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Object

2

Overview of the basic concepts of
Petri nets
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Why Petri nets
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Business process analysis:
validation: testing correctness

verification: proving correctness
performance: planning and optimization

Use of Petri nets (or alike)
visual + formal
tool supported
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Approaching Petri nets

4

Are you familiar with automata / transition systems?
They are fine for sequential protocols / systems
but do not capture concurrent behaviour directly

The Petri net is a mathematical model of a parallel 
and concurrent system, in the same way that a finite 
automaton is a mathematical model of a sequential 

system
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Approaching Petri nets

5

Petri net theory can be studied 
at several level of details

We study some basics aspects, relevant to the 
analysis of business processes

Petri nets have a faithful and convenient graphical 
representation, that we introduce and motivate next
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Finite automata 
examples

6
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Applications
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Finite automata are widely used, e.g., in 
protocol analysis, 

text parsing, 
video game character behavior, 

security analysis, 
CPU control units, 

natural language processing, 
speech recognition,
mechanical devices 

(like elevators, vending machines, traffic lights)
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How to

8

Identify the admissible states of the system
Optional: Mark some states as error states

Add transitions 
to move from one state to another

(no transition to recover from error states)

Set the starting state

Optional: Mark some states as final
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Example: Turnstile
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locked

unlocked

card

push

card

push
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Example: 
Vending Machine
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$0.00start $0.25 $0.50 $0.75

$1.00 $1.25 $1.50 $1.75

$2.00

$0.25 $0.25 $0.25

$0.25

$0.25

$1.00 $1.00 $1.00 $1.00

$1.00

select select select select

select

$0.25, $1.00 $0.25, $1.00 $0.25, $1.00

$0.25, $1.00

select select select

select

Figure 1: Vending Machine State Diagram

4

($1.25 per soda)
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Computer controlled 
characters for games

11

States = characters behaviours

Transitions = labelled by events that cause a change 
in behaviour

Example: Pac-man ghosts
pac-man navigates in a maze

wants to eat pills
is chased by ghosts

by eating power pills, pac-man can defeat ghosts

4 AI in Video Games: Pac-Man’s Ghosts

Figure 2: Screenshot of a Pacman Clone

Finite state machines lend themselves to representing the behavior of computer-
controller characters in video games. The states of the machine correspond to the
character’s behaviors, which change according to various events. These changes are
modeled by transitions in the state diagram. State machines are certainly not the
most sophisticated means of implementing artificially intelligent agents in games, but
many games include characters with simple, state-based behaviors that are easily and
e↵ectively modeled using state machines.

Here we consider the classic game, Pac-Man. For those unfamiliar with the game-
play, Pac-Man requires the player to navigate through a maze, eating pellets and
avoiding the ghosts who chase him through the maze. Occasionally, Pac-Man can
turn the tables on his pursuers by eating a power pellet, which temporarily grants
him the power to eat the ghosts. When this occurs, the ghosts’ behavior changes,
and instead of chasing Pac-Man they try to avoid him.

The ghosts in Pac-Man have four behaviors:

1. Randomly wander the maze

5
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Example: 
Pac-Man Ghosts

12

2. Chase Pac-Man, when he is within line of sight

3. Flee Pac-Man, after Pac-Man has consumed a power pellet

4. Return to the central base to regenerate

These four behaviors correspond directly to a four-state DFA. Transitions are
dictated by the situation in the game. For instance, a ghost DFA in state 2 (Chase
Pac-Man) will transition to state 3 (Flee) when Pac-Man consumes a power pellet.

For a further discussion of state machines for game AI, see http://research.

ncl.ac.uk/game/mastersdegree/gametechnologies/aifinitestatemachines/.

Wander the Mazestart Chase Pac-Man

Return to Base Flee Pac-Man

Spot
Pac-Man

Lose
Pac-Man

Pac-Man Eats
Power Pellet

Power Pellet
Expires

Pac-Man Eats
Power Pellet

Eaten by
Pac-Man

Reach
Central Base

Figure 3: Behavior of a Pac-Man Ghost

5 Internet Protocols: TCP as a DFA

Internet protocols also lend themselves to descriptions as DFAs. The state diagram
below represents a simplified version of the Transmission Control Protocol (TCP).

6
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Exercises
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Without adding states, draw the automata for a 
SuperGhost that can’t be eaten. It chases Pac-Man 
when the power pill is eaten, and returns to base if 

Pac-Man eats a piece of fruit. 
 

Choose a favourite (video) game, and try drawing 
the state automata for one of the computer 

controlled characters in that game. 
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From automata 
to Petri nets

14
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DFA
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A Deterministic Finite Automaton (DFA) is a tuple A = (Q,⌃, �, q0, F ),
where

• Q is a finite set of states;

• ⌃ is a finite set of input symbols;

• � : Q⇥ ⌃ ! Q is the transition function;

• q0 2 Q is the initial state (also called start state);

• F ✓ Q is the set of final states (also accepting states)
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Extended transit. func. 
(destination function)

16

Given A = (Q,⌃, �, q0, F ), we define

b� : Q⇥ ⌃⇤ ! Q by induction:

base case: For any q 2 Q we let

b�(q, ✏) = q

inductive case: For any q 2 Q, a 2 ⌃, w 2 ⌃⇤
we let

b�(q, wa) = �( b�(q, w) , a )
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String processing

17

Given A = (Q,⌃, �, q0, F ) and w 2 ⌃⇤ we say that A accept w i↵

b�(q0, w) 2 F

The language of A = (Q,⌃, �, q0, F ) is

L(A) = { w | b�(q0, w) 2 F }
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Transition diagram
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We represent A = (Q,⌃, �, q0, F ) as a graph s.t.

• Q is the set of nodes;

• { q a�! q0 | q0 = �(q, a) } is the set of arcs.

Plus some graphical conventions:

• there is one special arrow Start with

Start�! q0

• nodes in F are marked by double circles;

• nodes in Q \ F are marked by single circles.
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String processing as 
paths

19

A DFA accepts a string w, if there is a path in its 
transition diagram such that:

it starts from the initial state

it ends in one final state

the sequence of labels in the path is exactly w
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DFA: example

20

Start

q0

q1

q2
0 1

01 0 , 1

1 0 0 1 1 0

1 1 1 0 0 0q0 q0 q0 q0

q1

q1 q1 62 F

2 Fq1q0 q0 q1 q2 q2 q2
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DFA: exercises

21

Start

q0 q1 q2
0 1

01 0 , 1

Does it accept 100 ?
Does it accept 011 ?
Does it accept 1010010 ?
What is L(A) ?
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DFA: exercises

22

Start

q0 q1 q2
0 1

01 0 , 1

Does it accept 100 ? NO
Does it accept 011 ? YES
Does it accept 1010010 ? YES
What is L(A) ? { x01y | x, y 2 {0, 1}⇤ }
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Transition table

23

Conventional tabular representation

its rows are in correspondence with states

its columns are in correspondence with input symbols

its entries are the states reached after the transition

Plus some decoration 

start state decorated with arrow

final states decorated with *
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Transition table

24

�(q, a)q

a

!

⇤

⇤
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DFA: example

25

Start

q0 q1 q2
0 1

01 0 , 1

0 1

! q0 q1 q0
q1 q1 q2

? q2 q2 q2
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DFA: exercise

26

Does it accept 100 ?        Does it accept 1010 ?
Write its transition table.              What is L(A) ?
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NFA

27

ANon-deterministic Finite Automaton (NFA) is a tuple A = (Q,⌃, �, q0, F ),
where

• Q is a finite set of states;

• ⌃ is a finite set of input symbols;

• � : Q⇥ ⌃ ! }(Q) is the transition function;

• q0 2 Q is the initial state (also called start state);

• F ✓ Q is the set of final states (also accepting states)
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NFA: example

28

Start

q0 q1 q2
0 1

0 , 1

Can you explain why it is not a DFA?
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Reshaping

29
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Step 1: get a token

30

Start

q0 q1 q2
0 1

0 , 1

10 0 0 1
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Step 2: forget initial 
state decoration

31

q0 q1 q2
0 1

0 , 1
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Step 3: transitions as 
boxes

32

q0 q1 q200

0

1

1
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Step 4: forget final 
states

33

q0 q1 q200

0

1

1
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Step 5: allow for more 
tokens

34

q0 q1 q200

0

1

1
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Example: token game

35

q0 q1 q200

0

1

1

01 1 0 1
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Step 6: allow for more 
arcs

36

q0 q1 q200

0

1

1
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Terminology

37

0
PlaceTransition

Arc Token
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Example: token game

38

q0 q1 q200

0

1

1
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Example: token game

39

q0 q1 q200

0

1

1
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Example: token game

40

q0 q1 q200

0

1

1
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Example: token game

41

q0 q1 q200

0

1

1
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Some hints
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Nets are bipartite graphs:
arcs never connect two places

arcs never connect two transitions

Static structure for dynamic systems:
places, transitions, arcs do not change

tokens move around places

Places are passive components
Transitions are active components: 

tokens do not flow!
(they are removed or freshly created)
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Petri nets:
basic definition

43
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Carl Adam Petri

44

July 12, 1926 - July 2, 2010
http://www.informatik.uni-hamburg.de/TGI/mitarbeiter/profs/petri_eng.html 

Introduced in 1962 (Petri’s PhD thesis)
60’s and 70’s main focus on theory
80‘s focus on tools and applications 

Now applied in several fields

Success due to simple and clean 
graphical and conceptual 

representation

martedì 15 ottobre 13

http://www.informatik.uni-hamburg.de/TGI/mitarbeiter/profs/petri_eng.html
http://www.informatik.uni-hamburg.de/TGI/mitarbeiter/profs/petri_eng.html


Petri nets for us

45

Formal and abstract business process specification

Formal: the semantics of process instances becomes 
well defined and not ambiguous

Abstract: execution environment is disregarded

(Remind about separation of concerns)
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Places

46

A place can stand for
a state

a medium
a buffer

a condition
a repository of resources

a type
...
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Transitions

47

A transition can stand for
an event

an operation
a transformation
a transportation

a task
an activity

...
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Tokens

48

A token can stand for
a physical object
a piece of data

a resource
an activation mark

a message
a document

a case
...
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Marking

49

A marking M : P ! N denotes the number of tokens in each place

M(a) = 0 denotes the absence of tokens in place a

The marking of a Petri net represents its state
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Notation: multisets
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Let S be a set.

Elements A 2 }(S) are in bijective correspondence with

functions f : S ! {0, 1}

x 2 A i↵ fA(x) = 1
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Notation: multisets

51

Let µ(S) (or S�
) denote the set of multisets over S.

Elements B 2 µ(S) are in bijective correspondence with

functions M : S ! N

MB(x) is the number of instances of x in B

x 2 B i↵ MB(x) > 0
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Notation: multisets

52

Empty multiset:

; is such that ;(x) = 0 for all x 2 S

Multiset containment:

we write M ✓ M

0
if M(x)  M

0(x) for all x 2 S

Multiset strict containment:

we write M ⇢ M

0
if M ✓ M

0
and M 6= M

0

Multiset union:

M +M

0
is the multiset s.t. (M +M

0)(x) = M(x) +M

0(x) for all x 2 S

Multiset di↵erence (defined only if M ◆ M

0
):

M �M

0
is the multiset s.t. (M �M

0)(x) = M(x)�M

0(x) for all x 2 S
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Notation: multisets

53

Multiset M = { k1x1, k2x2, ..., knxn} as formal sum:

k1x1 + k2x2 + ...+ knxn

nX

i=1

kixi
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Exercises

54

3a+ 2b
?
✓ 2a+ 3b+ c

3a+ 2b
?
◆ 2a+ 3b+ c

a+ 2b
?
⇢ 2a+ 3b

(a+ 2b) + (2a+ c) = ?

(2a+ 3b)� (2a+ b) = ?

(2a+ 2b)� (a+ c) = ?
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Petri nets

55

A Petri net is a tuple (P, T, F,M0) where

• P is a finite set of places;

• T is a finite set of transitions;

• F ✓ (P ⇥ T ) [ (T ⇥ P ) is a flow relation;

• M0 : P ! N is the initial marking.

(i.e. M0 2 µ(P ))
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Pre-set and post-set

56

A place p is an input place for trantition t i↵
(p, t) 2 F

We let •t denote the set of input places of t.
(pre-set of t)

A place p is an output place for trantition t i↵
(t, p) 2 F

We let t• denote the set of output places of t.
(post-set of t)
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Example: pre and post
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q0 q2

t
•t = { q0, q2 }
t• = { q0 }
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Pre-set and post-set
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Analogously, we let

•p denote the set of transitions that share p as output place

p• denote the set of transitions that share p as input place

Formally:

•x = { y | (y, x) 2 F }
x• = { y | (x, y) 2 F }
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Exercises

59

•p1 = ?
•p2 = ?
•p3 = ?
•p4 = ?
•p5 = ?
•p6 = ?
•p7 = ?

p1• = ?
p2• = ?
p3• = ?
p4• = ?
p5• = ?
p6• = ?
p7• = ?

t1• = ?
t2• = ?
t3• = ?
t4• = ?
t5• = ?

•t1 = ?
•t2 = ?
•t3 = ?
•t4 = ?
•t5 = ?

P = {p1, p2, p3, p4, p5, p6, p7}
T = {t1, t2, t3, t4, t5}
F = {(p1, t1), (t1, p2), ... ? }
M0 = 2p3 + ... ?
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