Methods for the specification and verification of business processes

MPB (6 cfu, 295AA)

Roberto Bruni

http://www.di.unipi.it/~bruni

04 - Models and Abstraction
Overview of the conceptual models and abstraction mechanisms in business process modeling

Ch.3.1--3.3 of Business Process Management: Concepts, Languages, Architectures
A model is a simplified representation of reality

"Essentially all models are wrong, but some are useful"
(George P. Box)
Conceptual model of business processes

UML-like syntax

entities

attributes

Business Process

association

Activity

Workflow

System Activity

User Interaction Activity

Manual Activity

System Workflow

Human Interaction Workflow
Conceptual model of business processes

A BP consists of activities realizing the business goal.

- Business Process
 - Activity
 - Workflow: Supported by workflow technology
 - System Activity: Executed by information systems; no humans involved (e.g., credit check)
 - User Interaction Activity: Performed by knowledge workers using information systems (e.g., enter some data)
 - Manual Activity: Not supported by information systems (e.g., meet the customer)

System Workflow: only support system activities

Human Interaction Workflow: support activities of any kind

Workflow management

Needs of:

Explicit representation of process structures in process models

Controlled enactment of business processes according to these models
Workflow management coalition (WfMC)

Founded in the ‘90s by vendors, users, academia: fix standard for Wf representation and execution

http://www.wfmc.org
Workflow

Definition: a workflow is the automation of a business process, in whole or in part,
during which documents, information, or tasks are passed from one participant to another for action,
according to a set of procedural rules.
Definition: a workflow management system is a software system that defines, creates, and manages Wfs execution, running on one or more workflow engines, able to interpret the workflow definition, able to interact with workflow participants, and able to invoke the use of IT tools and applications.
System workflow

Definition: a system workflow consists of activities that are implemented by software systems without any user involvement
Definition: Workflows in which humans are actively involved and interact with information systems are called human interaction workflows.
Human interaction workflows

Goal:
support automation by driving the human activities according to the process model

Benefits:
reduce idle periods
avoid redundant work
improve human/machine work integration
Human collaboration

When task performed by humans are involved in the workflow, it is not sufficient to equip workers with adequate software:

their collaboration must be supported

shared data repositories and work handover can speed-up office procedure considerably
Concepts in human interaction workflow

Roles = groups of employees that qualify for being responsible of certain activities. Increased flexibility: different persons can cover the same role at different time in different cases

Work item list (also called in-basket) = when an item is selected the respective application is started; when completed the knowledge worker informs the workflow engine
Some limitations

Problems with knowledge workers:

User acceptance issues

Machine burdening of workers

Little room for creativity and flexibility
Abstraction

To derive general rules and concepts from specific examples of some phenomenon, by selecting only the aspects which are relevant for a particular purpose

A way to cope with complexity
Guiding principle

Separation of Concerns (SoC)
(to separate a system into distinct features that overlap in functionality as little as possible)
Edsger Wybe Dijkstra was one of the most influential members of computing science’s founding generation. Among the domains in which his scientific contributions are fundamental are:

- algorithm design
- programming languages
- program design
- operating systems
- distributed processing
- formal specification and verification
- design of mathematical arguments

In addition, Dijkstra was intensely interested in teaching, and in the relationships between academic computing science and the software industry.

http://www.cs.utexas.edu/users/EWD/
On the role of scientific thought (EWD447)

Let me try to explain to you, what to my taste is characteristic for all intelligent thinking.

It is, that one is willing to study in depth an aspect of one's subject matter in isolation for the sake of its own consistency, all the time knowing that one is occupying oneself only with one of the aspects.
On the role of scientific thought (EWD447)

... We know that a program must be correct and we can study it from that viewpoint only; we also know that it should be efficient and we can study its efficiency on another day, so to speak. In another mood we may ask ourselves whether, and if so: why, the program is desirable.

But nothing is gained —on the contrary!— by tackling these various aspects simultaneously.
On the role of scientific thought (EWD447)

...

It is what I sometimes have called "the separation of concerns", which, even if not perfectly possible, is yet the only available technique for effective ordering of one's thoughts, that I know of.

...

it does not mean ignoring the other aspects, it is just doing justice to the fact that from this aspect's point of view, the other is irrelevant.
On the role of scientific thought (EWD447)

Business data processing systems are sufficiently complicated to require such a separation of concerns and the suggestion that in that part of the computing world "scientific thought is a non-applicable luxury" puts the cart before the horse: the mess they are in has been caused by too much unscientific thought....
SoC: an example

HyperText Markup Language (HTML): organization of webpage content

Cascading Style Sheets (CSS): definition of content presentation style

JavaScript (JS): user interactions
Abstractions

Horizontal: separation at different modeling levels

Aggregation: separation at different granularity levels

Vertical: separation at different subdomains
Horizontal abstraction (modeling levels)

Abstract entities to define concepts

M3: Meta-Metamodel

Concepts that discipline model definition

M2: Metamodel

Classes of similar instances

M1: Model

Concrete entities

M0: Instance

Graphical symbols (different notations for the same metamodel are possible)

(better be read bottom-up)

An example:
MOF metamodel (OMG)
Process models and process instances
A process metamodel (level M2)

Each node is associated with at least one edge. The different types of nodes are represented by the generalization relation. Activity models reflect the work units to be performed, event models represent the occurrence of states relevant for the business process, and gateway models represent execution constraints of activities, such as split and join nodes.

While the association between nodes and edges are defined at the node level, the cardinality of the association between special types of nodes (activity models, event models, and gateway models) differs. Each activity model has exactly one incoming and one outgoing edge.

Each process starts with exactly one event, the initial event, and ends with exactly one event, the final event. Therefore, certain events can have no incoming edges (initial event) or no outgoing edges (final event). Gateway models represent control flow. Therefore, they can act as either split nodes or join nodes, but not both. Hence, each gateway model can have multiple outgoing edges (split gateway node) or multiple incoming edges (join gateway node).

Figure 3.14 shows a process model based on the process metamodel introduced. The notation used to express this process model is taken from the Business Process Model and Notation:

- Event model nodes are represented by circles; the final event model is represented by a bold circle.
- Activity models are represented by rectangles with rounded edges.
- Gateway models are represented by diamonds.
- Edges are represented by directed edges between nodes.
Process models and process instances

Diagram of relationships between process instances and models:
- Process Instance * 1 Process Model
- Node Instance * 1 Node
- Activity Instance * 1 Activity Model
- Event * 1 Event Model
- Gateway Instance * 1 Gateway Model

Aggregation abstraction

Multiple elements of a lower level of granularity can be grouped and represented by a single artifact at the higher level of granularity.

Different from horizontal abstraction, where all activities lie at the same level of abstraction.
A sample aggregation

OrderManagement

GetOrder

CheckOrder

AnalyzeOrder
SimpleCheck
AdvCheck
Vertical abstraction
(domain separation)

BPM includes multiple modelling domains, integrated by Process Modelling
Function models

Units of work enacted by processes (at different levels of granularity)

Informal description, textual documents (coarse-grain business level)

Formal description, function specifications (fine-grain software layer)
Value Chains

Value chains are a way to organize the work that a company conducts to achieve its business goal.

Value chains were developed by Michael Porter to organize high-level business functions and to relate them to each other.
Value systems

Companies have goals to fulfill

To reach their goals, companies can cooperate with each other

The value chains of cooperating companies become linked/related to each other: they form a **value system**

Value systems can provide an immediate understanding of ``how a company operates``
Informal, high-level business functions decomposition produce a Value system made of Value chains centred at the enterprise E under consideration.

Collaboration is flowing in both directions inside chains (not necessarily left-to-right).

Collaboration requires contract negotiation.

Supplier S1

Channel C1

Buyer B1

Supplier S2

Channel C2

Buyer B2

Channel C3

Buyer B3
Ecology of value chains

``gaining and sustaining competitive advantage depends on understanding not only a firm’s value chain but how the firm fits in the overall value system”

- Porter
High-level business functions

The value chain of a company has a rich internal structure, consisting of a set of coarse-grained business functions (e.g. Order management, Human resources)

High-level business functions can be decomposed into finer-grained functions (this is called functional decomposition) (e.g. from "Order management" to "storing" and "checking" orders)
Activity models and activity instances
Value chains and processes

Porter was not able to identify the role of processes within value chains

However, process-orientation can fit very well with value-chains and functional decomposition

Key factor: the granularity of business processes must be in line with the particular goals associated with the supported business function
Process Orientation

Not only process orientation serves to capture the activities a company performs, but also to study and improve the relationships between activities.

Business process reengineering is based on the understanding that rapid, radical redesign of business processes is the road to success.
Taylorism

Process orientation is based on a critical analysis of a concept to organize work units originally introduced by Frederick Taylor (1856-1915) to improve industrial efficiency.

Taylorism uses functional breakdown of complex work to small granularities.

Then, highly specialized work force can efficiently conduct these work units of small granularity.

Taylorism has proved very successful in manufacturing and fuelled the industrial revolution.
Taylorism

- **worker's focus**
 - entire process for all products
 - entire process for a single product
 - single part of a process for a single product

- **worker's capabilities**
 - pure generalist
 - intermediate specialist
 - pure specialist

- **Historical eras**
 - Prehistoric times
 - Ancient times
 - Middle Ages
 - Industrial times
Handovers

Fine-grained activities require many handovers of work in order to process a given task

Until early nineteenth century the products were typically assembled in a few steps only, so handovers were not introducing much delays

Moreover, tasks were of simple nature and did not require any context information on previously conducted steps

Taylorism proved inefficient for organizing work in modern enterprises
Pitfall of Taylorism

Steps of a business process are often related to each other

Context information on the whole case is required during the process

The handovers of work cause a major problem because of that (workers required knowledge)

In the end, functional breakdown proved inefficient in modern business organizations that mainly process information
Process perspective

It is instrumental to combine multiple units of work of small granularity into work units of larger granularity to reduce the handover of work.

As a consequence, workers must have broader skills and competencies (knowledge workers must have a broad understanding of the ultimate goal of their work).

Main effect, at the organizational level, process orientation led to the characterization of high-level operations (usually, less than a dozen), called **organizational business processes**.
Information models

Data representation is crucial: all decisions made during a business process depends on data values.

Data dependencies between activities are also important (ensure data-availability, reduce waiting time)
Data models

M2: Metamodel
(data meta model,
e.g., Entity Relationship Model)

M1: Model
(data model)

M0: Instance
(data values)

Notation
(data model notation,
e.g., ER Notation,
UML Class Diagrams)

Instance-of

expresses

Instance-of

describes

describes

M. Weske: Business Process Management,
© Springer-Verlag Berlin Heidelberg 2007
Organizational models

Organizational structure must be represented

Activities must be associated to specific roles or departments
Organizational models

M2: Metamodel (organization meta model)

M1: Model (organization model)

M0: Instance (persons, e.g., knowledge workers, managers)

Notation (organization model notation, e.g., Organization Chart)

Instance-of

expresses

describes

Instance-of
An organizational metamodel
IT landscape

Many activities in a business process are supported by information systems.

Information systems and programming interfaces need to be represented because they provide functionalisties.
Interface Definition
Languages

M2: Metamodel
(Interface Definition Languages)

M1: Model
(Interface Definitions)

M0: Instance
(Executing Software providing Defined Functionality)

Notation
(IDL specifications)

Instance-of

describes

describes

expresses

M. Weske: Business Process Management,
© Springer-Verlag Berlin Heidelberg 2007
Service enabling

An activity can be realized by multiple services (and vice versa)

Process models

Define the glue between the subdomains

Relate functions and execution constraints

Relate data values with process instances
(e.g. the process of a credit approval may depend on the requested amount)
A process model with role information
A process instance with workers information
From business functions to business processes (and their implementation)
Step 1: Functional decomposition
Business functions: activities

Functions at finest granularity level are called activities (rounded boxes)
Step 2: Structuring business processes

Textual process descriptions are ok for coarse-grained functions

Operational business processes are ok for fine-grained functions

Fix execution constraints
Start event / End event
Step 3: Related business processes

Value chain with related, high level functions

The end event of one process can trigger the start event of another process
Step 4: Activity implementation

Activities are functions at the finest granularity

They are the building blocks of operational business processes
(but sometimes activity implementation can be provided by knowledge worker)
From value system...

...to implementation