Business Processes Modelling

MPB (6 cfu, 295AA)

Roberto Bruni

http://www.di.unipi.it/~bruni

03 - Models and Abstraction
Overview of the conceptual models and abstraction mechanisms in business process modeling

Ch.3.1--3.3 of Business Process Management: Concepts, Languages, Architectures
Model

A model is a simplified representation of reality

"Essentially all models are wrong, but some are useful"
(George P. Box)
Abstraction

To derive general rules and concepts from specific examples of some phenomenon, by selecting only the aspects which are relevant for a particular purpose.

A way to cope with complexity
Guiding principle

Separation of Concerns (SoC)
(to separate a system into distinct features that overlap in functionality as little as possible)
Edsger Wybe Dijkstra was one of the most influential members of computing science’s founding generation. Among the domains in which his scientific contributions are fundamental are

- algorithm design
- programming languages
- program design
- operating systems
- distributed processing
- formal specification and verification
- design of mathematical arguments

In addition, Dijkstra was intensely interested in teaching, and in the relationships between academic computing science and the software industry.

http://www.cs.utexas.edu/users/EWD/
On the role of scientific thought (EWD447)

Let me try to explain to you, what to my taste is characteristic for all intelligent thinking.

It is, that one is willing to study in depth an aspect of one's subject matter in isolation for the sake of its own consistency, all the time knowing that one is occupying oneself only with one of the aspects.
On the role of scientific thought (EWD447)

... We know that a program must be correct and we can study it from that viewpoint only; we also know that it should be efficient and we can study its efficiency on another day, so to speak. In another mood we may ask ourselves whether, and if so: why, the program is desirable.

But nothing is gained —on the contrary!— by tackling these various aspects simultaneously.
On the role of scientific thought (EWD447)

... *It is what I sometimes have called "the separation of concerns", which, even if not perfectly possible, is yet the only available technique for effective ordering of one's thoughts, that I know of.*

... *it does not mean ignoring the other aspects, it is just doing justice to the fact that from this aspect's point of view, the other is irrelevant.*
On the role of scientific thought (EWD447)

Business data processing systems are sufficiently complicated to require such a separation of concerns and the suggestion that in that part of the computing world "scientific thought is a non-applicable luxury" puts the cart before the horse: the mess they are in has been caused by too much unscientific thought....
SoC: an example

HyperText Markup Language (HTML): organization of webpage content

Cascading Style Sheets (CSS): definition of content presentation style

JavaScript (JS): user interactions
Abstractions

Horizontal: separation at different modeling levels

Aggregation: separation at different granularity levels

Vertical: separation at different subdomains
Horizontal Abstraction
Horizontal abstraction (modeling levels)

Abstract entities to define concepts

M3: Meta-Metamodel

Concepts that discipline model definition

M2: Metamodel

Classes of similar instances

M1: Model

Concrete entities

M0: Instance

Graphical symbols (different notations for the same metamodel are possible)

(better be read bottom-up)
An example:

MOF metamodel (OMG)
Process models and process instances
A process metamodel (level M2)

Each node is associated with at least one edge. The different types of nodes are represented by the generalization relation. Activity models reflect the work units to be performed, event models represent the occurrence of states relevant for the business process, and gateway models represent execution constraints of activities, such as split and join nodes.

While the association between nodes and edges are defined at the node level, the cardinality of the association between special types of nodes (activity models, event models, and gateway models) differs. Each activity model has exactly one incoming and one outgoing edge.

Each process starts with exactly one event, the initial event, and ends with exactly one event, the final event. Therefore, certain events can have no incoming edges (initial event) or no outgoing edges (final event). Gateway models represent control flow. Therefore, they can act as either split nodes or join nodes, but not both. Hence, each gateway model can have multiple outgoing edges (split gateway node) or multiple incoming edges (join gateway node).

Figure 3.14 shows a process model based on the process metamodel introduced. The notation used to express this process model is taken from the Business Process Model and Notation:

- Event model nodes are represented by circles; the final event model is represented by a bold circle.
- Activity models are represented by rectangles with rounded edges.
- Gateway models are represented by diamonds.
- Edges are represented by directed edges between nodes.
A process metamodel
(level M2)

Each node is associated with at least one edge. The different types of nodes are represented by the generalization relation. Activity models reflect the work units to be performed, event models represent the occurrence of states relevant for the business process, and gateway models represent execution constraints such as split and join nodes.

While the association between nodes and edges are defined at the node level, the cardinality of the association between special types of nodes (activity models, event models, and gateway models) differs. Each activity model has exactly one incoming and one outgoing edge.

Each process starts with exactly one event, the initial event, and ends with exactly one event, the final event. Therefore, certain events can have no incoming edges (initial event) or no outgoing edges (final event). Gateway models represent control flow. Therefore, they can act as either split nodes or join nodes, but not both. Hence, each gateway model can have multiple outgoing edges (split gateway node) or multiple incoming edges (join gateway node).

Figure 3.14 shows a process model based on the process metamodel introduced. The notation used to express this process model is taken from the Business Process Model and Notation:

- Event model nodes are represented by circles; the final event model is represented by a bold circle.
- Activity models are represented by rectangles with rounded edges.
- Gateway models are represented by diamonds.
- Edges are represented by directed edges between nodes.
Each node is associated with at least one edge. The different types of nodes are represented by the generalization relation. Activity models reflect the work units to be performed, event models represent the occurrence of states relevant for the business process, and gateway models represent execution constraints of activities, such as split and join nodes.

While the association between nodes and edges are defined at the node level, the cardinality of the association between special types of nodes (activity models, event models, and gateway models) differs. Each activity model has exactly one incoming and one outgoing edge.

Each process starts with exactly one event, the initial event, and ends with exactly one event, the final event. Therefore, certain events can have no incoming edges (initial event) or no outgoing edges (final event). Gateway models represent control flow. Therefore, they can act as either split nodes or join nodes, but not both. Hence, each gateway model can have multiple outgoing edges (split gateway node) or multiple incoming edges (join gateway node).

Figure 3.14 shows a process model based on the process metamodel introduced. The notation used to express this process model is taken from the Business Process Model and Notation:

- Event model nodes are represented by circles; the final event model is represented by a bold circle.
- Activity models are represented by rectangles with rounded edges.
- Gateway models are represented by diamonds.
- Edges are represented by directed edges between nodes.
A process metamodel (level M2)

Each node is associated with at least one edge. The different types of nodes are represented by the generalization relation. Activity models reflect the work units to be performed, event models represent the occurrence of states relevant for the business process, and gateway models represent execution constraints, such as split and join nodes.

While the association between nodes and edges are defined at the node level, the cardinality of the association between special types of nodes (activity models, event models, and gateway models) differs. Each activity model has exactly one incoming and one outgoing edge.

Each process starts with exactly one event, the initial event, and ends with exactly one event, the final event. Therefore, certain events can have no incoming edges (initial event) or no outgoing edges (final event). Gateway models represent control flow. Therefore, they can act as either split nodes or join nodes, but not both. Hence, each gateway model can have multiple outgoing edges (split gateway node) or multiple incoming edges (join gateway node).

Figure 3.14 shows a process model based on the process metamodel introduced. The notation used to express this process model is taken from the Business Process Model and Notation:

- Event model nodes are represented by circles; the final event model is represented by a bold circle.
- Activity models are represented by rectangles with rounded edges.
- Gateway models are represented by diamonds.
- Edges are represented by directed edges between nodes.
Process models and process instances

Diagram:

- Process Instance
 - *
 - 1

- Process Model
 - 1

- Node Instance
 - *
 - 1

- Node
 - 1
 - 2..*
 - 1..*

- Edge
 - 1

- Activity Instance
 - *
 - 1

- Activity Model
 - 1

- Event
 - *
 - 1

- Event Model
 - 1

- Gateway Instance
 - *
 - 1

- Gateway Model
 - 1
Aggregation Abstraction
Aggregation abstraction

Multiple elements of a lower level of granularity can be grouped and represented by a single artifact at the higher level of granularity

Different from horizontal abstraction, where all entities lie at the same level of granularity
A sample aggregation

OrderManagement

GetOrder

CheckOrder

AnalyzeOrder

SimpleCheck

AdvCheck
Vertical Abstraction
Vertical abstraction (domain separation)

BPM includes multiple modelling domains, integrated by Process Modelling
Function models

Units of work enacted by processes (at different levels of granularity)

Informal description, textual documents (coarse-grain business level)

Formal description, function specifications (fine-grain software layer)
Value Chains

Value chains are a way to organize the work that a company conducts to achieve its business goal.

Value chains were developed by Michael Porter to organize high-level business functions and to relate them to each other.
Value systems

Companies have goals to fulfill

To reach their goals, companies can cooperate with each other

The value chains of cooperating companies become linked/related to each other: they form a value system

Value systems can provide an immediate understanding of ``how a company operates'’
Informal, high-level business functions decomposition produce a Value system made of Value chains centred at the enterprise E under consideration.
Ecology of value chains

``gaining and sustaining competitive advantage depends on understanding not only a firm’s value chain but how the firm fits in the overall value system”

- Porter
High-level business functions

The value chain of a company has a rich internal structure, consisting of a set of coarse-grained business functions (e.g. Order management, Human resources)

High-level business functions can be decomposed into finer-grained functions (this is called functional decomposition) (e.g. from “Order management” to “storing” and “checking” orders)
Activity models and activity instances
Value chains and processes

Porter was not able to identify the role of processes within value chains

However, process-orientation can fit very well with value-chains and functional decomposition (see Lecture 4)

Key factor:
the granularity of business processes must be in line with the particular goals associated with the supported business function
Information models

Data representation is crucial: all decisions made during a business process depends on data values

Data dependencies between activities are also important (ensure data-availability, reduce waiting time)
Data models

M2: Metamodel
(data meta model, e.g., Entity Relationship Model)

M1: Model
(data model)

M0: Instance
(data values)

Notation
(data model notation, e.g., ER Notation, UML Class Diagrams)

Instance-of
describes

Instance-of
describes

expresses
Organizational models

Organizational structure must be represented

Activities must be associated to specific roles or departments
Organizational models

M2: Metamodel (organization meta model)

M1: Model (organization model)

M0: Instance (persons, e.g., knowledge workers, managers)

Notation (organization model notation, e.g., Organization Chart)

Instance-of

describes

expresses
An organizational metamodel
IT landscape

Many activities in a business process are supported by information systems

Information systems and programming interfaces needs to be represented because they provide functionalities
Interface Definition Languages

M2: Metamodel (Interface Definition Languages)

Instance-of describes

M1: Model (Interface Definitions)

Instance-of describes

M0: Instance (Executing Software providing Defined Functionality)

Notation (IDL specifications)

expresses
Service enabling

An activity can be realized by multiple services (and vice versa)
Process models

Define the glue between the subdomains

Relate functions and execution constraints

Relate data values with process instances
(e.g. the process of a credit approval may depend on the requested amount)
A process model with role information
A process instance with workers information

- Clerk
 - Peter
 - Enter c.r. (r017, Miller, 10000)
- Manager
 - Charles
 - Analyze client (r017, Miller)
 - Anne
 - Propose Decision (r017, Miller)
 - Jane
 - Finalize Decision (r017, Miller)