
Methods for the specification and
verification of business processes

MPB (6 cfu, 295AA)
!

Roberto Bruni
http://www.di.unipi.it/~bruni

07 - Introduction to nets

1

http://www.di.unipi.it/~bruni

Object

2

Overview of the basic concepts of
Petri nets

Free Choice Nets (book, optional reading)
https://www7.in.tum.de/~esparza/bookfc.html

https://www7.in.tum.de/~esparza/bookfc.html

Why Petri nets

3

Business process analysis:
validation: testing correctness

verification: proving correctness
performance: planning and optimization

!
Use of Petri nets (or alike)

visual + formal
tool supported

Approaching Petri nets

4

Are you familiar with automata / transition systems?
They are fine for sequential protocols / systems
but do not capture concurrent behaviour directly

!
A Petri net is a mathematical model
of a parallel and concurrent system,

!
in the same way that a finite automaton is a
mathematical model of a sequential system

Approaching Petri nets

5

Petri net theory can be studied
at several level of details

!
We study some basics aspects, relevant to the

analysis of business processes
!

Petri nets have a faithful and convenient graphical
representation, that we introduce and motivate next

Finite automata
examples

6

Applications

7

Finite automata are widely used, e.g., in
protocol analysis,

text parsing,
video game character behavior,

security analysis,
CPU control units,

natural language processing,
speech recognition,
mechanical devices

(like elevators, vending machines, traffic lights)

How to

8

Identify the admissible states of the system
Optional: Mark some states as error states

!
Add transitions

to move from one state to another
(no transition to recover from error states)

!
Set the starting state

!
Optional: Mark some states as final

Example: Turnstile

9

locked

unlocked

card

push

card

push

Example:
Vending Machine

11

$0.00start $0.25 $0.50 $0.75

$1.00 $1.25 $1.50 $1.75

$2.00

$0.25 $0.25 $0.25

$0.25

$0.25

$1.00 $1.00 $1.00 $1.00

$1.00

select select select select

select

$0.25, $1.00 $0.25, $1.00 $0.25, $1.00

$0.25, $1.00

select select select

select

Figure 1: Vending Machine State Diagram

4

($1.25 per soda)

Computer controlled
characters for games

12

States = characters behaviours
!

Transitions = labelled by events that cause a change
in behaviour

!
Example: Pac-man ghosts

pac-man navigates in a maze
wants to eat pills

is chased by ghosts
!

by eating power pills, pac-man can defeat ghosts

4 AI in Video Games: Pac-Man’s Ghosts

Figure 2: Screenshot of a Pacman Clone

Finite state machines lend themselves to representing the behavior of computer-
controller characters in video games. The states of the machine correspond to the
character’s behaviors, which change according to various events. These changes are
modeled by transitions in the state diagram. State machines are certainly not the
most sophisticated means of implementing artificially intelligent agents in games, but
many games include characters with simple, state-based behaviors that are easily and
e↵ectively modeled using state machines.

Here we consider the classic game, Pac-Man. For those unfamiliar with the game-
play, Pac-Man requires the player to navigate through a maze, eating pellets and
avoiding the ghosts who chase him through the maze. Occasionally, Pac-Man can
turn the tables on his pursuers by eating a power pellet, which temporarily grants
him the power to eat the ghosts. When this occurs, the ghosts’ behavior changes,
and instead of chasing Pac-Man they try to avoid him.

The ghosts in Pac-Man have four behaviors:

1. Randomly wander the maze

5

Example:
Pac-Man Ghosts

19

2. Chase Pac-Man, when he is within line of sight

3. Flee Pac-Man, after Pac-Man has consumed a power pellet

4. Return to the central base to regenerate

These four behaviors correspond directly to a four-state DFA. Transitions are
dictated by the situation in the game. For instance, a ghost DFA in state 2 (Chase
Pac-Man) will transition to state 3 (Flee) when Pac-Man consumes a power pellet.

For a further discussion of state machines for game AI, see http://research.

ncl.ac.uk/game/mastersdegree/gametechnologies/aifinitestatemachines/.

Wander the Mazestart Chase Pac-Man

Return to Base Flee Pac-Man

Spot
Pac-Man

Lose
Pac-Man

Pac-Man Eats
Power Pellet

Power Pellet
Expires

Pac-Man Eats
Power Pellet

Eaten by
Pac-Man

Reach
Central Base

Figure 3: Behavior of a Pac-Man Ghost

5 Internet Protocols: TCP as a DFA

Internet protocols also lend themselves to descriptions as DFAs. The state diagram
below represents a simplified version of the Transmission Control Protocol (TCP).

6

Exercises

20

Without adding states, draw the automata for a
SuperGhost that can’t be eaten. It chases Pac-Man
when the power pill is eaten, and returns to base if

Pac-Man eats a piece of fruit.

Choose a favourite (video) game, and try drawing
the state automata for one of the computer

controlled characters in that game.

From automata
to Petri nets

21

DFA

22

A Deterministic Finite Automaton (DFA) is a tuple A = (Q,⌃, �, q0, F),
where

• Q is a finite set of states;

• ⌃ is a finite set of input symbols;

• � : Q⇥ ⌃ ! Q is the transition function;

• q0 2 Q is the initial state (also called start state);

• F ✓ Q is the set of final states (also accepting states)

Notation A*

23

Given a set A we denote by A⇤

the set of finite sequences of elements in A, i.e.:

A⇤
= { a1 · · · an | n � 0 ^ a1, ..., an 2 A }

We denote the empty sequence by ✏ 2 A⇤

For example:

A = { a, b } A⇤
= { ✏, a, b, aa, ab, ba, bb, aaa, aab, ... }

Extended transit. func.
(destination function)

24

Given A = (Q,⌃, �, q0, F), we define

b� : Q⇥ ⌃⇤ ! Q by induction:

base case: For any q 2 Q we let

b�(q, ✏) = q

inductive case: For any q 2 Q, a 2 ⌃, w 2 ⌃⇤
we let

b�(q, wa) = �(b�(q, w) , a)

String processing

25

Given A = (Q,⌃, �, q0, F) and w 2 ⌃⇤ we say that A accept w i↵

b�(q0, w) 2 F

The language of A = (Q,⌃, �, q0, F) is

L(A) = { w | b�(q0, w) 2 F }

Transition diagram

26

We represent A = (Q,⌃, �, q0, F) as a graph s.t.

• Q is the set of nodes;

• { q a�! q0 | q0 = �(q, a) } is the set of arcs.

Plus some graphical conventions:

• there is one special arrow Start with

Start�! q0

• nodes in F are marked by double circles;

• nodes in Q \ F are marked by single circles.

String processing as
paths

27

A DFA accepts a string w, if there is a path in its
transition diagram such that:

!
it starts from the initial state
!
it ends in one final state
!
the sequence of labels in the path is exactly w

DFA: example

28

Start

q0

q1

q2
0 1

01 0 , 1

1 0 0 1 1 0

1 1 1 0 0 0q0 q0 q0 q0

q1

q1 q1 62 F

2 Fq1q0 q0 q1 q2 q2 q2

DFA: question time

29

Start

q0 q1 q2
0 1

01 0 , 1

Does it accept 100 ?
Does it accept 011 ?
Does it accept 1010010 ?
What is L(A) ?

Transition table

31

Conventional tabular representation
!
its rows are in correspondence with states
!
its columns are in correspondence with input symbols
!
its entries are the states reached after the transition
!

Plus some decoration
!
start state decorated with an arrow
!
all final states decorated with *

Transition table

32

�(q, a)q

a

!

⇤

⇤

DFA: example

33

Start

q0 q1 q2
0 1

01 0 , 1

0 1

! q0 q1 q0
q1 q1 q2

? q2 q2 q2

DFA: exercise

34

Does it accept 100 ? Does it accept 1010 ?
Write its transition table. What is L(A) ?

NFA

35

ANon-deterministic Finite Automaton (NFA) is a tuple A = (Q,⌃, �, q0, F),
where

• Q is a finite set of states;

• ⌃ is a finite set of input symbols;

• � : Q⇥ ⌃ ! }(Q) is the transition function;

• q0 2 Q is the initial state (also called start state);

• F ✓ Q is the set of final states (also accepting states)

set of sets over Q

NFA: example

36

Start

q0 q1 q2
0 1

0 , 1

Can you explain why it is not a DFA?

Reshaping

38

Step 1: get a token

39

Start

q0 q1 q2
0 1

0 , 1

10 0 0 1

Step 2: forget initial
state decoration

40

q0 q1 q2
0 1

0 , 1

Step 3: transitions as
boxes

41

q0 q1 q200

0

1

1

Step 4: forget final
states

42

q0 q1 q200

0

1

1

Step 5: allow for more
tokens

43

q0 q1 q200

0

1

1

Example: token game

44

q0 q1 q200

0

1

1

01 1 0 1

Step 6: allow for more
arcs

45

q0 q1 q200

0

1

1

Terminology

46

0
PlaceTransition

Arc Token

Example: token game

47

q0 q1 q200

0

1

1

Example: token game

48

q0 q1 q200

0

1

1

Example: token game

49

q0 q1 q200

0

1

1

Example: token game

50

q0 q1 q200

0

1

1

Some hints

51

Nets are bipartite graphs:
arcs never connect two places

arcs never connect two transitions
!

Static structure for dynamic systems:
places, transitions, arcs do not change

tokens move around places
!

Places are passive components
Transitions are active components:

tokens do not flow!
(they are removed or freshly created)

!

Petri nets:
basic definition

52

Carl Adam Petri

53

July 12, 1926 - July 2, 2010
http://www.informatik.uni-hamburg.de/TGI/mitarbeiter/profs/petri_eng.html

Introduced in 1962 (Petri’s PhD thesis)
60’s and 70’s main focus on theory
80‘s focus on tools and applications

Now applied in several fields
!

Success due to simple and clean
graphical and conceptual

representation

http://www.informatik.uni-hamburg.de/TGI/mitarbeiter/profs/petri_eng.html

Petri nets for us

54

Formal and abstract business process specification
!

Formal: the semantics of process instances becomes
well defined and not ambiguous

!
Abstract: execution environment is disregarded

!
(Remind about separation of concerns)

Places

55

A place can stand for
a state

a medium
a buffer

a condition
a repository of resources

a type
...

Tokens

56

A token can stand for
a physical object
a piece of data

a resource
an activation mark

a message
a document

a case
...

Transitions

57

A transition can stand for
an event

an operation
a transformation
a transportation

a task
an activity

...

Notation: from sets…

58

Let S be a set.

Let }(S) denote the set of sets over S.

Elements A 2 }(S) (i.e., A ✓ S)

are in bijective correspondence with

functions f : S ! {0, 1}

x 2 A i↵ fA(x) = 1

Notation: … to multisets

59

Let µ(S) (or S�
) denote the set of multisets over S.

Elements B 2 µ(S) are in bijective correspondence with

functions M : S ! N

MB(x) is the number of instances of x in B

x 2 B i↵ MB(x) > 0

Notation: multisets

60

Empty multiset:

; is such that ;(x) = 0 for all x 2 S

Multiset containment:

we write M ✓ M

0
if M(x) M

0(x) for all x 2 S

Multiset strict containment:

we write M ⇢ M

0
if M ✓ M

0
and M 6= M

0

Multiset union:

M +M

0
is the multiset s.t. (M +M

0)(x) = M(x) +M

0(x) for all x 2 S

Multiset di↵erence (defined only if M ◆ M

0
):

M �M

0
is the multiset s.t. (M �M

0)(x) = M(x)�M

0(x) for all x 2 S

Notation: multisets

61

Multiset M = { k1x1, k2x2, ..., knxn} as formal sum:

k1x1 + k2x2 + ...+ knxn

nX

i=1

kixi

Marking

62

A marking M : P ! N denotes the number of tokens in each place

M(a) = 0 denotes the absence of tokens in place a

The marking of a Petri net represents its state

Question time

63

3a+ 2b
?
✓ 2a+ 3b+ c

3a+ 2b
?
◆ 2a+ 3b+ c

a+ 2b
?
⇢ 2a+ 3b

(a+ 2b) + (2a+ c) = ?

(2a+ 3b)� (2a+ b) = ?

(2a+ 2b)� (a+ c) = ?

Petri nets

65

A Petri net is a tuple (P, T, F,M0) where

• P is a finite set of places;

• T is a finite set of transitions;

• F ✓ (P ⇥ T) [(T ⇥ P) is a flow relation;

• M0 : P ! N is the initial marking.

(i.e. M0 2 µ(P))

Pre-set and post-set

66

A place p is an input place for transition t i↵
(p, t) 2 F

We let •t denote the set of input places of t.
(pre-set of t)

A place p is an output place for transition t i↵
(t, p) 2 F

We let t• denote the set of output places of t.
(post-set of t)

Example: pre and post

67

q0 q2

t
•t = { q0, q2 }
t• = { q0 }

Pre-set and post-set

68

Analogously, we let

•p denote the set of transitions that share p as output place

p• denote the set of transitions that share p as input place

Formally:

•x = { y | (y, x) 2 F }
x• = { y | (x, y) 2 F }

Exercises

69

•p1 = ?
•p2 = ?
•p3 = ?
•p4 = ?
•p5 = ?
•p6 = ?
•p7 = ?

p1• = ?
p2• = ?
p3• = ?
p4• = ?
p5• = ?
p6• = ?
p7• = ?

t1• = ?
t2• = ?
t3• = ?
t4• = ?
t5• = ?

•t1 = ?
•t2 = ?
•t3 = ?
•t4 = ?
•t5 = ?

P = {p1, p2, p3, p4, p5, p6, p7}
T = {t1, t2, t3, t4, t5}
F = {(p1, t1), (t1, p2), ... ? }
M0 = 2p3 + ... ?

