Methods for the specification and

verification of business processes
MPB (6 cfu, 295AA)

Roberto Bruni

O http://www.di.unipi.it/~bruni
Y

t Q7 - Introduction to nets

http://www.di.unipi.it/~bruni

Object

Overview of the basic concepts of
Petri nets

Free Choice Nets (book, optional reading)
https://www7.in.tum.de/~esparza/bookfc.html

2

https://www7.in.tum.de/~esparza/bookfc.html

Why Petri nets

Business process analysis:
validation: testing correctness
verification: proving correctness
performance: planning and optimization

Use of Petri nets (or alike)
visual + formal
tool supported

Approaching Petri nets

Are you familiar with automata / transition systems?
They are fine for sequential protocols / systems
but do not capture concurrent behaviour directly

A Petri net is a mathematical model
of a parallel and concurrent system,

in the same way that a finite automaton is a
mathematical model of a sequential system

Approaching Petri nets

Petri net theory can be studied
at several level of detalls

We study some basics aspects, relevant to the
analysis of business processes

Petri nets have a faithful and convenient graphical
representation, that we introduce and motivate next

Finite automata
examples

Applications

Finite automata are widely used, e.g., In
protocol analysis,
text parsing,
video game character behavior,

security analysis,

CPU control units,

natural language processing,
speech recognition,
mechanical devices
(like elevators, vending machines, traffic lights)

How to

ldentify the admissible states of the system
Optional: Mark some states as error states

Add transitions
to move from one state to another
(no transition to recover from error states)

Set the starting state

Optional: Mark some states as final

Example: Turnstile

Example:
Vending Machine

select select select select
$0.25 $0.25 $0.25
start $0.00) $0.25 $0.50 $0.75
$1.00 $1.00 $1.00 $1.00 $0.25

select select

$0.25

select

$1.00
$0.25, $1.00 $0.25, $1.00 $0.25, $1.00
select
$2.00
5025, 100 ($1.25 per soda)

Computer controlled
characters for games

States = characters behaviours

Transitions = labelled by events that cause a change
in behaviour

Example: Pac-man ghosts

pac-man navigates in a maze][I[]:DF
wants to eat pills Iﬁﬁ Sy
IS chased by ghosts @D@LﬁLUJ Jf;]

by eating power pills, pac-man can defeat ghosts

12

Example:
Pac-Man Ghosts

Spot
Pac-Man
start — Wander the Maze < Chase Pac-Man
Lose
A Pac-Man
Pac-Man Eats
Reach Power Pellet Pac-Man Eats
Central Base Power Pellet Power Pellet
Expires
Y
Return to Base - Flee Pac-Man
Eaten by

Pac-Man

Exercises

Without adding states, draw the automata for a
SuperGhost that can’t be eaten. It chases Pac-Man
when the power pill is eaten, and returns to base if

Pac-Man eats a piece of fruit.

Choose a favourite (video) game, and try drawing

the state automata for one of the computer
controlled characters in that game.

20

From automata
to Petri nets

DFA

A Deterministic Finite Automaton (DFA) is a tuple A = (Q, 3,9, qo, F),
where

e () is a finite set of states;

e X is a finite set of input symbols;

e 0:() x> — () is the transition function;

e (o € (is the initial state (also called start state);

e I C (Q is the set of final states (also accepting states)

22

Notation A™

Given a set A we denote by A*

the set of finite sequences of elements in A, i.e.:
A*={a1---an, | n>0Aaq,...,a, € A}

We denote the empty sequence by € € A*

For example:
A={a,b} A* ={¢€,a,b,aa,ab,ba,bb, aaa, aab, ... }

23

Extended transit. func.
(destination function)

Given A = (Q, X, 0, qo, I'), we define 5 : () x X* — () by induction:

base case: For any g € () we let R
0(q,€) = ¢

inductive case: Forany g € QQ,a € X, w € X* we let

S AN

0(¢q, wa) = o(o(¢q,w) , a)

24

String processing

Given A = (Q, X, 6, qo, F') and w € ¥* we say that A accept w iff

AN

5(q0,w) c F

The language of A = (Q, 2,9, qg, F') is

L(A) ={w | d(qo,w) € F }

25

Transition diagram

We represent A = (Q, X3, 9, qo, F') as a graph s.t.

e () is the set of nodes;

a

e {qg—¢q | ¢ =0d(q,a)} is the set of arcs.

Plus some graphical conventions:

. . .., Start
e there is one special arrow Start with == qq

e nodes in F' are marked by double circles;

e nodes in (Q \ F' are marked by single circles.

26

String processing as
paths

A DFA accepts a string w, if there is a path in its
transition diagram such that:

It starts from the initial state
It ends in one final state

the sequence of labels in the path is exactly w

27

DFA: example

S t\a‘rt
0 1
(2 (>
1 0

DFA: question time

Does it accept 100 ?
Does it accept 011 ?
Does it accept 1010010 ?
What is L(A) ?

29

Transition table

Conventional tabular representation
its rows are In correspondence with states
its columns are in correspondence with input symbols
its entries are the states reached after the transition
Plus some decoration
start state decorated with an arrow

all final states decorated with *

31

Transition table

DFA: gxercise

Does it accept 100 7? Does it accept 1010 ?
Write its transition table. What is L(A) ?

34

NFA

A Non-deterministic Finite Automaton (NFA) is a tuple A = (Q, X, 6, qo, I),
where

e () is a finite set of states;

e > is a finite set of input symbols;
set of sets over Q

e 0:(Q) XX % Is the transition function:
e (o € (is the initial state (also called start state);

e F C () is the set of final states (also accepting states)

35

NFA: example

Can you explain why it is not a DFA?

36

Reshaping

S 8
tep 1: get a token

@ 0
1

Step 2: forgeft initial
state decoration

8 : 1

0,1

Step 3: transitions as

boxes

@
g

Step 4: forget final
states

@
g

Step 5: allow for more
tokens

§——®
g

Example: token game

§——®
g

1010 1

Step 6: allow for more
arcs

Terminology

{2 @]
Transition Place

e
m
ga

n

toke

le:

P

m

a

Ex

%
E

Example: token game

3
g

Example: token game

3
g

Example: token game

N,
;e

Some hints

Nets are bipartite graphs:
arcs never connect two places
arcs never connect two transitions

Static structure for dynamic systems:
places, transitions, arcs do not change
tokens move around places

Places are passive components
Transitions are active components:
tokens do not flow!

(they are removed or freshly created)

51

Petri nets:
basic definition

- FAT N »
& 2 T
oo 7 - 2 . ’ '.."_ 3
1; .] /V v) % ﬁ .
" 7 IN'.' g hi - y -
9 . R X" [)
R\ s /o)
§ N g s
e , e
o ¥ ' ,
L . P UV, s
v, N . - L1 g
\¢ . <3 e = -
- i Kommunikation.

midt
Auton a't en

=2 July 12, 1926 - July 2, 2010 Von der Fakultédt fiir Mathematik und Physik
http://www.informatik.uni-hamburg.de/T Gl/mitarbeiter/profs/petri eng.html der Technischen llochschule Darmstadt
éur Etlangung Qes Grades eines

Doktors der Naturwissenschaften
(br. rer.nat.)

Introduced in 1962 (Petri’'s PhD thesis) |
60’s and 70’s main focus on theory Sk niaE
80's focus on tools and applications

Now applied in several fields et recen

aus Leipzig

Referent: Prof.Dr.rer.techn.A.Walther
Korreferent: Prof.Dr.Ing.ll.Unger

Success due to simple and clean ’ _
graphical and conceptual tag dor Einretchune;

Tag der miindlichen Priifung: 20.6.1962

representation g

Bonn 1962

53

http://www.informatik.uni-hamburg.de/TGI/mitarbeiter/profs/petri_eng.html

Petri nets for us

Formal and abstract business process specification

Formal: the semantics of process instances becomes
well defined and not ambiguous

Abstract: execution environment is disregarded

(Remind about separation of concerns)

54

Places

A place can stand for
a state
a medium
a buffer
a condition
a repository of resources
a type

55

Tokens

A token can stand for
a physical object
a piece of data

a resource

an activation mark
a message
a document

a case

56

Transitions

A transition can stand for
an event
an operation
a transformation
a transportation
a task
an activity

57

Notation: from sets...

Let S be a set.
Let ©(.S) denote the set of sets over S.

Elements A € p(5) (i.e., A C S5)
are In bijective correspondence with

functions f : S — {0, 1}

r e A iff fA(ZE) =1

58

Notation: ... to multisets

Let 11(S) (or S?) denote the set of multisets over S.

Elements B € 1(S) are in bijective correspondence with
functions M : § — N

Mp(x) is the number of instances of x in B
r € Biff Mg(z) >0

59

Notation: multisets

Empty multiset:
0 is such that @(x) =0 for all x € S

Multiset containment:
we write M C M'" if M(z) < M'(x) forall x € S

Multiset strict containment:
we write M C M" it M C M' and M # M’

Multiset union:
M + M’ is the multiset s.t. (M + M')(z) = M(z) + M'(x) for all z € S

Multiset difference (defined only if M 2O M’):
M — M’ is the multiset s.t. (M — M')(x) = M(x) — M'(z) for all x € S

60

Notation: multisets

Multiset M = { kx4, kaxo, ..., kpx, } as formal sum:

kix1 + koxo + ... + k,,x,,

T
E kix;
i—1

61

Marking

A marking M : P — N denotes the number of tokens in each place

The marking of a Petri net represents its state

M (a) = 0 denotes the absence of tokens in place a

62

Question time

3a 4+ 2b C 2a + 3b+ ¢
?
3a + 2b O 2a + 3b+ ¢

?
a—+2b C 2a + 3b
(a+2b)+ (2a+c¢) =7
(2a + 3b) — (2a + b) =7

(2 4+2b) — (a+c¢c) =7

63

Petri nets

A Petri net is a tuple (P, T, F, My) where

e P is a finite set of places;

e ' is a finite set of transitions;

e FC(PxT)U(T x P) is a flow relation;

o My : P — Nis the initial marking.
(|e My € /L(P))

65

Pre-set and post-set

A place p is an input place for transition t iff
(p,t) € F
We let ot denote the set of input places of ¢.
(pre-set of t)

A place p is an output place for transition t iff
(t,p) € F
We let te denote the set of output places of ¢.
(post-set of t)

66

Example: pre and post

{QmCIz}

{(Jo}

Pre-set and post-set

Analogously, we let
ep denote the set of transitions that share p as output place
pe denote the set of transitions that share p as input place

Formally:

ox={y | (y,x) € F}
re={y | (v,y) € F}

68

P = {p1,p2,D3,P4,P5, D6, D7}

() -

p1

receive
order

Exercises

g HQH t3 i

process

p2

t2

p3

order

T = {tl,tg,tg,t4,t5}
F={(p1,t1), (t1,p2),..- 7 }

M() — 2]?3 -+ !

t10

O) D D

p4

O

send books

69

update
inventory

p

p6

O)) D D N

omplete
order

1O

p7

M. Weske: Business Process Management
© Springer-Verlag Berlin Heidelberg 2007

TR S
N O Ot AW N
® 6 o o o o o

Q\D Q\D Q\D Q\D Q\D .Q -\D

