Business Processes Modelling

MPB (6 cfu, 295AA)

Roberto Bruni
http://www.di.unipi.it/~bruni

05 - BP Lifecycle
Object

Overview the business process lifecycle

Sect.1.2 of Business Process Management: Concepts, Languages, Architectures
A lifecycle model is a conceptual description of the steps that are involved in building a product.

The steps in which the model is broken are called phases (logically consistent, easier to understand).

The number of phases can vary from model to model (typically ranging from four to eighth).
Five phases, with logical dependencies, organized along a cyclic structure:

- **Enactment**: Operation, Monitoring, Maintenance
- **Configuration**: System Selection, Implementation, Test and Deployment
- **Design & Analysis**: Business Process Identification and Modelling
- **Analysis**: Validation, Simulation, Verification
- **Evaluation**: Process Mining, Business Activity Monitoring, Monitoring
BP lifecycle

The logical dependencies between different phases do not imply a strict temporal ordering of their execution.

Incremental and evolutionary approaches involving concurrent activities in multiple phases are frequently used.
Different from the classical **waterfall model**: a sequential SW design process seen as flowing downwards (like a waterfall) through various phases.
BP lifecycle vs PDCA

Similar to the PDCA scheme (you may have heard of):
A management method for the control and continuous improvement of products
Better structured than extreme programming methodology: intended to improve productivity and responsiveness to changing requirements, advocates frequent releases, adding features when needed and a flat management structure
Business process lifecycle

Design & Analysis

Design:
Business Process Identification and Modeling

Analysis:
Validation
Simulation
Verification
Context

Matrix organizational structure
Design: Identification

Require **surveys** on:
- the business processes
- their organizational environment
- their technical environment

Based on these surveys, business processes are:
- identified
- reviewed
- validated
- represented (by business process models)
Design: Modeling

Core technical sub-phase: from informal descriptions to a particular business process modelling notation

Explicit business process models expressed in a graphical notation facilitate communication about these processes so that different stakeholders can:

- communicate efficiently
- refine them
- improve them
Look, see, imagine, show
Analysis: Validation

The initial design must be validated by checking that **all valid process instances are reflected** by the business process model.

Useful instrument: a **workshop** where the persons involved can discuss the business process model.

- desired instances
- undesired instances
- proposed process
The initial design must be validated by checking that **all valid process instances are reflected** by the business process model.

Useful instrument: a **workshop** where the persons involved can discuss the business process model.
Analysis: Simulation

Simulation techniques can support validation

Stakeholders can walk through the process in a step-by-step manner

Check whether processes expose all desired behaviour

Estimate performance measures (e.g., time, cost, …)

Discover undesired execution sequences to show deficits in the process model
Analysis: Verification

The business process model must be analyzed and improved to make sure:

- all tasks can be used in some instance
- it can always come to an end (e.g., absence of deadlock)
- it actually includes all desired instances
- it does not allow any undesired instance

Error-prone activities, to be repeated several times, for which automatic tools are necessary
Business process lifecycle

Configuration:
- System Selection
- Implementation
- Test and Deployment
Configuration phase

From (verified) business process models to implementation as

a set of policies, guidelines and procedures (to be followed by employees)

a dedicated software system (over a chosen implementation platform: a business process management system)
Enhanced models

Software systems usually require additional technical information

The model must be decorated with such data, to be exploited for configuring the system

Examples: interactions of the employees with the system, integration of existing systems, wrapping of legacy software
When the system is configured, it must be tested before deployment.

Usual testing techniques from sw engineering:
- Integration tests
- Performance tests

Other possible activities:
- Training of personnel,
- Migration of application data
Business process lifecycle

Enactment:
- Operation
- Monitoring
- Maintenance
Enactment phase

When the system is deployed, business process instances can be enacted.

Typically, each process instance is initiated after an event occurs (e.g., the receipt of an order).

The system must control and monitor the execution of all instances according to the model to guarantee a correct process orchestration (e.g., respecting dependencies).
Enactment

Activities can be performed by employees **manually** or by the help of information systems

Other activities can be enacted **automatically** by information systems

Some activities can **trigger** or **inhibit** other activities
Monitoring

At each moment in time, the current status of any instance must be known (and logged) by the system as accurately as possible.

Both for process instances and activity instances.

Helpful visualization techniques can be provided by business process management systems (e.g., coloured activities).

Such information is highly valuable for customers (e.g., tracking of orders).
Business process lifecycle

Evaluation:
Process Mining
Business Activity Monitoring

Evaluation
Evaluation phase

Execution **logs** are of fundamental importance

The information collected during instances enactment can be used to evaluate and improve business process models

Business **activity monitoring** and **process mining** techniques aim at identifying the quality of the model and the adequacy of the environment
BA monitoring

Log files typically include information such as the start / end timestamps of activity instances

Activity monitoring serve to identify that certain activities take too long or need more resources

The same information can be also exploited in the simulation sub-phase of the design and analysis phase
Process mining has recently turned into an active field of research.

Thanks to mining techniques, execution logs can be used for the automatic generation of business process models in the design and analysis phase.

They can also be used to assess and compare different models to see which fits best the enacted instances.
Business process lifecycle

Administration and Stakeholders
Administration phase

Business process management involves numerous artifacts at different levels of abstraction.

Such artifacts need to be organized and managed (storage, retrieval, disposal).

A well-structured repository is needed, with powerful query mechanisms.
Stakeholders

Several types of stakeholders co-exist in the process domain

They have different kinds of educational background, knowledge, expertise, experience

Roughly, they can be classified into a few roles

CPO BE PD PP KW PR SA Dev
Chief process officer

Top level management
(CPO reports directly to CEO / board of directors)

Responsible for defining rules, policies and guidelines and establishing control mechanisms

Responsible for standardizing and harmonizing business processes in the enterprise

Responsible of business process evolution in the presence of changing market requirements
Business engineer

Business domain expert

Responsible for defining **strategic goals** of the company and **organizational business processes**

Often equipped with non-technical educational background (mostly economics)

It is preferred to communicate with these stakeholders by means of simple-to-use process modeling notation
Process designer

Responsible for **modeling business processes**
by communicating with business domain experts
and other stakeholders

Must be equipped with good analytical capabilities
and **excellent communication skills**
Process participants

Conduct the actual operational work during the enactment of processes

They are knowledgeable about the activities conducted, fundamental information for the modeling phase

Their information must be assembled by the designer to compose an overall picture in the process model
Knowledge worker

Process participants who use software systems to perform activities in a business process, often autonomously
Process responsible

An individual who is held responsible for the correct and efficient execution of all instances of a business process model

Responsible for detecting inefficiencies and improving the process model

Close collaboration with process participants and the process designer is needed
System architect

Responsible for developing and **configuring** business process management systems on the information system infrastructure at hand
Developers

Information technology professionals

Responsible for creating the **software artifacts** required to implement business processes

Implementation of interfaces is a relevant part of the work done by developers