Methods for the specification and verification of business processes

MPB (6 cfu, 295AA)

Roberto Bruni

http://www.di.unipi.it/~bruni

06 - Evolution
Overview of the evolution of (Information Systems inside) Enterprise Systems Architectures

Ch.2 of Business Process Management: Concepts, Languages, Architectures
Guiding principles

Separation of Concerns (SoC)
(to separate a system into distinct features that overlap in functionality as little as possible)

Modularity and information hiding
(encapsulation, interfaces, reuse, maintainability, response to change)
Let me try to explain to you, what to my taste is characteristic for all intelligent thinking.

It is, that one is willing to study in depth an aspect of one's subject matter in isolation for the sake of its own consistency, all the time knowing that one is occupying oneself only with one of the aspects.
... We know that a program must be correct and we can study it from that viewpoint only; we also know that it should be efficient and we can study its efficiency on another day, so to speak. In another mood we may ask ourselves whether, and if so: why, the program is desirable.

But nothing is gained —on the contrary!— by tackling these various aspects simultaneously.
Edsger W. Dijkstra
1974

...It is what I sometimes have called "the separation of concerns", which, even if not perfectly possible, is yet the only available technique for effective ordering of one's thoughts, that I know of.

This is what I mean by "focussing one's attention upon some aspect": it does not mean ignoring the other aspects, it is just doing justice to the fact that from this aspect's point of view, the other is irrelevant.
Business data processing systems are sufficiently complicated to require such a separation of concerns and the suggestion that in that part of the computing world "scientific thought is a non-applicable luxury" puts the cart before the horse: the mess they are in has been caused by too much unscientific thought....
SoC: an example

HyperText Markup Language (HTML):
organization of webpage content

Cascading Style Sheets (CSS):
definition of content presentation style

JavaScript (JS):
user interactions
SoC: another example

Model–view–controller (MVC) sw architecture

Controller: send commands to the model to update the model's state or to its associated view to change the view's presentation of the model.

Model: notifies its associated views and controllers when there has been a state change (the views update their output, the controllers change the available set of commands).

View: requests information from the model to generate an output representation to the user.
Software Architecture

Definition: A software architecture defines a structure that organizes the software elements and the resources of a software system (outside view).

Software elements and resources are represented by subsystems, with specific responsibilities and relationships (inside view).
Early systems (architectures)

- Applications developed from scratch
- Porting required redevelopment
- Data dependency and consistency issues

Programming interfaces

1970

Physical data independence

1980

Advanced user interfaces

1990

Data management as a primary concern

Ease human interaction with the help of knowledge workers

Applications developed from scratch

Porting required redevelopment

Data dependency and consistency issues

Enterprise Scenario

Early stages
mainframe, assembler language, monolithic applications (including data and textual user interface)

DBMS
application code and (textual, form-based) user interface still entangled

Lowering cost of hw
more separated applications available (different applications in different departments, but hosting related data: redundancy, dependencies)
Enterprise Applications

OS + DBMS + GUI + Networking capabilities = more and more elaborate information systems could be engineered

Typically hosting enterprise applications (customers, personnel, products, resources)

Next steps: from individual to multiple information systems (needs integration)
Changes

Changes were hard to implement!

Hard to track data dependency and replication

Any modification of an application was a complex and error-prone activity, with domino effect (e.g. change of customer address format)
Individual enterprise application

Lack of Integration!
Data redundancy!
Data dependencies!

Diagram:
- POM DB
- HR DB
- DBMS
- OS
- Warehouse Management
- Warehouse file system data store
ERP

Enterprise Resource Planning (ERP) systems were developed to deal with the increasing complexity of changes.

Basic idea

integrated database that spans most applications, separated modules provide desired functionalities, accessed by client applications.
Enterprise resource planning systems

- Integrated and consistent (centralized) database
- Two-tier client-service
- Remote data access
CRM and SCM

New types of sw entered the market around 2000

Customer Relationship Management (CRM) systems
Supply Chain Management (SCM) systems

Goal
to support the planning, operation, and control of supply chains, including inventory management, warehouse management, management of suppliers and distributors, and demand planning

Problem: different vendors, separately developed
Siloed enterprise applications

Data Integration would provide valuable information

Customer Relationship Management System

- GUI
- Application Logic of CRM System
- DBMS
- OS
- CRM Database

Supply Chain Management System

- GUI
- Application Logic of SCM System
- DBMS
- OS
- SCM Database

Supply Chain Management System

- GUI
- Application Logic of ERP System
- DBMS
- OS
- ERP Database

Lack of Integration!
Data redundancy!
Data dependencies!
(on a larger scale and complexity than before)

Connected on local network, but not logically integrated
A sample scenario

Customer calls

Call centre personnel can only access the information stored in one system

Call centre personnel is not aware of the full status of the customer

Customer (doesn’t care about siloed structure) does not feel well served, becomes upset, expects a better service
Heterogeneity

Heterogeneous information technology landscape has grown in an evolutionary way for years: Heterogeneity of data and their attributes (syntax and semantics difficulties) calls for Data Integration.

Examples

- corresponding data fields with different names (e.g., CustAddr vs CAsstreet),
- fields with the same name but different meaning (e.g. Price, with or without taxes?, unitary?)
Integration

Manual integration is possible, but:

- it consumes considerable resources
- it is error-prone
- cannot be foreseen for all applications in advance
 (reimplementing functionalities in an integrated way would just postpone the problem)

Solution

Enterprise Application Integration systems as a new middleware
Enterprise Application Integration

Definition: Enterprise Application Integration (EAI) is defined as the use of software and computer systems architectural principles to integrate a set of enterprise computer applications.
Point-to-point integration (of silos)

N x N hard-wiring problem!

Too many interfaces to develop!

Does not respond well to changes!

\[\sum_{i=1}^{N-1} i = \frac{N(N-1)}{2} \]
Support Changes, efficiently, effectively

The point-to-point approach opposes some resistance to fluent changes

Hard-wiring of interfaces (and their numbers) is the main limit

Reprogramming an interface requires considerable resources, typically

Alternative
Move to message-oriented middleware
Message-Oriented Middleware offers some execution guarantees, such as message delivery (e.g. persistent message queues are used).

Still, the main problem remains: changes in the application landscape require changes in the communication structure.

The Client exploits an Integration Application to operate on all systems.
Message-oriented middleware

Messages must be encoded and decoded

Point-to-point connection problem does not diminish that much
Response to Change

Message-oriented middleware reduces in part integration efforts and gives important run-time guarantees

Still cooperation is hardwired in a particular application (the Integration Application)

No explicit process model that can be documented, communicated, and changed when necessary

In the end, response to change is not improved
The **Hub-and-Spoke** paradigm is based on a central hub and a number of spokes attached to it.

The Application Integration middleware represents the hub, and the applications to be integrated represents the spokes.

Interactions between any two applications must pass through the hub.
Hub-and-spoke integration

Configuration and management of adapters and message brokers can become cumbersome.

- From N x N to N integrators
- Message brokers
- Publish/subscribe mechanism

Centralized Enterprise Application Integration Middleware (Hub)

- ERP System
- CRM System
- SCM System
- Data Warehouse
- Human Resources Application
- Inventory Management

Adapters
EAI implementation pitfalls

70% of all EAI projects fail (2003). Most of these failures are not due to technical difficulties, but due to management issues:

- Constant change
- Shortage of EAI experts
- Competing standards
- Loss of detail: Information unimportant at an earlier stage may become crucial later
- Conflicting and emerging requirements
- Data protectionism
From (data-models and) data-integration

To (process-models and) process-integration
Value Chains and Process Orientation

Two major factors fuelled business process management

Value chains as a means to functionally break down the activities a company performs and to analyze their contribution to the commercial success of the company

Process orientation as the way to organize the activities of enterprises
Workflow re-birth

Born as rational organization of work in manufacturing:
optimization of throughput and resource utilization

Re-born in ICT:
flexibility, adaptability, modularity, distribution
A piece of history
Workflow component

Definition: a single-application workflow consists of activities and their causal and temporal ordering that are realized by one common application system.
Multiple-application workflow system

Definition: a multiple-application workflow contains activities that are realized by multiple application systems, providing an integration of these systems.
System workflow

Definition: a system workflow consists of activities that are implemented by software systems without any user involvement.
Do you remind hub-and-spokes EAI?
Limitations in workflow management

Technical integration problems:
Scarcely documented applications
Different levels of granularity
Tight coupling of applications (direct invocation)
Main idea:

Business functionalities exposed as services

Services are equipped with usage information

Customers can find services and use them
Services

Definition: Services are loosely-coupled computing tasks that can be dynamically discovered and invoked over the network.

Each service comes with a service description that can be published in service registries by the service provider.

Service registries can be queried by service requestors.

Service descriptions provide a level of detail that facilitates service requestors to bind and invoke them.
Service-oriented architectures

Definition: Service-oriented architectures (SOA) are software architectures that provide an environment for describing and finding software services, and for binding to services.
Service-oriented architectures

Service Requestor

Service Provider

Service Registry
Advantages of SOA

Reuse of functionality at coarse level of granularity

New applications can be built with less effort

Existing applications can be efficiently adapted to changing requirements

Reduced maintenance and development costs
Service enabled application system

ERP Enterprise Services
service specification must be decoupled from implementation and legacy system
ERP System
DBMS
OS

standard interface

ERP Database

Enterprise service bus

Centralized component that integrates all applications

Hides heterogeneity by introducing service interfaces

Local registry

Manual search (absence of dynamic matchmaking)
Composite service based application

Intra-company
well-expressed as business processes

Local registry
Manual search (absence of dynamic matchmaking)
Products as services

Corporations are increasingly perceived by the set of services they provide

These services exposed to the market can be realized by enterprise services (provided by the back-end application system)

Also services provided by third parties can be integrated so that better end used services can be provided to the customer
Business-to-business value system

Buyer → Reseller → Payment Org → Manufacturer
Business-to-business processes
Gartner’s hype cycle

A hype cycle is a (branded) graphic representation of the maturity, adoption and social application of specific technologies.