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Object
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Overview of the basic concepts of 
Petri nets 

Free Choice Nets (book, optional reading) 
https://www7.in.tum.de/~esparza/bookfc.html 

https://www7.in.tum.de/~esparza/bookfc.html


Why Petri nets
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Business process analysis: 
validation: testing correctness 

verification: proving correctness 
performance: planning and optimization 

!
Use of Petri nets (or alike) 

visual + formal 
tool supported 



Approaching Petri nets
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Are you familiar with automata / transition systems? 
They are fine for sequential protocols / systems 
but do not capture concurrent behaviour directly 

!
A Petri net is a mathematical model  
of a parallel and concurrent system,  

!
in the same way that a finite automaton is a 
mathematical model of a sequential system



Approaching Petri nets
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Petri net theory can be studied  
at several level of details 

!
We study some basics aspects, relevant to the 

analysis of business processes 
!

Petri nets have a faithful and convenient graphical 
representation, that we introduce and motivate next



Finite automata 
examples
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Applications
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Finite automata are widely used, e.g., in  
protocol analysis,  

text parsing,  
video game character behavior,  

security analysis,  
CPU control units,  

natural language processing,  
speech recognition, 
mechanical devices  

(like elevators, vending machines, traffic lights)



How to
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Identify the admissible states of the system 
Optional: Mark some states as error states 

!
Add transitions  

to move from one state to another 
(no transition to recover from error states) 

!
Set the starting state 

!
Optional: Mark some states as final



Example: Turnstile
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locked

unlocked

card

push

card

push



Example:  
Vending Machine
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$0.00start $0.25 $0.50 $0.75

$1.00 $1.25 $1.50 $1.75

$2.00

$0.25 $0.25 $0.25

$0.25

$0.25

$1.00 $1.00 $1.00 $1.00

$1.00

select select select select

select

$0.25, $1.00 $0.25, $1.00 $0.25, $1.00

$0.25, $1.00

select select select

select

Figure 1: Vending Machine State Diagram

4

($1.25 per soda)



Computer controlled 
characters for games
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States = characters behaviours 
!

Transitions = labelled by events that cause a change 
in behaviour 

!
Example: Pac-man ghosts 

pac-man navigates in a maze 
wants to eat pills 

is chased by ghosts 
!

by eating power pills, pac-man can defeat ghosts

4 AI in Video Games: Pac-Man’s Ghosts

Figure 2: Screenshot of a Pacman Clone

Finite state machines lend themselves to representing the behavior of computer-
controller characters in video games. The states of the machine correspond to the
character’s behaviors, which change according to various events. These changes are
modeled by transitions in the state diagram. State machines are certainly not the
most sophisticated means of implementing artificially intelligent agents in games, but
many games include characters with simple, state-based behaviors that are easily and
e↵ectively modeled using state machines.

Here we consider the classic game, Pac-Man. For those unfamiliar with the game-
play, Pac-Man requires the player to navigate through a maze, eating pellets and
avoiding the ghosts who chase him through the maze. Occasionally, Pac-Man can
turn the tables on his pursuers by eating a power pellet, which temporarily grants
him the power to eat the ghosts. When this occurs, the ghosts’ behavior changes,
and instead of chasing Pac-Man they try to avoid him.

The ghosts in Pac-Man have four behaviors:

1. Randomly wander the maze

5



Example:  
Pac-Man Ghosts
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2. Chase Pac-Man, when he is within line of sight

3. Flee Pac-Man, after Pac-Man has consumed a power pellet

4. Return to the central base to regenerate

These four behaviors correspond directly to a four-state DFA. Transitions are
dictated by the situation in the game. For instance, a ghost DFA in state 2 (Chase
Pac-Man) will transition to state 3 (Flee) when Pac-Man consumes a power pellet.

For a further discussion of state machines for game AI, see http://research.

ncl.ac.uk/game/mastersdegree/gametechnologies/aifinitestatemachines/.

Wander the Mazestart Chase Pac-Man

Return to Base Flee Pac-Man

Spot
Pac-Man

Lose
Pac-Man

Pac-Man Eats
Power Pellet

Power Pellet
Expires

Pac-Man Eats
Power Pellet

Eaten by
Pac-Man

Reach
Central Base

Figure 3: Behavior of a Pac-Man Ghost

5 Internet Protocols: TCP as a DFA

Internet protocols also lend themselves to descriptions as DFAs. The state diagram
below represents a simplified version of the Transmission Control Protocol (TCP).

6



Exercises
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Without adding states, draw the automata for a 
SuperGhost that can’t be eaten. It chases Pac-Man 
when the power pill is eaten, and returns to base if 

Pac-Man eats a piece of fruit.  
  

Choose a favourite (video) game, and try drawing 
the state automata for one of the computer 

controlled characters in that game. 



From automata  
to Petri nets

21



DFA
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A Deterministic Finite Automaton (DFA) is a tuple A = (Q,⌃, �, q0, F ),
where

• Q is a finite set of states;

• ⌃ is a finite set of input symbols;

• � : Q⇥ ⌃ ! Q is the transition function;

• q0 2 Q is the initial state (also called start state);

• F ✓ Q is the set of final states (also accepting states)



Notation A*
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Given a set A we denote by A⇤

the set of finite sequences of elements in A, i.e.:

A⇤
= { a1 · · · an | n � 0 ^ a1, ..., an 2 A }

We denote the empty sequence by ✏ 2 A⇤

For example:

A = { a, b } A⇤
= { ✏, a, b, aa, ab, ba, bb, aaa, aab, ... }



Extended transit. func. 
(destination function)
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Given A = (Q,⌃, �, q0, F ), we define

b� : Q⇥ ⌃⇤ ! Q by induction:

base case: For any q 2 Q we let

b�(q, ✏) = q

inductive case: For any q 2 Q, a 2 ⌃, w 2 ⌃⇤
we let

b�(q, wa) = �( b�(q, w) , a )



String processing
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Given A = (Q,⌃, �, q0, F ) and w 2 ⌃⇤ we say that A accept w i↵

b�(q0, w) 2 F

The language of A = (Q,⌃, �, q0, F ) is

L(A) = { w | b�(q0, w) 2 F }



Transition diagram
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We represent A = (Q,⌃, �, q0, F ) as a graph s.t.

• Q is the set of nodes;

• { q a�! q0 | q0 = �(q, a) } is the set of arcs.

Plus some graphical conventions:

• there is one special arrow Start with

Start�! q0

• nodes in F are marked by double circles;

• nodes in Q \ F are marked by single circles.



String processing as 
paths
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A DFA accepts a string w, if there is a path in its 
transition diagram such that: 

!
it starts from the initial state 
!
it ends in one final state 
!
the sequence of labels in the path is exactly w 



DFA: example
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Start

q0

q1

q2
0 1

01 0 , 1

1 0 0 1 1 0

1 1 1 0 0 0q0 q0 q0 q0

q1

q1 q1 62 F

2 Fq1q0 q0 q1 q2 q2 q2



DFA: question time
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Start

q0 q1 q2
0 1

01 0 , 1

Does it accept 100 ? 
Does it accept 011 ? 
Does it accept 1010010 ? 
What is L(A) ?



Transition table
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Conventional tabular representation 
!
its rows are in correspondence with states 
!
its columns are in correspondence with input symbols 
!
its entries are the states reached after the transition 
!

Plus some decoration  
!
start state decorated with an arrow 
!
all final states decorated with *



Transition table
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�(q, a)q

a

!

⇤

⇤



DFA: example
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Start

q0 q1 q2
0 1

01 0 , 1

0 1

! q0 q1 q0
q1 q1 q2

? q2 q2 q2



DFA: exercise
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Does it accept 100 ?        Does it accept 1010 ? 
Write its transition table.              What is L(A) ?



NFA
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ANon-deterministic Finite Automaton (NFA) is a tuple A = (Q,⌃, �, q0, F ),
where

• Q is a finite set of states;

• ⌃ is a finite set of input symbols;

• � : Q⇥ ⌃ ! }(Q) is the transition function;

• q0 2 Q is the initial state (also called start state);

• F ✓ Q is the set of final states (also accepting states)

set of sets over Q



NFA: example
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Start

q0 q1 q2
0 1

0 , 1

Can you explain why it is not a DFA?



Reshaping
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Step 1: get a token
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Start

q0 q1 q2
0 1

0 , 1

10 0 0 1



Step 2: forget initial 
state decoration
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q0 q1 q2
0 1

0 , 1



Step 3: transitions as 
boxes
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q0 q1 q200

0

1

1



Step 4: forget final 
states
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q0 q1 q200

0

1

1



Step 5: allow for more 
tokens
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q0 q1 q200

0

1

1



Example: token game
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q0 q1 q200

0

1

1

01 1 0 1



Step 6: allow for more 
arcs
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q0 q1 q200

0

1

1



Terminology
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0
PlaceTransition

Arc Token



Example: token game
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q0 q1 q200

0

1

1



Example: token game

48

q0 q1 q200

0

1

1



Example: token game

49

q0 q1 q200

0

1

1



Example: token game
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q0 q1 q200

0

1

1



Some hints
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Nets are bipartite graphs: 
arcs never connect two places 

arcs never connect two transitions 
!

Static structure for dynamic systems: 
places, transitions, arcs do not change 

tokens move around places 
!

Places are passive components 
Transitions are active components:  

tokens do not flow! 
(they are removed or freshly created) 

!



Petri nets: 
basic definition
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Carl Adam Petri
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July 12, 1926 - July 2, 2010 
http://www.informatik.uni-hamburg.de/TGI/mitarbeiter/profs/petri_eng.html 

Introduced in 1962 (Petri’s PhD thesis) 
60’s and 70’s main focus on theory 
80‘s focus on tools and applications  

Now applied in several fields 
!

Success due to simple and clean 
graphical and conceptual 

representation

http://www.informatik.uni-hamburg.de/TGI/mitarbeiter/profs/petri_eng.html


Petri nets for us
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Formal and abstract business process specification 
!

Formal: the semantics of process instances becomes 
well defined and not ambiguous 

!
Abstract: execution environment is disregarded 

!
(Remind about separation of concerns)



Places
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A place can stand for 
a state 

a medium 
a buffer 

a condition 
a repository of resources 

a type 
...



Tokens
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A token can stand for 
a physical object 
a piece of data 

a resource 
an activation mark 

a message 
a document 

a case 
...



Transitions
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A transition can stand for 
an event 

an operation 
a transformation 
a transportation 

a task 
an activity 

...



Notation: from sets…
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Let S be a set.

Let }(S) denote the set of sets over S.

Elements A 2 }(S) (i.e., A ✓ S)

are in bijective correspondence with

functions f : S ! {0, 1}

x 2 A i↵ fA(x) = 1



Notation: … to multisets

59

Let µ(S) (or S�
) denote the set of multisets over S.

Elements B 2 µ(S) are in bijective correspondence with

functions M : S ! N

MB(x) is the number of instances of x in B

x 2 B i↵ MB(x) > 0



Notation: multisets
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Empty multiset:

; is such that ;(x) = 0 for all x 2 S

Multiset containment:

we write M ✓ M

0
if M(x)  M

0(x) for all x 2 S

Multiset strict containment:

we write M ⇢ M

0
if M ✓ M

0
and M 6= M

0

Multiset union:

M +M

0
is the multiset s.t. (M +M

0)(x) = M(x) +M

0(x) for all x 2 S

Multiset di↵erence (defined only if M ◆ M

0
):

M �M

0
is the multiset s.t. (M �M

0)(x) = M(x)�M

0(x) for all x 2 S



Notation: multisets
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Multiset M = { k1x1, k2x2, ..., knxn} as formal sum:

k1x1 + k2x2 + ...+ knxn

nX

i=1

kixi



Marking
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A marking M : P ! N denotes the number of tokens in each place

M(a) = 0 denotes the absence of tokens in place a

The marking of a Petri net represents its state



Question time
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3a+ 2b
?
✓ 2a+ 3b+ c

3a+ 2b
?
◆ 2a+ 3b+ c

a+ 2b
?
⇢ 2a+ 3b

(a+ 2b) + (2a+ c) = ?

(2a+ 3b)� (2a+ b) = ?

(2a+ 2b)� (a+ c) = ?



Petri nets
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A Petri net is a tuple (P, T, F,M0) where

• P is a finite set of places;

• T is a finite set of transitions;

• F ✓ (P ⇥ T ) [ (T ⇥ P ) is a flow relation;

• M0 : P ! N is the initial marking.

(i.e. M0 2 µ(P ))



Pre-set and post-set
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A place p is an input place for transition t i↵
(p, t) 2 F

We let •t denote the set of input places of t.
(pre-set of t)

A place p is an output place for transition t i↵
(t, p) 2 F

We let t• denote the set of output places of t.
(post-set of t)



Example: pre and post
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q0 q2

t
•t = { q0, q2 }
t• = { q0 }



Pre-set and post-set
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Analogously, we let

•p denote the set of transitions that share p as output place

p• denote the set of transitions that share p as input place

Formally:

•x = { y | (y, x) 2 F }
x• = { y | (x, y) 2 F }



Exercises
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•p1 = ?
•p2 = ?
•p3 = ?
•p4 = ?
•p5 = ?
•p6 = ?
•p7 = ?

p1• = ?
p2• = ?
p3• = ?
p4• = ?
p5• = ?
p6• = ?
p7• = ?

t1• = ?
t2• = ?
t3• = ?
t4• = ?
t5• = ?

•t1 = ?
•t2 = ?
•t3 = ?
•t4 = ?
•t5 = ?

P = {p1, p2, p3, p4, p5, p6, p7}
T = {t1, t2, t3, t4, t5}
F = {(p1, t1), (t1, p2), ... ? }
M0 = 2p3 + ... ?


