
Methods for the specification and
verification of business processes

MPB (6 cfu, 295AA)

Roberto Bruni
http://www.di.unipi.it/~bruni

07 - Introduction to nets

1

martedì 15 ottobre 13

http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni

Object

2

Overview of the basic concepts of
Petri nets

martedì 15 ottobre 13

Why Petri nets

3

Business process analysis:
validation: testing correctness

verification: proving correctness
performance: planning and optimization

Use of Petri nets (or alike)
visual + formal
tool supported

martedì 15 ottobre 13

Approaching Petri nets

4

Are you familiar with automata / transition systems?
They are fine for sequential protocols / systems
but do not capture concurrent behaviour directly

The Petri net is a mathematical model of a parallel
and concurrent system, in the same way that a finite
automaton is a mathematical model of a sequential

system

martedì 15 ottobre 13

Approaching Petri nets

5

Petri net theory can be studied
at several level of details

We study some basics aspects, relevant to the
analysis of business processes

Petri nets have a faithful and convenient graphical
representation, that we introduce and motivate next

martedì 15 ottobre 13

Finite automata
examples

6

martedì 15 ottobre 13

Applications

7

Finite automata are widely used, e.g., in
protocol analysis,

text parsing,
video game character behavior,

security analysis,
CPU control units,

natural language processing,
speech recognition,
mechanical devices

(like elevators, vending machines, traffic lights)

martedì 15 ottobre 13

How to

8

Identify the admissible states of the system
Optional: Mark some states as error states

Add transitions
to move from one state to another

(no transition to recover from error states)

Set the starting state

Optional: Mark some states as final

martedì 15 ottobre 13

Example: Turnstile

9

locked

unlocked

card

push

card

push

martedì 15 ottobre 13

Example:
Vending Machine

10

$0.00start $0.25 $0.50 $0.75

$1.00 $1.25 $1.50 $1.75

$2.00

$0.25 $0.25 $0.25

$0.25

$0.25

$1.00 $1.00 $1.00 $1.00

$1.00

select select select select

select

$0.25, $1.00 $0.25, $1.00 $0.25, $1.00

$0.25, $1.00

select select select

select

Figure 1: Vending Machine State Diagram

4

($1.25 per soda)
martedì 15 ottobre 13

Computer controlled
characters for games

11

States = characters behaviours

Transitions = labelled by events that cause a change
in behaviour

Example: Pac-man ghosts
pac-man navigates in a maze

wants to eat pills
is chased by ghosts

by eating power pills, pac-man can defeat ghosts

4 AI in Video Games: Pac-Man’s Ghosts

Figure 2: Screenshot of a Pacman Clone

Finite state machines lend themselves to representing the behavior of computer-
controller characters in video games. The states of the machine correspond to the
character’s behaviors, which change according to various events. These changes are
modeled by transitions in the state diagram. State machines are certainly not the
most sophisticated means of implementing artificially intelligent agents in games, but
many games include characters with simple, state-based behaviors that are easily and
e↵ectively modeled using state machines.

Here we consider the classic game, Pac-Man. For those unfamiliar with the game-
play, Pac-Man requires the player to navigate through a maze, eating pellets and
avoiding the ghosts who chase him through the maze. Occasionally, Pac-Man can
turn the tables on his pursuers by eating a power pellet, which temporarily grants
him the power to eat the ghosts. When this occurs, the ghosts’ behavior changes,
and instead of chasing Pac-Man they try to avoid him.

The ghosts in Pac-Man have four behaviors:

1. Randomly wander the maze

5

martedì 15 ottobre 13

Example:
Pac-Man Ghosts

12

2. Chase Pac-Man, when he is within line of sight

3. Flee Pac-Man, after Pac-Man has consumed a power pellet

4. Return to the central base to regenerate

These four behaviors correspond directly to a four-state DFA. Transitions are
dictated by the situation in the game. For instance, a ghost DFA in state 2 (Chase
Pac-Man) will transition to state 3 (Flee) when Pac-Man consumes a power pellet.

For a further discussion of state machines for game AI, see http://research.

ncl.ac.uk/game/mastersdegree/gametechnologies/aifinitestatemachines/.

Wander the Mazestart Chase Pac-Man

Return to Base Flee Pac-Man

Spot
Pac-Man

Lose
Pac-Man

Pac-Man Eats
Power Pellet

Power Pellet
Expires

Pac-Man Eats
Power Pellet

Eaten by
Pac-Man

Reach
Central Base

Figure 3: Behavior of a Pac-Man Ghost

5 Internet Protocols: TCP as a DFA

Internet protocols also lend themselves to descriptions as DFAs. The state diagram
below represents a simplified version of the Transmission Control Protocol (TCP).

6

martedì 15 ottobre 13

Exercises

13

Without adding states, draw the automata for a
SuperGhost that can’t be eaten. It chases Pac-Man
when the power pill is eaten, and returns to base if

Pac-Man eats a piece of fruit.

Choose a favourite (video) game, and try drawing
the state automata for one of the computer

controlled characters in that game.

martedì 15 ottobre 13

From automata
to Petri nets

14

martedì 15 ottobre 13

DFA

15

A Deterministic Finite Automaton (DFA) is a tuple A = (Q,⌃, �, q0, F),
where

• Q is a finite set of states;

• ⌃ is a finite set of input symbols;

• � : Q⇥ ⌃ ! Q is the transition function;

• q0 2 Q is the initial state (also called start state);

• F ✓ Q is the set of final states (also accepting states)

martedì 15 ottobre 13

Extended transit. func.
(destination function)

16

Given A = (Q,⌃, �, q0, F), we define

b� : Q⇥ ⌃⇤ ! Q by induction:

base case: For any q 2 Q we let

b�(q, ✏) = q

inductive case: For any q 2 Q, a 2 ⌃, w 2 ⌃⇤
we let

b�(q, wa) = �(b�(q, w) , a)

martedì 15 ottobre 13

String processing

17

Given A = (Q,⌃, �, q0, F) and w 2 ⌃⇤ we say that A accept w i↵

b�(q0, w) 2 F

The language of A = (Q,⌃, �, q0, F) is

L(A) = { w | b�(q0, w) 2 F }

martedì 15 ottobre 13

Transition diagram

18

We represent A = (Q,⌃, �, q0, F) as a graph s.t.

• Q is the set of nodes;

• { q a�! q0 | q0 = �(q, a) } is the set of arcs.

Plus some graphical conventions:

• there is one special arrow Start with

Start�! q0

• nodes in F are marked by double circles;

• nodes in Q \ F are marked by single circles.

martedì 15 ottobre 13

String processing as
paths

19

A DFA accepts a string w, if there is a path in its
transition diagram such that:

it starts from the initial state

it ends in one final state

the sequence of labels in the path is exactly w

martedì 15 ottobre 13

DFA: example

20

Start

q0

q1

q2
0 1

01 0 , 1

1 0 0 1 1 0

1 1 1 0 0 0q0 q0 q0 q0

q1

q1 q1 62 F

2 Fq1q0 q0 q1 q2 q2 q2

martedì 15 ottobre 13

DFA: exercises

21

Start

q0 q1 q2
0 1

01 0 , 1

Does it accept 100 ?
Does it accept 011 ?
Does it accept 1010010 ?
What is L(A) ?

martedì 15 ottobre 13

DFA: exercises

22

Start

q0 q1 q2
0 1

01 0 , 1

Does it accept 100 ? NO
Does it accept 011 ? YES
Does it accept 1010010 ? YES
What is L(A) ? { x01y | x, y 2 {0, 1}⇤ }

martedì 15 ottobre 13

Transition table

23

Conventional tabular representation

its rows are in correspondence with states

its columns are in correspondence with input symbols

its entries are the states reached after the transition

Plus some decoration

start state decorated with arrow

final states decorated with *

martedì 15 ottobre 13

Transition table

24

�(q, a)q

a

!

⇤

⇤

martedì 15 ottobre 13

DFA: example

25

Start

q0 q1 q2
0 1

01 0 , 1

0 1

! q0 q1 q0
q1 q1 q2

? q2 q2 q2
martedì 15 ottobre 13

DFA: exercise

26

Does it accept 100 ? Does it accept 1010 ?
Write its transition table. What is L(A) ?

martedì 15 ottobre 13

NFA

27

ANon-deterministic Finite Automaton (NFA) is a tuple A = (Q,⌃, �, q0, F),
where

• Q is a finite set of states;

• ⌃ is a finite set of input symbols;

• � : Q⇥ ⌃ ! }(Q) is the transition function;

• q0 2 Q is the initial state (also called start state);

• F ✓ Q is the set of final states (also accepting states)

martedì 15 ottobre 13

NFA: example

28

Start

q0 q1 q2
0 1

0 , 1

Can you explain why it is not a DFA?

martedì 15 ottobre 13

Reshaping

29

martedì 15 ottobre 13

Step 1: get a token

30

Start

q0 q1 q2
0 1

0 , 1

10 0 0 1

martedì 15 ottobre 13

Step 2: forget initial
state decoration

31

q0 q1 q2
0 1

0 , 1

martedì 15 ottobre 13

Step 3: transitions as
boxes

32

q0 q1 q200

0

1

1

martedì 15 ottobre 13

Step 4: forget final
states

33

q0 q1 q200

0

1

1

martedì 15 ottobre 13

Step 5: allow for more
tokens

34

q0 q1 q200

0

1

1

martedì 15 ottobre 13

Example: token game

35

q0 q1 q200

0

1

1

01 1 0 1

martedì 15 ottobre 13

Step 6: allow for more
arcs

36

q0 q1 q200

0

1

1

martedì 15 ottobre 13

Terminology

37

0
PlaceTransition

Arc Token

martedì 15 ottobre 13

Example: token game

38

q0 q1 q200

0

1

1

martedì 15 ottobre 13

Example: token game

39

q0 q1 q200

0

1

1

martedì 15 ottobre 13

Example: token game

40

q0 q1 q200

0

1

1

martedì 15 ottobre 13

Example: token game

41

q0 q1 q200

0

1

1

martedì 15 ottobre 13

Some hints

42

Nets are bipartite graphs:
arcs never connect two places

arcs never connect two transitions

Static structure for dynamic systems:
places, transitions, arcs do not change

tokens move around places

Places are passive components
Transitions are active components:

tokens do not flow!
(they are removed or freshly created)

martedì 15 ottobre 13

Petri nets:
basic definition

43

martedì 15 ottobre 13

Carl Adam Petri

44

July 12, 1926 - July 2, 2010
http://www.informatik.uni-hamburg.de/TGI/mitarbeiter/profs/petri_eng.html

Introduced in 1962 (Petri’s PhD thesis)
60’s and 70’s main focus on theory
80‘s focus on tools and applications

Now applied in several fields

Success due to simple and clean
graphical and conceptual

representation

martedì 15 ottobre 13

http://www.informatik.uni-hamburg.de/TGI/mitarbeiter/profs/petri_eng.html
http://www.informatik.uni-hamburg.de/TGI/mitarbeiter/profs/petri_eng.html

Petri nets for us

45

Formal and abstract business process specification

Formal: the semantics of process instances becomes
well defined and not ambiguous

Abstract: execution environment is disregarded

(Remind about separation of concerns)

martedì 15 ottobre 13

Places

46

A place can stand for
a state

a medium
a buffer

a condition
a repository of resources

a type
...

martedì 15 ottobre 13

Transitions

47

A transition can stand for
an event

an operation
a transformation
a transportation

a task
an activity

...

martedì 15 ottobre 13

Tokens

48

A token can stand for
a physical object
a piece of data

a resource
an activation mark

a message
a document

a case
...

martedì 15 ottobre 13

Marking

49

A marking M : P ! N denotes the number of tokens in each place

M(a) = 0 denotes the absence of tokens in place a

The marking of a Petri net represents its state

martedì 15 ottobre 13

Notation: multisets

50

Let S be a set.

Elements A 2 }(S) are in bijective correspondence with

functions f : S ! {0, 1}

x 2 A i↵ fA(x) = 1

martedì 15 ottobre 13

Notation: multisets

51

Let µ(S) (or S�
) denote the set of multisets over S.

Elements B 2 µ(S) are in bijective correspondence with

functions M : S ! N

MB(x) is the number of instances of x in B

x 2 B i↵ MB(x) > 0

martedì 15 ottobre 13

Notation: multisets

52

Empty multiset:

; is such that ;(x) = 0 for all x 2 S

Multiset containment:

we write M ✓ M

0
if M(x)  M

0(x) for all x 2 S

Multiset strict containment:

we write M ⇢ M

0
if M ✓ M

0
and M 6= M

0

Multiset union:

M +M

0
is the multiset s.t. (M +M

0)(x) = M(x) +M

0(x) for all x 2 S

Multiset di↵erence (defined only if M ◆ M

0
):

M �M

0
is the multiset s.t. (M �M

0)(x) = M(x)�M

0(x) for all x 2 S

martedì 15 ottobre 13

Notation: multisets

53

Multiset M = { k1x1, k2x2, ..., knxn} as formal sum:

k1x1 + k2x2 + ...+ knxn

nX

i=1

kixi

martedì 15 ottobre 13

Exercises

54

3a+ 2b
?
✓ 2a+ 3b+ c

3a+ 2b
?
◆ 2a+ 3b+ c

a+ 2b
?
⇢ 2a+ 3b

(a+ 2b) + (2a+ c) = ?

(2a+ 3b)� (2a+ b) = ?

(2a+ 2b)� (a+ c) = ?

martedì 15 ottobre 13

Petri nets

55

A Petri net is a tuple (P, T, F,M0) where

• P is a finite set of places;

• T is a finite set of transitions;

• F ✓ (P ⇥ T) [(T ⇥ P) is a flow relation;

• M0 : P ! N is the initial marking.

(i.e. M0 2 µ(P))

martedì 15 ottobre 13

Pre-set and post-set

56

A place p is an input place for trantition t i↵
(p, t) 2 F

We let •t denote the set of input places of t.
(pre-set of t)

A place p is an output place for trantition t i↵
(t, p) 2 F

We let t• denote the set of output places of t.
(post-set of t)

martedì 15 ottobre 13

Example: pre and post

57

q0 q2

t
•t = { q0, q2 }
t• = { q0 }

martedì 15 ottobre 13

Pre-set and post-set

58

Analogously, we let

•p denote the set of transitions that share p as output place

p• denote the set of transitions that share p as input place

Formally:

•x = { y | (y, x) 2 F }
x• = { y | (x, y) 2 F }

martedì 15 ottobre 13

Exercises

59

•p1 = ?
•p2 = ?
•p3 = ?
•p4 = ?
•p5 = ?
•p6 = ?
•p7 = ?

p1• = ?
p2• = ?
p3• = ?
p4• = ?
p5• = ?
p6• = ?
p7• = ?

t1• = ?
t2• = ?
t3• = ?
t4• = ?
t5• = ?

•t1 = ?
•t2 = ?
•t3 = ?
•t4 = ?
•t5 = ?

P = {p1, p2, p3, p4, p5, p6, p7}
T = {t1, t2, t3, t4, t5}
F = {(p1, t1), (t1, p2), ... ? }
M0 = 2p3 + ... ?

martedì 15 ottobre 13

