to t
—()

(p,t) € F and (t,p) € F

e one token Iin p Is needed to enable ¢

e firing t reduces by one the number of tokens in p



How p relates to t
—()

e firing ¢ increases by one the number of tokens in p

(p,t) € F and (t,p) € F




How p relates to t
—()

e one token In p Is needed to enable ¢

(p,t) € F and (t,p) € F

e firing t does not change the number of tokens in p



Incidence matrix

Let N = (P, T, F) be a net.

Its incidence matrix N : (P x T)) — {—1,0,1} is defined as:

—1 if (p,t) € F N (t,p) & F
+1 if (p,t) € F N (t,p) € F
0 otherwise
((p,t) € F A (t,p) ¢ F or (p,t) € F A (t,p) €F)



Matrix view

m columns, one for each transition

t1
P1
D2 -1
nrows, 3
one for
each place

Pn




Matrix view

m columns, one for each transition

t1 to
P1 +1
P2| -1
nrows, 3 +1
one for
each place

Pn -1




Matrix view

m columns, one for each transition

t1 1o 13
P1 +1 | -1
P21 -1 +1
nrows, 3 +1
one for +1
each place
+1
-1
Pn -1 | +1




N rows,
one for
each place

Matrix view

m columns, one for each transition

tl t2 t3 tm
P1 +1 | -1 -1
D21 -1 +1
P3 +1
+1
+1
+1
-1
+1
Pn -1 | +1 -1




Tor T;
Nnvec
Colum

l .l .)
. P {

tm
-1
t1 1o 13
1
+1 | -1
P1
P2l -1 +1 |
+1
P3 .
+1
+1 -1
-1
-1 | +1
Pn




Row vector p;

piZT >{ 1,0,1}

such that

t1 1o 13 tm
P1 +1 | -1 -1
P2 -1 +1
P3 +1
+1
+1
+1
-1
+1
Pn -1 | +1 -1




Example: vending

machine
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Example: vending

''''''''''''''''''''''''''''''''

machine
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Example: vending
... machine

PN
c asperse v | - <—>Q rrrrrrr dispense iInsert accept reject
N Q/ . refill candy coin coin coin
OO | t to t3 ty ts
candy storage 1 1
P1
reque% for refill 1 1
5 -
readyé? fé)r coin 1 1 1
h‘;'?‘i'”g 1 1 1
ready to dispense 1 1
Ps )
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Example: vending
machine

candy storage ready for coln  Insert coln
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asperse v dispense iInsert accept reject

i \@’/ AN refill candy coin coin coin
OO | t to t3 ty ts
candyé? sitorage 1 g 0 0 0
reque% 2for refill 1 1 0 0 0
readyé? fé)r coin 0 1 R 0 1
hO}l?(jllng 0 0 1 -1 -1
ready t% glspense 0 P 0 1 0



Vectors: notation

Let ¥ = {eq,e9,...,e,} be a finite set of elements.

Any mapping v: E — Q (orto N, Z,...) can be regarded as a vector:

vV = [0(61), 0(62)7 ooy U(@n)]

We do not use different symbols for row and column vectors:
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Marking as a vector

Any marking M : P — N corresponds to a vector:

M = [ M(p1) M(pz2) ... M(pn) |

w > Mo=[4 010 0]
t1 \ t2
p/ O
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Firing, in vector notation




Firing, in vector notation

/.)\ EMOL”MlA‘MzﬂMS

o ¢

t> <€ p4
t2
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Firing, in vector notation

t> <€ p4
t2

/@\ /Q\EMO&MH%*MQ&MS

-
| |
»—xoooqxwi
| |




Firing, in vector notation

t> <€ p4
t2

O

/@\ /Q\EMO&MH%*MQ&MS

b—\OOO»-lkwi

| ]
|

OOr—\r—\wwi
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Vectors: notation

Let v, w be two vectors over E

We write v < w if v(e) < w(e) forany e € E

We write v < w if v < w and v(e) < w(e) for some e € F
We write v < w if v(e) < w(e) forany e € F

We let 0 denote any vector of any length whose entries are all
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We define their scalar product by

Products

Let x,y be two vectors of equal length n (written |x| = |y| = n)

XYy — Zﬂ?z?/z
i=1

Y1
Y2

Yn

30

= T1Y1 + T2Y2 + ... T Tp¥Yn



Products: example

(001 -1 0 1]

| 1

_ o N = =

| |
|




Products: example

1 -1 0 1] = (0-1)+

| 1
_ O N ==
| |
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Products: example

~1 0 1] — (0-1)+(1-1)+

| 1
— O N~
| ]

33



Products: example

= (0-1)+(1-1)+(—1-2)+

[S—
| 1
_— oI = =
| |
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Products: example

(0 1 —1]|0|1]

— (0-1)4+(1-1)4+(—1-2)+(0-0)+

| 1
o NN ==
| |

35



Products: example

(01 -1 0f1]]

= (0-1)+(1-1)+(—=1-2)4(0-0)+(1-1)

1 1
el (G NI N
| |
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Products: example

(001 -1 0 1] = (0-1)4(1-1)4+(=1-2)+(0-0)+(1-1) = 04+1—2+0+1

| 1
_ o N = =
| |
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Products: example

(001 -1 0 1] = (0-1)4+(1-1)+(—1-2)+(0-0)+(1-1) = 0+1—2+0+1 = 0

| 1
_ o N = =
| |

38



Products

Let x1,X2, ..., XK,y be all vectors of equal length
Let X be a (k X n)-matrix whose i-th row is x;
We define the product X -y as the (column) vector where

(X y)i=xi-y

X1 Y1 X1y

X2 Y2 X2y

Xk YUn Xk Y
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. example

Products
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Products
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. example

Products
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. example

Products
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. example

Products

2—1

—1

—1
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Products

Let X,¥1,¥2,..., Yk be all vectors of equal length
Let Y be a (n X k)-matrix whose ¢-th column is y;

We define the product x - Y as the (row) vector where

(x-Y);i=x"y;i

T1 X2 ... Tp | Y1 Y2 VK| =|XY1 X-Y2

42
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Vector perspective

LetP={p1,....,pn}and T={t1, ..., tm}
The net (P, T,F) can be seen as a matrix (n x m)
A marking is a vector of length n
But we miss an ingredient:

can any firing sequence be seen as a vector?
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Parikh vectors of
transition sequences

Let N = (P,T,F) be a net and ¢ € T* a finite sequence of transitions.
The Parikh vector

og: T — N

of o maps every t € 1" to the number of its occurrences in o.
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Parikh vector of a firing

As a special case, for a sequence ¢ =t (one single transition):

—

f=] 0 .. 01 0 ... 0 ]
t t

b
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Parikh vector: example

pl p3 t3
ts € p4

l \Q/
p2 pS t4

My = 4p1 + p3

M, -Z=000B g A pa+p; F=[0 1 2 1 1]

MO o' =tstytotstatotststs >2p1 n 2p2 —|—p4 = _ [O 9 4 9 1
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P1

Pn

First fact

OO0 |0

47



Second fact

—

N - i = t;

If M -5 M’ then M’ = M + t
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Consequence

—

N - i = t;

If M -5 M’ then M’ = M + t

If M s M then M' = M + N -¢
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Marking equation lemma

Lemma: If M —~— M’ then M' =M +N . &

50



Marking equation lemma

Lemma: If M —~— M’ then M' =M +N . &

The proof is by induction on the length of o

base (0 = €): and therefore M’ = M. The equality holds trivially, because @ = 0

induction (o = ¢’t for some sequence ¢’ and transition t):

Let M -2 M" —*5 M’. We have: M! = M" +t

— M//—TN"F

= M+N-o’+N-#

= M+N- (¢ +1)
%

(inductive hyp. M = M + N - ¢7)
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Marking equation:
example
o7 o

My=1[4 0 1 0 0]




Marking equation:
example
o o

M0:[4 O 1 0 O] 0':t3t5t3t4t2
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Marking equation:
example
o o

M0:[4 O 1 0 O] 0':t3t5t3t4t2 E:[O 1 2 1 1]
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My =

Marking equation:

(4 0 1 0 0]

| 1
oowoqki
| |o

o o
0O — t3t5t3t4t2
N
1 -1 0 0 0
—1 1 0 0 0
0 I -1 0 1
0 0 I -1 -1
0 -1 0 1 0

example

/@\f\’
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F=[0 1 2 1 1]

I |
— =N = O Qy

|
| 1
OO = = W
| ]




Marking equation
lemma: consequences

The marking reached by any occurrence
sequence only depends on the number of
occurrences of each transition

It does not depend on the order in which
transitions occur

Every fireable permutation of the same
transitions leads to the same marking
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Monotonicity lemma (1)

Lemma: If M = M’ then M + L = M’ + L for any L
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Monotonicity lemma (1)

Lemma: If M = M’ then M + L = M’ + L for any L

The proof is by induction on the length of o

base (0 = €): the empty sequence is always enabled, at any marking

induction (¢ = ¢’t for some sequence ¢’ and transition t):
Let M 2 M" — M’
By the marking equation lemma: M’ = M" + N -t

By the induction hypothesis M + L = M" + L

/ /
Moreover, M" + [ — because M’ —.

By the marking equation lemma: M" + L S M'"+L+N-t=M + L
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More on sequences:
concatenation & prefix

Concatenation: finite + finite = finite

for o1 = aq...a,, and 09 = b1...b,,,, we let 0109 = a1...a,,01...b,,

for o1 = ay...a,, and 09 = b1bs..., we let 0109 = a7...a,,b105...
finite + infinite = infinite

o is a prefix of o’ if 0 = ¢’ or 00" = ¢’ for some 0"+ ¢

o is a proper prefix of ¢’ if co” = o’ for some 0"~ ¢

Note that an infinite sequence can be represented as
amap o: N — T, where o(7) = t;
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Enabledness

Proposition: M — iff M —— for every prefix ¢’ of o

(=) immediate from definition
(«=) trivial if o is finite (o itself is a prefix of o)

When ¢ is infinite: taken any ¢ € N we need to prove that ¢; = o(¢) is enabled
after the firing of the prefix o’ = t1tq...t;_1 of 0.
But this is obvious, because

t 4 t;— t;
M =% My 2 ... 2= M,_{ — M,
: .. : t;
is also a finite prefix of o and therefore M, —
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Monotonicity lemma (2)

Lemma: If M — then M + L — for any L

59



Monotonicity lemma (2)

Lemma: If M — then M + L — for any L

If o is finite then the thesis follows from monotonicity lemma 1

If o is infinite, then it suffices to prove that:

M + L ;/ for any finite prefix o’ of o

Take any such prefix ¢’. Then, M o, (because M —)
By the marking equation lemma, M ;/ M+ N .o

By monotonicity lemma 1, M + L -2 M +N-o' + L
Hence M + L L
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Monotonicity lemma,
intuitively

If some activities can be done with less (resources),
then the same activities can be done with more (resources)

If we perform activities with more resources than needed,
then the additional resources are preserved
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Corollary

Corollary: If M = M’ with M C M’ then M ===

61



Corollary

Corollary: If M = M’ with M C M’ then M ===

We need to show that every prefix of oo --- is enabled at M.
Any such prefix take the form ¢’ = o ---0 ¢’ with o’ a prefix of o.
N——

n

We prove that M ~— by induction on n:
base: ¢” = ¢’ is a prefix of o and M = by Enabledness Prop.

induction: We assume that M —— and prove that M .
Let L = M’ — M. By Monotonicity Lemma M + L .
Thus M = M + L — and M ——.
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Boundedness Lemma

Lemma: If a system is bounded and M € [My) with M O My,
then M = M().
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Boundedness Lemma

Lemma: If a system is bounded and M € [My) with M O My,
then M = M().

Let Moy — M.

By M O My, there exists a marking L with M = Mgy + L.
Let M, = My + k- L for every k € N.

By the Monotonicity Lemma, we have:

My = My = My ---

i.e., My, € [My) for any k € N.

Since the system is bounded, it must be L = ().
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Boundedness lemma:
consequences

If we show that a marking M is reachable with

M D M,

then the system is not bounded
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Repetition Lemma

Lemma: If M = M’ and M =Z5 then M C M.
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Repetition Lemma

Lemma: If M = M’ and M =Z5 then M C M.

We proceed by contradiction.
Suppose M & M, i.e., there exist k > 0,p € P such that M'(p) = M(p) — k.

By the Marking Equation Lemma we have M’ = M + N - &.
Therefore (N - 7)(p) = —k.

let n=M(p)+1land o' =0-- 0.

n

By hypothesis we have M $ M
and by the Marking Equation Lemma M" (p) = M (p) — nk < 0, which is absurd.
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Repetition Lemma:
consequences

If o can be fired any number of times

it means that o produces more resources than it consumes
(or as many as it consumes)
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Exercises

andy storage ready for coln Insert coln

% p3 1 13

tl tv2 reject coin t5 <€ o holding

dispense candy P4
— '\ \
P2 p5@‘7 ty

request for refill ready to dispense accept coln

e Compute the Parikh vector of o = t3tatatstststatitatitststs

e Show that o is not enabled at My = 4p; + p3
(Hint: Exploit the Marking Equation Lemma)
o Let 0/ = tstatot1. Prove that M RSN
(Hint: Exploit the Corollary of Monotonicity Lemma)
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